test_pipelines.py 48.6 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import json
18
import os
19
import random
20
import shutil
21
import sys
22
23
import tempfile
import unittest
24
import unittest.mock as mock
25
26
27

import numpy as np
import PIL
28
import requests_mock
29
import safetensors.torch
30
31
32
import torch
from parameterized import parameterized
from PIL import Image
33
from requests.exceptions import HTTPError
34
35
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer

36
from diffusers import (
37
    AutoencoderKL,
38
39
40
41
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
42
    DiffusionPipeline,
43
44
45
46
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
47
    PNDMScheduler,
48
    StableDiffusionImg2ImgPipeline,
49
    StableDiffusionInpaintPipelineLegacy,
50
    StableDiffusionPipeline,
51
    UNet2DConditionModel,
52
    UNet2DModel,
53
    UniPCMultistepScheduler,
54
    logging,
55
)
56
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
57
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME, floats_tensor, is_flax_available, nightly, slow, torch_device
58
from diffusers.utils.testing_utils import CaptureLogger, get_tests_dir, load_numpy, require_compel, require_torch_gpu
59
60
61
62
63


torch.backends.cuda.matmul.allow_tf32 = False


64
class DownloadTests(unittest.TestCase):
65
66
67
68
69
70
71
72
73
74
75
76
    def test_one_request_upon_cached(self):
        # TODO: For some reason this test fails on MPS where no HEAD call is made.
        if torch_device == "mps":
            return

        with tempfile.TemporaryDirectory() as tmpdirname:
            with requests_mock.mock(real_http=True) as m:
                DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
                )

            download_requests = [r.method for r in m.request_history]
77
            assert download_requests.count("HEAD") == 15, "15 calls to files"
78
79
            assert download_requests.count("GET") == 17, "15 calls to files + model_info + model_index.json"
            assert (
80
                len(download_requests) == 32
81
82
83
84
85
86
87
88
            ), "2 calls per file (15 files) + send_telemetry, model_info and model_index.json"

            with requests_mock.mock(real_http=True) as m:
                DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
                )

            cache_requests = [r.method for r in m.request_history]
89
            assert cache_requests.count("HEAD") == 1, "model_index.json is only HEAD"
90
91
92
93
94
            assert cache_requests.count("GET") == 1, "model info is only GET"
            assert (
                len(cache_requests) == 2
            ), "We should call only `model_info` to check for _commit hash and `send_telemetry`"

95
96
97
    def test_download_only_pytorch(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
98
            tmpdirname = DiffusionPipeline.download(
99
100
101
                "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
            )

102
            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
103
104
105
106
107
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a flax file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f.endswith(".msgpack") for f in files)
108
109
110
            # We need to never convert this tiny model to safetensors for this test to pass
            assert not any(f.endswith(".safetensors") for f in files)

111
112
113
114
115
116
117
118
119
120
121
    def test_force_safetensors_error(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
            with self.assertRaises(EnvironmentError):
                tmpdirname = DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe-no-safetensors",
                    safety_checker=None,
                    cache_dir=tmpdirname,
                    use_safetensors=True,
                )

122
123
124
125
126
127
128
129
130
131
132
    def test_returned_cached_folder(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        _, local_path = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None, return_cached_folder=True
        )
        pipe_2 = StableDiffusionPipeline.from_pretrained(local_path)

        pipe = pipe.to(torch_device)
133
        pipe_2 = pipe_2.to(torch_device)
134

135
        generator = torch.manual_seed(0)
136
137
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

138
        generator = torch.manual_seed(0)
139
140
141
142
        out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        assert np.max(np.abs(out - out_2)) < 1e-3

143
144
145
    def test_download_safetensors(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
146
            tmpdirname = DiffusionPipeline.download(
147
148
149
150
151
                "hf-internal-testing/tiny-stable-diffusion-pipe-safetensors",
                safety_checker=None,
                cache_dir=tmpdirname,
            )

152
            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
153
154
155
156
157
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a pytorch file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f.endswith(".bin") for f in files)
158

159
160
161
162
163
    def test_download_no_safety_checker(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
164
        pipe = pipe.to(torch_device)
165
        generator = torch.manual_seed(0)
166
167
168
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        pipe_2 = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
169
        pipe_2 = pipe_2.to(torch_device)
170
        generator = torch.manual_seed(0)
171
        out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
172
173
174
175
176
177
178
179

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_explicit_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
180
        pipe = pipe.to(torch_device)
181
        generator = torch.manual_seed(0)
182
183
184
185
186
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None)
187
            pipe_2 = pipe_2.to(torch_device)
188

189
            generator = torch.manual_seed(0)
190
191

            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
192
193
194
195
196
197

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_default_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
198
        pipe = pipe.to(torch_device)
199
200

        generator = torch.manual_seed(0)
201
202
203
204
205
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname)
206
            pipe_2 = pipe_2.to(torch_device)
207

208
            generator = torch.manual_seed(0)
209
210

            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
211
212
213

        assert np.max(np.abs(out - out_2)) < 1e-3

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
    def test_cached_files_are_used_when_no_internet(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = {}
        response_mock.raise_for_status.side_effect = HTTPError
        response_mock.json.return_value = {}

        # Download this model to make sure it's in the cache.
        orig_pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        orig_comps = {k: v for k, v in orig_pipe.components.items() if hasattr(v, "parameters")}

        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("requests.request", return_value=response_mock):
            # Download this model to make sure it's in the cache.
            pipe = StableDiffusionPipeline.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None, local_files_only=True
            )
            comps = {k: v for k, v in pipe.components.items() if hasattr(v, "parameters")}

        for m1, m2 in zip(orig_comps.values(), comps.values()):
            for p1, p2 in zip(m1.parameters(), m2.parameters()):
                if p1.data.ne(p2.data).sum() > 0:
                    assert False, "Parameters not the same!"

    def test_download_from_variant_folder(self):
        for safe_avail in [False, True]:
            import diffusers

            diffusers.utils.import_utils._safetensors_available = safe_avail

            other_format = ".bin" if safe_avail else ".safetensors"
            with tempfile.TemporaryDirectory() as tmpdirname:
249
                tmpdirname = StableDiffusionPipeline.download(
250
251
                    "hf-internal-testing/stable-diffusion-all-variants", cache_dir=tmpdirname
                )
252
                all_root_files = [t[-1] for t in os.walk(tmpdirname)]
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a variant file even if we have some here:
                # https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
                assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
                assert not any(f.endswith(other_format) for f in files)
                # no variants
                assert not any(len(f.split(".")) == 3 for f in files)

        diffusers.utils.import_utils._safetensors_available = True

    def test_download_variant_all(self):
        for safe_avail in [False, True]:
            import diffusers

            diffusers.utils.import_utils._safetensors_available = safe_avail

            other_format = ".bin" if safe_avail else ".safetensors"
            this_format = ".safetensors" if safe_avail else ".bin"
            variant = "fp16"

            with tempfile.TemporaryDirectory() as tmpdirname:
275
                tmpdirname = StableDiffusionPipeline.download(
276
277
                    "hf-internal-testing/stable-diffusion-all-variants", cache_dir=tmpdirname, variant=variant
                )
278
                all_root_files = [t[-1] for t in os.walk(tmpdirname)]
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a non-variant file even if we have some here:
                # https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
                assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
                # unet, vae, text_encoder, safety_checker
                assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 4
                # all checkpoints should have variant ending
                assert not any(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files)
                assert not any(f.endswith(other_format) for f in files)

        diffusers.utils.import_utils._safetensors_available = True

    def test_download_variant_partly(self):
        for safe_avail in [False, True]:
            import diffusers

            diffusers.utils.import_utils._safetensors_available = safe_avail

            other_format = ".bin" if safe_avail else ".safetensors"
            this_format = ".safetensors" if safe_avail else ".bin"
            variant = "no_ema"

            with tempfile.TemporaryDirectory() as tmpdirname:
303
                tmpdirname = StableDiffusionPipeline.download(
304
305
                    "hf-internal-testing/stable-diffusion-all-variants", cache_dir=tmpdirname, variant=variant
                )
306
                all_root_files = [t[-1] for t in os.walk(tmpdirname)]
307
308
                files = [item for sublist in all_root_files for item in sublist]

309
                unet_files = os.listdir(os.path.join(tmpdirname, "unet"))
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

                # Some of the downloaded files should be a non-variant file, check:
                # https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
                assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
                # only unet has "no_ema" variant
                assert f"diffusion_pytorch_model.{variant}{this_format}" in unet_files
                assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 1
                # vae, safety_checker and text_encoder should have no variant
                assert sum(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files) == 3
                assert not any(f.endswith(other_format) for f in files)

        diffusers.utils.import_utils._safetensors_available = True

    def test_download_broken_variant(self):
        for safe_avail in [False, True]:
            import diffusers

            diffusers.utils.import_utils._safetensors_available = safe_avail
            # text encoder is missing no variant and "no_ema" variant weights, so the following can't work
            for variant in [None, "no_ema"]:
                with self.assertRaises(OSError) as error_context:
                    with tempfile.TemporaryDirectory() as tmpdirname:
332
                        tmpdirname = StableDiffusionPipeline.from_pretrained(
333
334
335
336
337
338
339
340
341
                            "hf-internal-testing/stable-diffusion-broken-variants",
                            cache_dir=tmpdirname,
                            variant=variant,
                        )

                assert "Error no file name" in str(error_context.exception)

            # text encoder has fp16 variants so we can load it
            with tempfile.TemporaryDirectory() as tmpdirname:
342
                tmpdirname = StableDiffusionPipeline.download(
343
344
345
                    "hf-internal-testing/stable-diffusion-broken-variants", cache_dir=tmpdirname, variant="fp16"
                )

346
                all_root_files = [t[-1] for t in os.walk(tmpdirname)]
347
348
349
350
351
352
353
354
355
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a non-variant file even if we have some here:
                # https://huggingface.co/hf-internal-testing/stable-diffusion-broken-variants/tree/main/unet
                assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
                # only unet has "no_ema" variant

        diffusers.utils.import_utils._safetensors_available = True

356

Patrick von Platen's avatar
Patrick von Platen committed
357
358
359
360
361
class CustomPipelineTests(unittest.TestCase):
    def test_load_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
362
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
363
364
365
366
        # NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
        # under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
        assert pipeline.__class__.__name__ == "CustomPipeline"

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
    def test_load_custom_github(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="main"
        )

        # make sure that on "main" pipeline gives only ones because of: https://github.com/huggingface/diffusers/pull/1690
        with torch.no_grad():
            output = pipeline()

        assert output.numel() == output.sum()

        # hack since Python doesn't like overwriting modules: https://stackoverflow.com/questions/3105801/unload-a-module-in-python
        # Could in the future work with hashes instead.
        del sys.modules["diffusers_modules.git.one_step_unet"]

        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="0.10.2"
        )
        with torch.no_grad():
            output = pipeline()

        assert output.numel() != output.sum()

        assert pipeline.__class__.__name__ == "UnetSchedulerOneForwardPipeline"

Patrick von Platen's avatar
Patrick von Platen committed
392
393
394
395
    def test_run_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
396
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
397
398
399
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert images[0].shape == (1, 32, 32, 3)
400

Patrick von Platen's avatar
Patrick von Platen committed
401
402
403
        # compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
        assert output_str == "This is a test"

404
    def test_local_custom_pipeline_repo(self):
Patrick von Platen's avatar
Patrick von Platen committed
405
406
407
408
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
409
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
410
411
412
413
414
415
416
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

417
418
419
420
421
422
423
424
425
426
427
428
429
430
    def test_local_custom_pipeline_file(self):
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        local_custom_pipeline_path = os.path.join(local_custom_pipeline_path, "what_ever.py")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
        pipeline = pipeline.to(torch_device)
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

Patrick von Platen's avatar
Patrick von Platen committed
431
    @slow
432
    @require_torch_gpu
433
    def test_download_from_git(self):
Patrick von Platen's avatar
Patrick von Platen committed
434
435
        clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"

436
        feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id)
437
        clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
438
439
440
441
442
443

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            custom_pipeline="clip_guided_stable_diffusion",
            clip_model=clip_model,
            feature_extractor=feature_extractor,
444
            torch_dtype=torch.float16,
Patrick von Platen's avatar
Patrick von Platen committed
445
        )
446
        pipeline.enable_attention_slicing()
Patrick von Platen's avatar
Patrick von Platen committed
447
448
449
450
451
452
453
454
455
456
        pipeline = pipeline.to(torch_device)

        # NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
        # https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
        assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"

        image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
        assert image.shape == (512, 512, 3)


457
class PipelineFastTests(unittest.TestCase):
458
459
460
461
462
463
464
465
466
467
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

        import diffusers

        diffusers.utils.import_utils._safetensors_available = True

468
469
470
471
472
473
474
475
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

476
    def dummy_uncond_unet(self, sample_size=32):
477
478
479
480
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
481
            sample_size=sample_size,
482
483
484
485
486
487
488
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

489
    def dummy_cond_unet(self, sample_size=32):
490
491
492
493
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
494
            sample_size=sample_size,
495
496
497
498
499
500
501
502
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

503
    @property
504
505
506
507
508
509
510
511
512
513
514
515
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

516
    @property
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

532
    @property
533
534
535
536
537
538
539
540
541
542
543
544
545
546
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

547
548
549
    @parameterized.expand(
        [
            [DDIMScheduler, DDIMPipeline, 32],
550
            [DDPMScheduler, DDPMPipeline, 32],
551
            [DDIMScheduler, DDIMPipeline, (32, 64)],
552
            [DDPMScheduler, DDPMPipeline, (64, 32)],
553
554
555
556
557
558
559
        ]
    )
    def test_uncond_unet_components(self, scheduler_fn=DDPMScheduler, pipeline_fn=DDPMPipeline, sample_size=32):
        unet = self.dummy_uncond_unet(sample_size)
        scheduler = scheduler_fn()
        pipeline = pipeline_fn(unet, scheduler).to(torch_device)

560
        generator = torch.manual_seed(0)
561
562
563
564
565
566
567
568
569
        out_image = pipeline(
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        ).images
        sample_size = (sample_size, sample_size) if isinstance(sample_size, int) else sample_size
        assert out_image.shape == (1, *sample_size, 3)

    def test_stable_diffusion_components(self):
570
        """Test that components property works correctly"""
571
        unet = self.dummy_cond_unet()
572
        scheduler = PNDMScheduler(skip_prk_steps=True)
573
574
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
575
576
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

577
        image = self.dummy_image().cpu().permute(0, 2, 3, 1)[0]
578
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
Patrick von Platen's avatar
Patrick von Platen committed
579
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32))
580
581

        # make sure here that pndm scheduler skips prk
582
        inpaint = StableDiffusionInpaintPipelineLegacy(
583
584
585
586
587
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
588
            safety_checker=None,
589
            feature_extractor=self.dummy_extractor,
590
591
592
        ).to(torch_device)
        img2img = StableDiffusionImg2ImgPipeline(**inpaint.components).to(torch_device)
        text2img = StableDiffusionPipeline(**inpaint.components).to(torch_device)
593
594

        prompt = "A painting of a squirrel eating a burger"
595

596
        generator = torch.manual_seed(0)
597
        image_inpaint = inpaint(
598
599
600
601
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
602
            image=init_image,
603
604
605
            mask_image=mask_image,
        ).images
        image_img2img = img2img(
606
607
608
609
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
610
            image=init_image,
611
612
613
        ).images
        image_text2img = text2img(
            [prompt],
614
615
616
            generator=generator,
            num_inference_steps=2,
            output_type="np",
617
        ).images
618

619
620
        assert image_inpaint.shape == (1, 32, 32, 3)
        assert image_img2img.shape == (1, 32, 32, 3)
621
        assert image_text2img.shape == (1, 64, 64, 3)
622

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
    @require_torch_gpu
    def test_pipe_false_offload_warn(self):
        unet = self.dummy_cond_unet()
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        sd.enable_model_cpu_offload()

        logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
        with CaptureLogger(logger) as cap_logger:
            sd.to("cuda")

        assert "It is strongly recommended against doing so" in str(cap_logger)

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

659
    def test_set_scheduler(self):
660
        unet = self.dummy_cond_unet()
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DDIMScheduler)
        sd.scheduler = DDPMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DDPMScheduler)
        sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, PNDMScheduler)
        sd.scheduler = LMSDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, LMSDiscreteScheduler)
        sd.scheduler = EulerDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, EulerDiscreteScheduler)
        sd.scheduler = EulerAncestralDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, EulerAncestralDiscreteScheduler)
        sd.scheduler = DPMSolverMultistepScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DPMSolverMultistepScheduler)

    def test_set_scheduler_consistency(self):
692
        unet = self.dummy_cond_unet()
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
        pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        ddim = DDIMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=pndm,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        pndm_config = sd.scheduler.config
        sd.scheduler = DDPMScheduler.from_config(pndm_config)
        sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
        pndm_config_2 = sd.scheduler.config
        pndm_config_2 = {k: v for k, v in pndm_config_2.items() if k in pndm_config}

        assert dict(pndm_config) == dict(pndm_config_2)

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=ddim,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        ddim_config = sd.scheduler.config
        sd.scheduler = LMSDiscreteScheduler.from_config(ddim_config)
        sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
        ddim_config_2 = sd.scheduler.config
        ddim_config_2 = {k: v for k, v in ddim_config_2.items() if k in ddim_config}

        assert dict(ddim_config) == dict(ddim_config_2)

735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
    def test_save_safe_serialization(self):
        pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
        with tempfile.TemporaryDirectory() as tmpdirname:
            pipeline.save_pretrained(tmpdirname, safe_serialization=True)

            # Validate that the VAE safetensor exists and are of the correct format
            vae_path = os.path.join(tmpdirname, "vae", "diffusion_pytorch_model.safetensors")
            assert os.path.exists(vae_path), f"Could not find {vae_path}"
            _ = safetensors.torch.load_file(vae_path)

            # Validate that the UNet safetensor exists and are of the correct format
            unet_path = os.path.join(tmpdirname, "unet", "diffusion_pytorch_model.safetensors")
            assert os.path.exists(unet_path), f"Could not find {unet_path}"
            _ = safetensors.torch.load_file(unet_path)

            # Validate that the text encoder safetensor exists and are of the correct format
            text_encoder_path = os.path.join(tmpdirname, "text_encoder", "model.safetensors")
752
753
            assert os.path.exists(text_encoder_path), f"Could not find {text_encoder_path}"
            _ = safetensors.torch.load_file(text_encoder_path)
754
755
756
757
758
759
760
761

            pipeline = StableDiffusionPipeline.from_pretrained(tmpdirname)
            assert pipeline.unet is not None
            assert pipeline.vae is not None
            assert pipeline.text_encoder is not None
            assert pipeline.scheduler is not None
            assert pipeline.feature_extractor is not None

762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
    def test_no_pytorch_download_when_doing_safetensors(self):
        # by default we don't download
        with tempfile.TemporaryDirectory() as tmpdirname:
            _ = StableDiffusionPipeline.from_pretrained(
                "hf-internal-testing/diffusers-stable-diffusion-tiny-all", cache_dir=tmpdirname
            )

            path = os.path.join(
                tmpdirname,
                "models--hf-internal-testing--diffusers-stable-diffusion-tiny-all",
                "snapshots",
                "07838d72e12f9bcec1375b0482b80c1d399be843",
                "unet",
            )
            # safetensors exists
            assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors"))
            # pytorch does not
            assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin"))

    def test_no_safetensors_download_when_doing_pytorch(self):
        # mock diffusers safetensors not available
        import diffusers

        diffusers.utils.import_utils._safetensors_available = False

        with tempfile.TemporaryDirectory() as tmpdirname:
            _ = StableDiffusionPipeline.from_pretrained(
                "hf-internal-testing/diffusers-stable-diffusion-tiny-all", cache_dir=tmpdirname
            )

            path = os.path.join(
                tmpdirname,
                "models--hf-internal-testing--diffusers-stable-diffusion-tiny-all",
                "snapshots",
                "07838d72e12f9bcec1375b0482b80c1d399be843",
                "unet",
            )
            # safetensors does not exists
            assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors"))
            # pytorch does
            assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin"))

        diffusers.utils.import_utils._safetensors_available = True

806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
    def test_optional_components(self):
        unet = self.dummy_cond_unet()
        pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        orig_sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=pndm,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=unet,
            feature_extractor=self.dummy_extractor,
        )
        sd = orig_sd

        assert sd.config.requires_safety_checker is True

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that passing None works
            sd = StableDiffusionPipeline.from_pretrained(
                tmpdirname, feature_extractor=None, safety_checker=None, requires_safety_checker=False
            )

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that loading previous None works
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

            orig_sd.save_pretrained(tmpdirname)

            # Test that loading without any directory works
            shutil.rmtree(os.path.join(tmpdirname, "safety_checker"))
            with open(os.path.join(tmpdirname, sd.config_name)) as f:
                config = json.load(f)
                config["safety_checker"] = [None, None]
            with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
                json.dump(config, f)

            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, requires_safety_checker=False)
            sd.save_pretrained(tmpdirname)
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

            # Test that loading from deleted model index works
            with open(os.path.join(tmpdirname, sd.config_name)) as f:
                config = json.load(f)
                del config["safety_checker"]
                del config["feature_extractor"]
            with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
                json.dump(config, f)

            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that partially loading works
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor != (None, None)

            # Test that partially loading works
            sd = StableDiffusionPipeline.from_pretrained(
                tmpdirname,
                feature_extractor=self.dummy_extractor,
                safety_checker=unet,
                requires_safety_checker=[True, True],
            )

            assert sd.config.requires_safety_checker == [True, True]
            assert sd.config.safety_checker != (None, None)
            assert sd.config.feature_extractor != (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)

            assert sd.config.requires_safety_checker == [True, True]
            assert sd.config.safety_checker != (None, None)
            assert sd.config.feature_extractor != (None, None)

910

911
@slow
912
@require_torch_gpu
913
class PipelineSlowTests(unittest.TestCase):
914
915
916
917
918
919
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

920
921
922
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
923
            _ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

941
942
    def test_warning_unused_kwargs(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
943
        logger = logging.get_logger("diffusers.pipelines")
944
945
        with tempfile.TemporaryDirectory() as tmpdirname:
            with CaptureLogger(logger) as cap_logger:
946
                DiffusionPipeline.from_pretrained(
947
948
949
950
                    model_id,
                    not_used=True,
                    cache_dir=tmpdirname,
                    force_download=True,
951
                )
952

953
        assert (
954
955
            cap_logger.out.strip().split("\n")[-1]
            == "Keyword arguments {'not_used': True} are not expected by DDPMPipeline and will be ignored."
956
        )
957

958
    def test_from_save_pretrained(self):
959
960
961
962
963
964
965
966
967
968
969
970
971
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        schedular = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, schedular)
972
        ddpm.to(torch_device)
973
        ddpm.set_progress_bar_config(disable=None)
974
975
976

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
977
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
978
            new_ddpm.to(torch_device)
979

980
        generator = torch.Generator(device=torch_device).manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
981
        image = ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
982

983
        generator = torch.Generator(device=torch_device).manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
984
        new_image = new_ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
985
986
987
988
989
990

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

991
        scheduler = DDPMScheduler(num_train_timesteps=10)
992

993
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
994
        ddpm = ddpm.to(torch_device)
995
        ddpm.set_progress_bar_config(disable=None)
996

997
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
998
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
999
        ddpm_from_hub.set_progress_bar_config(disable=None)
1000

1001
        generator = torch.Generator(device=torch_device).manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1002
        image = ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
1003

1004
        generator = torch.Generator(device=torch_device).manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1005
        new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="numpy").images
1006
1007
1008
1009
1010
1011

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

1012
1013
        scheduler = DDPMScheduler(num_train_timesteps=10)

1014
        # pass unet into DiffusionPipeline
1015
1016
        unet = UNet2DModel.from_pretrained(model_path)
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
1017
        ddpm_from_hub_custom_model = ddpm_from_hub_custom_model.to(torch_device)
1018
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
1019

1020
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
1021
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
1022
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
1023

1024
        generator = torch.Generator(device=torch_device).manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1025
        image = ddpm_from_hub_custom_model(generator=generator, num_inference_steps=5, output_type="numpy").images
1026

1027
        generator = torch.Generator(device=torch_device).manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1028
        new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="numpy").images
1029
1030
1031
1032
1033
1034

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

1035
        scheduler = DDIMScheduler.from_pretrained(model_path)
Patrick von Platen's avatar
Patrick von Platen committed
1036
        pipe = DDIMPipeline.from_pretrained(model_path, scheduler=scheduler)
1037
        pipe.to(torch_device)
1038
        pipe.set_progress_bar_config(disable=None)
1039

1040
        images = pipe(output_type="numpy").images
1041
1042
1043
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

1044
        images = pipe(output_type="pil", num_inference_steps=4).images
1045
1046
1047
1048
1049
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
1050
        images = pipe(num_inference_steps=4).images
1051
1052
1053
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
    def test_from_flax_from_pt(self):
        pipe_pt = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe_pt.to(torch_device)

        if not is_flax_available():
            raise ImportError("Make sure flax is installed.")

        from diffusers import FlaxStableDiffusionPipeline

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe_pt.save_pretrained(tmpdirname)

            pipe_flax, params = FlaxStableDiffusionPipeline.from_pretrained(
                tmpdirname, safety_checker=None, from_pt=True
            )

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe_flax.save_pretrained(tmpdirname, params=params)
            pipe_pt_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None, from_flax=True)
            pipe_pt_2.to(torch_device)

        prompt = "Hello"

        generator = torch.manual_seed(0)
        image_0 = pipe_pt(
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        ).images[0]

        generator = torch.manual_seed(0)
        image_1 = pipe_pt_2(
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        ).images[0]

        assert np.abs(image_0 - image_1).sum() < 1e-5, "Models don't give the same forward pass"

1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
    @require_compel
    def test_weighted_prompts_compel(self):
        from compel import Compel

        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
        pipe.enable_model_cpu_offload()
        pipe.enable_attention_slicing()

        compel = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)

        prompt = "a red cat playing with a ball{}"

        prompts = [prompt.format(s) for s in ["", "++", "--"]]

        prompt_embeds = compel(prompts)

        generator = [torch.Generator(device="cpu").manual_seed(33) for _ in range(prompt_embeds.shape[0])]

        images = pipe(
            prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20, output_type="numpy"
        ).images

        for i, image in enumerate(images):
            expected_image = load_numpy(
                "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
                f"/compel/forest_{i}.npy"
            )

            assert np.abs(image - expected_image).max() < 1e-3

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137

@nightly
@require_torch_gpu
class PipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

1138
1139
    def test_ddpm_ddim_equality_batched(self):
        seed = 0
1140
        model_id = "google/ddpm-cifar10-32"
1141

1142
        unet = UNet2DModel.from_pretrained(model_id)
1143
1144
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
1145

1146
1147
1148
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
1149

1150
1151
1152
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
1153

1154
1155
        generator = torch.Generator(device=torch_device).manual_seed(seed)
        ddpm_images = ddpm(batch_size=2, generator=generator, output_type="numpy").images
1156

1157
        generator = torch.Generator(device=torch_device).manual_seed(seed)
1158
        ddim_images = ddim(
1159
            batch_size=2,
1160
1161
1162
1163
1164
            generator=generator,
            num_inference_steps=1000,
            eta=1.0,
            output_type="numpy",
            use_clipped_model_output=True,  # Need this to make DDIM match DDPM
1165
        ).images
1166

1167
1168
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1