"vscode:/vscode.git/clone" did not exist on "e4780cf839b5dcaf41cd60fa384faa9616372025"
scheduling_ddpm.py 25.8 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 UC Berkeley Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

anton-l's avatar
anton-l committed
17
import math
18
from dataclasses import dataclass
19
from typing import List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
import numpy as np
22
import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23

24
from ..configuration_utils import ConfigMixin, register_to_config
Dhruv Nair's avatar
Dhruv Nair committed
25
26
from ..utils import BaseOutput
from ..utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
27
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
28
29
30
31
32


@dataclass
class DDPMSchedulerOutput(BaseOutput):
    """
33
    Output class for the scheduler's `step` function output.
34
35
36

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
37
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
38
39
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
40
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
41
42
43
44
45
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
46
47


YiYi Xu's avatar
YiYi Xu committed
48
49
50
51
52
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
53
    """
Patrick von Platen's avatar
Patrick von Platen committed
54
55
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
56

57
58
59
60
61
62
63
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
64
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
65
66
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
67
68
69

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
70
    """
YiYi Xu's avatar
YiYi Xu committed
71
    if alpha_transform_type == "cosine":
72

YiYi Xu's avatar
YiYi Xu committed
73
74
75
76
77
78
79
80
81
82
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
        raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
83
84
85
86
87

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
88
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
89
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
90
91


92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
def rescale_zero_terminal_snr(betas):
    """
    Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)


    Args:
        betas (`torch.FloatTensor`):
            the betas that the scheduler is being initialized with.

    Returns:
        `torch.FloatTensor`: rescaled betas with zero terminal SNR
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


Patrick von Platen's avatar
Patrick von Platen committed
129
class DDPMScheduler(SchedulerMixin, ConfigMixin):
130
    """
131
    `DDPMScheduler` explores the connections between denoising score matching and Langevin dynamics sampling.
132

133
134
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
135
136

    Args:
137
138
139
140
141
142
143
144
145
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
146
147
        trained_betas (`np.ndarray`, *optional*):
            An array of betas to pass directly to the constructor without using `beta_start` and `beta_end`.
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        variance_type (`str`, defaults to `"fixed_small"`):
            Clip the variance when adding noise to the denoised sample. Choose from `fixed_small`, `fixed_small_log`,
            `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
        clip_sample (`bool`, defaults to `True`):
            Clip the predicted sample for numerical stability.
        clip_sample_range (`float`, defaults to 1.0):
            The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
        timestep_spacing (`str`, defaults to `"leading"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
            An offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
            Diffusion.
173
174
175
176
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
177
178
    """

Kashif Rasul's avatar
Kashif Rasul committed
179
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
180
    order = 1
181

182
    @register_to_config
Patrick von Platen's avatar
improve  
Patrick von Platen committed
183
184
    def __init__(
        self,
Partho's avatar
Partho committed
185
186
187
188
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
189
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
Partho's avatar
Partho committed
190
191
        variance_type: str = "fixed_small",
        clip_sample: bool = True,
192
        prediction_type: str = "epsilon",
193
194
195
196
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        clip_sample_range: float = 1.0,
        sample_max_value: float = 1.0,
197
198
        timestep_spacing: str = "leading",
        steps_offset: int = 0,
199
        rescale_betas_zero_snr: int = False,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
200
    ):
201
        if trained_betas is not None:
202
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
203
        elif beta_schedule == "linear":
204
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
205
206
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
207
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
anton-l's avatar
anton-l committed
208
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
209
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
210
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Nathan Lambert's avatar
Nathan Lambert committed
211
212
213
214
        elif beta_schedule == "sigmoid":
            # GeoDiff sigmoid schedule
            betas = torch.linspace(-6, 6, num_train_timesteps)
            self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
Patrick von Platen's avatar
improve  
Patrick von Platen committed
215
216
217
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

218
219
220
221
        # Rescale for zero SNR
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

Patrick von Platen's avatar
Patrick von Platen committed
222
        self.alphas = 1.0 - self.betas
223
224
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.one = torch.tensor(1.0)
Patrick von Platen's avatar
Patrick von Platen committed
225

226
227
228
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

229
        # setable values
Will Berman's avatar
Will Berman committed
230
        self.custom_timesteps = False
231
        self.num_inference_steps = None
232
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
Patrick von Platen's avatar
Patrick von Platen committed
233

234
235
        self.variance_type = variance_type

236
237
238
239
240
241
    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
242
243
244
245
            sample (`torch.FloatTensor`):
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.
246
247

        Returns:
248
249
            `torch.FloatTensor`:
                A scaled input sample.
250
251
252
        """
        return sample

Will Berman's avatar
Will Berman committed
253
254
255
256
257
258
    def set_timesteps(
        self,
        num_inference_steps: Optional[int] = None,
        device: Union[str, torch.device] = None,
        timesteps: Optional[List[int]] = None,
    ):
259
        """
260
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
261
262

        Args:
263
264
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model. If used,
Will Berman's avatar
Will Berman committed
265
                `timesteps` must be `None`.
266
267
268
269
270
271
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
                `num_inference_steps` must be `None`.
Will Berman's avatar
Will Berman committed
272

273
        """
Will Berman's avatar
Will Berman committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")

        if timesteps is not None:
            for i in range(1, len(timesteps)):
                if timesteps[i] >= timesteps[i - 1]:
                    raise ValueError("`custom_timesteps` must be in descending order.")

            if timesteps[0] >= self.config.num_train_timesteps:
                raise ValueError(
                    f"`timesteps` must start before `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps}."
                )

            timesteps = np.array(timesteps, dtype=np.int64)
            self.custom_timesteps = True
        else:
            if num_inference_steps > self.config.num_train_timesteps:
                raise ValueError(
                    f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                    f" maximal {self.config.num_train_timesteps} timesteps."
                )
297

Will Berman's avatar
Will Berman committed
298
299
            self.num_inference_steps = num_inference_steps
            self.custom_timesteps = False
300

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
            # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
            if self.config.timestep_spacing == "linspace":
                timesteps = (
                    np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
                    .round()[::-1]
                    .copy()
                    .astype(np.int64)
                )
            elif self.config.timestep_spacing == "leading":
                step_ratio = self.config.num_train_timesteps // self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
                timesteps += self.config.steps_offset
            elif self.config.timestep_spacing == "trailing":
                step_ratio = self.config.num_train_timesteps / self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
                timesteps -= 1
            else:
                raise ValueError(
                    f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
                )

326
        self.timesteps = torch.from_numpy(timesteps).to(device)
327

328
    def _get_variance(self, t, predicted_variance=None, variance_type=None):
Will Berman's avatar
Will Berman committed
329
330
        prev_t = self.previous_timestep(t)

331
        alpha_prod_t = self.alphas_cumprod[t]
332
333
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
        current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev
Patrick von Platen's avatar
Patrick von Platen committed
334

Kashif Rasul's avatar
Kashif Rasul committed
335
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
336
        # and sample from it to get previous sample
Kashif Rasul's avatar
Kashif Rasul committed
337
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
338
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t
William Berman's avatar
William Berman committed
339
340

        # we always take the log of variance, so clamp it to ensure it's not 0
William Berman's avatar
William Berman committed
341
        variance = torch.clamp(variance, min=1e-20)
Patrick von Platen's avatar
Patrick von Platen committed
342

343
344
345
        if variance_type is None:
            variance_type = self.config.variance_type

346
        # hacks - were probably added for training stability
347
        if variance_type == "fixed_small":
William Berman's avatar
William Berman committed
348
            variance = variance
349
        # for rl-diffuser https://arxiv.org/abs/2205.09991
350
        elif variance_type == "fixed_small_log":
351
            variance = torch.log(variance)
352
            variance = torch.exp(0.5 * variance)
353
        elif variance_type == "fixed_large":
354
            variance = current_beta_t
355
        elif variance_type == "fixed_large_log":
Patrick von Platen's avatar
Patrick von Platen committed
356
            # Glide max_log
357
            variance = torch.log(current_beta_t)
358
359
360
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
361
            min_log = torch.log(variance)
William Berman's avatar
William Berman committed
362
            max_log = torch.log(current_beta_t)
363
364
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log
Patrick von Platen's avatar
Patrick von Platen committed
365
366
367

        return variance

368
    def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
369
370
371
372
373
374
375
376
377
378
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
379
        batch_size, channels, *remaining_dims = sample.shape
380
381
382
383
384

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
385
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
386
387
388
389
390
391
392
393
394
395

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

396
        sample = sample.reshape(batch_size, channels, *remaining_dims)
397
398
399
        sample = sample.to(dtype)

        return sample
400

401
402
    def step(
        self,
403
        model_output: torch.FloatTensor,
404
        timestep: int,
405
        sample: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
406
        generator=None,
407
        return_dict: bool = True,
408
    ) -> Union[DDPMSchedulerOutput, Tuple]:
409
        """
410
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
411
412
413
        process from the learned model outputs (most often the predicted noise).

        Args:
414
415
416
417
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
418
            sample (`torch.FloatTensor`):
419
420
421
422
423
                A current instance of a sample created by the diffusion process.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`.
424
425

        Returns:
426
427
428
            [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
429
430

        """
431
        t = timestep
Will Berman's avatar
Will Berman committed
432
433

        prev_t = self.previous_timestep(t)
434

435
436
437
438
439
        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

Patrick von Platen's avatar
Patrick von Platen committed
440
        # 1. compute alphas, betas
441
        alpha_prod_t = self.alphas_cumprod[t]
442
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
443
444
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev
445
446
        current_alpha_t = alpha_prod_t / alpha_prod_t_prev
        current_beta_t = 1 - current_alpha_t
Patrick von Platen's avatar
Patrick von Platen committed
447

448
        # 2. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
449
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
450
        if self.config.prediction_type == "epsilon":
Patrick von Platen's avatar
Patrick von Platen committed
451
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
452
        elif self.config.prediction_type == "sample":
Patrick von Platen's avatar
Patrick von Platen committed
453
            pred_original_sample = model_output
454
455
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
456
457
        else:
            raise ValueError(
458
459
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
                " `v_prediction`  for the DDPMScheduler."
460
            )
Patrick von Platen's avatar
Patrick von Platen committed
461

462
        # 3. Clip or threshold "predicted x_0"
463
464
465
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
466
467
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
Will Berman's avatar
Will Berman committed
468
            )
Patrick von Platen's avatar
Patrick von Platen committed
469

470
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Patrick von Platen's avatar
Patrick von Platen committed
471
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
472
473
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
        current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
474

475
        # 5. Compute predicted previous sample µ_t
Patrick von Platen's avatar
Patrick von Platen committed
476
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
477
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
478

Patrick von Platen's avatar
Patrick von Platen committed
479
480
481
        # 6. Add noise
        variance = 0
        if t > 0:
482
            device = model_output.device
483
484
485
            variance_noise = randn_tensor(
                model_output.shape, generator=generator, device=device, dtype=model_output.dtype
            )
486
487
            if self.variance_type == "fixed_small_log":
                variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
488
489
490
            elif self.variance_type == "learned_range":
                variance = self._get_variance(t, predicted_variance=predicted_variance)
                variance = torch.exp(0.5 * variance) * variance_noise
491
492
            else:
                variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
Patrick von Platen's avatar
Patrick von Platen committed
493
494
495

        pred_prev_sample = pred_prev_sample + variance

496
497
498
        if not return_dict:
            return (pred_prev_sample,)

499
        return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
500

Partho's avatar
Partho committed
501
502
    def add_noise(
        self,
503
504
505
506
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
507
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
508
509
510
511
        # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
        # for the subsequent add_noise calls
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
512
        timesteps = timesteps.to(original_samples.device)
513

514
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
515
516
517
518
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

519
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
520
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
521
522
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
523
524

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
525
        return noisy_samples
anton-l's avatar
anton-l committed
526

527
528
529
530
    def get_velocity(
        self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
    ) -> torch.FloatTensor:
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
531
532
        self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
533
534
        timesteps = timesteps.to(sample.device)

535
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
536
537
538
539
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

540
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
541
542
543
544
545
546
547
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

Patrick von Platen's avatar
improve  
Patrick von Platen committed
548
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
549
        return self.config.num_train_timesteps
Will Berman's avatar
Will Berman committed
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

    def previous_timestep(self, timestep):
        if self.custom_timesteps:
            index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
            if index == self.timesteps.shape[0] - 1:
                prev_t = torch.tensor(-1)
            else:
                prev_t = self.timesteps[index + 1]
        else:
            num_inference_steps = (
                self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
            )
            prev_t = timestep - self.config.num_train_timesteps // num_inference_steps

        return prev_t