imagenet_main.py 13.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Runs a ResNet model on the ImageNet dataset."""
16
17
18
19
20
21
22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

23
24
from absl import app as absl_app
from absl import flags
Karmel Allison's avatar
Karmel Allison committed
25
import tensorflow as tf  # pylint: disable=g-bad-import-order
26

27
from official.utils.flags import core as flags_core
28
from official.utils.logs import logger
29
from official.resnet import imagenet_preprocessing
30
31
from official.resnet import resnet_model
from official.resnet import resnet_run_loop
32

33
34
35
DEFAULT_IMAGE_SIZE = 224
NUM_CHANNELS = 3
NUM_CLASSES = 1001
36

37
NUM_IMAGES = {
38
39
40
    'train': 1281167,
    'validation': 50000,
}
41

42
_NUM_TRAIN_FILES = 1024
43
_SHUFFLE_BUFFER = 10000
44

45
DATASET_NAME = 'ImageNet'
46

47
48
49
###############################################################################
# Data processing
###############################################################################
50
def get_filenames(is_training, data_dir):
51
52
53
  """Return filenames for dataset."""
  if is_training:
    return [
54
        os.path.join(data_dir, 'train-%05d-of-01024' % i)
55
        for i in range(_NUM_TRAIN_FILES)]
56
57
  else:
    return [
58
        os.path.join(data_dir, 'validation-%05d-of-00128' % i)
Neal Wu's avatar
Neal Wu committed
59
        for i in range(128)]
60
61


62
63
64
def _parse_example_proto(example_serialized):
  """Parses an Example proto containing a training example of an image.

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
  The output of the build_image_data.py image preprocessing script is a dataset
  containing serialized Example protocol buffers. Each Example proto contains
  the following fields (values are included as examples):

    image/height: 462
    image/width: 581
    image/colorspace: 'RGB'
    image/channels: 3
    image/class/label: 615
    image/class/synset: 'n03623198'
    image/class/text: 'knee pad'
    image/object/bbox/xmin: 0.1
    image/object/bbox/xmax: 0.9
    image/object/bbox/ymin: 0.2
    image/object/bbox/ymax: 0.6
    image/object/bbox/label: 615
    image/format: 'JPEG'
    image/filename: 'ILSVRC2012_val_00041207.JPEG'
    image/encoded: <JPEG encoded string>
84
85
86
87
88
89
90

  Args:
    example_serialized: scalar Tensor tf.string containing a serialized
      Example protocol buffer.

  Returns:
    image_buffer: Tensor tf.string containing the contents of a JPEG file.
91
92
93
94
    label: Tensor tf.int32 containing the label.
    bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
      where each coordinate is [0, 1) and the coordinates are arranged as
      [ymin, xmin, ymax, xmax].
95
96
97
  """
  # Dense features in Example proto.
  feature_map = {
98
      'image/encoded': tf.io.FixedLenFeature([], dtype=tf.string,
99
                                             default_value=''),
100
101
102
103
      'image/class/label': tf.io.FixedLenFeature([], dtype=tf.int64,
                                                 default_value=-1),
      'image/class/text': tf.io.FixedLenFeature([], dtype=tf.string,
                                                default_value=''),
104
  }
105
  sparse_float32 = tf.io.VarLenFeature(dtype=tf.float32)
106
107
108
109
110
111
  # Sparse features in Example proto.
  feature_map.update(
      {k: sparse_float32 for k in ['image/object/bbox/xmin',
                                   'image/object/bbox/ymin',
                                   'image/object/bbox/xmax',
                                   'image/object/bbox/ymax']})
112

113
114
  features = tf.io.parse_single_example(serialized=example_serialized,
                                        features=feature_map)
115
  label = tf.cast(features['image/class/label'], dtype=tf.int32)
116

117
118
119
120
121
122
123
124
125
126
127
  xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 0)
  ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 0)
  xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 0)
  ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 0)

  # Note that we impose an ordering of (y, x) just to make life difficult.
  bbox = tf.concat([ymin, xmin, ymax, xmax], 0)

  # Force the variable number of bounding boxes into the shape
  # [1, num_boxes, coords].
  bbox = tf.expand_dims(bbox, 0)
128
  bbox = tf.transpose(a=bbox, perm=[0, 2, 1])
129
130

  return features['image/encoded'], label, bbox
131
132


133
def parse_record(raw_record, is_training, dtype):
134
135
136
137
138
139
140
141
142
  """Parses a record containing a training example of an image.

  The input record is parsed into a label and image, and the image is passed
  through preprocessing steps (cropping, flipping, and so on).

  Args:
    raw_record: scalar Tensor tf.string containing a serialized
      Example protocol buffer.
    is_training: A boolean denoting whether the input is for training.
143
    dtype: data type to use for images/features.
144

145
146
  Returns:
    Tuple with processed image tensor and one-hot-encoded label tensor.
147
148
149
150
151
152
  """
  image_buffer, label, bbox = _parse_example_proto(raw_record)

  image = imagenet_preprocessing.preprocess_image(
      image_buffer=image_buffer,
      bbox=bbox,
153
154
155
      output_height=DEFAULT_IMAGE_SIZE,
      output_width=DEFAULT_IMAGE_SIZE,
      num_channels=NUM_CHANNELS,
156
      is_training=is_training)
157
  image = tf.cast(image, dtype)
158

159
  return image, label
160
161


162
163
164
165
166
167
168
169
def input_fn(is_training,
             data_dir,
             batch_size,
             num_epochs=1,
             dtype=tf.float32,
             datasets_num_private_threads=None,
             num_parallel_batches=1,
             parse_record_fn=parse_record,
170
             input_context=None,
171
             drop_remainder=False,
Rachel Lim's avatar
Rachel Lim committed
172
             tf_data_experimental_slack=False):
173
  """Input function which provides batches for train or eval.
Karmel Allison's avatar
Karmel Allison committed
174

175
176
177
178
179
  Args:
    is_training: A boolean denoting whether the input is for training.
    data_dir: The directory containing the input data.
    batch_size: The number of samples per batch.
    num_epochs: The number of epochs to repeat the dataset.
180
    dtype: Data type to use for images/features
Toby Boyd's avatar
Toby Boyd committed
181
182
    datasets_num_private_threads: Number of private threads for tf.data.
    num_parallel_batches: Number of parallel batches for tf.data.
Priya Gupta's avatar
Priya Gupta committed
183
    parse_record_fn: Function to use for parsing the records.
184
185
    input_context: A `tf.distribute.InputContext` object passed in by
      `tf.distribute.Strategy`.
186
187
    drop_remainder: A boolean indicates whether to drop the remainder of the
      batches. If True, the batch dimension will be static.
188
189
    tf_data_experimental_slack: Whether to enable tf.data's
      `experimental_slack` option.
190
191
192
193
194
195

  Returns:
    A dataset that can be used for iteration.
  """
  filenames = get_filenames(is_training, data_dir)
  dataset = tf.data.Dataset.from_tensor_slices(filenames)
196

197
  if input_context:
198
199
200
    tf.compat.v1.logging.info(
        'Sharding the dataset: input_pipeline_id=%d num_input_pipelines=%d' % (
            input_context.input_pipeline_id, input_context.num_input_pipelines))
201
202
203
    dataset = dataset.shard(input_context.num_input_pipelines,
                            input_context.input_pipeline_id)

204
  if is_training:
205
206
    # Shuffle the input files
    dataset = dataset.shuffle(buffer_size=_NUM_TRAIN_FILES)
207

208
  # Convert to individual records.
Haoyu Zhang's avatar
Haoyu Zhang committed
209
210
211
212
213
214
215
  # cycle_length = 10 means that up to 10 files will be read and deserialized in
  # parallel. You may want to increase this number if you have a large number of
  # CPU cores.
  dataset = dataset.interleave(
      tf.data.TFRecordDataset,
      cycle_length=10,
      num_parallel_calls=tf.data.experimental.AUTOTUNE)
216

217
  return resnet_run_loop.process_record_dataset(
Taylor Robie's avatar
Taylor Robie committed
218
219
220
221
      dataset=dataset,
      is_training=is_training,
      batch_size=batch_size,
      shuffle_buffer=_SHUFFLE_BUFFER,
Priya Gupta's avatar
Priya Gupta committed
222
      parse_record_fn=parse_record_fn,
Taylor Robie's avatar
Taylor Robie committed
223
      num_epochs=num_epochs,
Toby Boyd's avatar
Toby Boyd committed
224
225
      dtype=dtype,
      datasets_num_private_threads=datasets_num_private_threads,
226
      num_parallel_batches=num_parallel_batches,
227
228
      drop_remainder=drop_remainder,
      tf_data_experimental_slack=tf_data_experimental_slack,
229
  )
230
231


Toby Boyd's avatar
Toby Boyd committed
232
def get_synth_input_fn(dtype):
233
  return resnet_run_loop.get_synth_input_fn(
234
      DEFAULT_IMAGE_SIZE, DEFAULT_IMAGE_SIZE, NUM_CHANNELS, NUM_CLASSES,
Toby Boyd's avatar
Toby Boyd committed
235
      dtype=dtype)
236
237


238
239
240
###############################################################################
# Running the model
###############################################################################
241
class ImagenetModel(resnet_model.Model):
Karmel Allison's avatar
Karmel Allison committed
242
  """Model class with appropriate defaults for Imagenet data."""
243

244
  def __init__(self, resnet_size, data_format=None, num_classes=NUM_CLASSES,
245
               resnet_version=resnet_model.DEFAULT_VERSION,
246
               dtype=resnet_model.DEFAULT_DTYPE):
Neal Wu's avatar
Neal Wu committed
247
248
249
250
251
252
253
    """These are the parameters that work for Imagenet data.

    Args:
      resnet_size: The number of convolutional layers needed in the model.
      data_format: Either 'channels_first' or 'channels_last', specifying which
        data format to use when setting up the model.
      num_classes: The number of output classes needed from the model. This
254
        enables users to extend the same model to their own datasets.
255
256
      resnet_version: Integer representing which version of the ResNet network
        to use. See README for details. Valid values: [1, 2]
257
      dtype: The TensorFlow dtype to use for calculations.
Neal Wu's avatar
Neal Wu committed
258
    """
259
260
261

    # For bigger models, we want to use "bottleneck" layers
    if resnet_size < 50:
262
      bottleneck = False
263
    else:
264
      bottleneck = True
265
266
267

    super(ImagenetModel, self).__init__(
        resnet_size=resnet_size,
268
        bottleneck=bottleneck,
269
        num_classes=num_classes,
270
271
272
273
274
275
276
        num_filters=64,
        kernel_size=7,
        conv_stride=2,
        first_pool_size=3,
        first_pool_stride=2,
        block_sizes=_get_block_sizes(resnet_size),
        block_strides=[1, 2, 2, 2],
277
        resnet_version=resnet_version,
278
279
280
        data_format=data_format,
        dtype=dtype
    )
281
282
283


def _get_block_sizes(resnet_size):
Karmel Allison's avatar
Karmel Allison committed
284
285
286
  """Retrieve the size of each block_layer in the ResNet model.

  The number of block layers used for the Resnet model varies according
287
288
  to the size of the model. This helper grabs the layer set we want, throwing
  an error if a non-standard size has been selected.
Karmel Allison's avatar
Karmel Allison committed
289
290
291
292
293
294
295
296
297

  Args:
    resnet_size: The number of convolutional layers needed in the model.

  Returns:
    A list of block sizes to use in building the model.

  Raises:
    KeyError: if invalid resnet_size is received.
298
299
300
301
302
303
304
305
  """
  choices = {
      18: [2, 2, 2, 2],
      34: [3, 4, 6, 3],
      50: [3, 4, 6, 3],
      101: [3, 4, 23, 3],
      152: [3, 8, 36, 3],
      200: [3, 24, 36, 3]
306
307
  }

308
309
310
311
312
313
314
  try:
    return choices[resnet_size]
  except KeyError:
    err = ('Could not find layers for selected Resnet size.\n'
           'Size received: {}; sizes allowed: {}.'.format(
               resnet_size, choices.keys()))
    raise ValueError(err)
315
316


317
318
def imagenet_model_fn(features, labels, mode, params):
  """Our model_fn for ResNet to be used with our Estimator."""
319
320
321
322
323
324
325
326
327
328

  # Warmup and higher lr may not be valid for fine tuning with small batches
  # and smaller numbers of training images.
  if params['fine_tune']:
    warmup = False
    base_lr = .1
  else:
    warmup = True
    base_lr = .128

329
  learning_rate_fn = resnet_run_loop.learning_rate_with_decay(
330
331
332
333
      batch_size=params['batch_size'] * params.get('num_workers', 1),
      batch_denom=256, num_images=NUM_IMAGES['train'],
      boundary_epochs=[30, 60, 80, 90], decay_rates=[1, 0.1, 0.01, 0.001, 1e-4],
      warmup=warmup, base_lr=base_lr)
334

335
336
337
338
339
340
  return resnet_run_loop.resnet_model_fn(
      features=features,
      labels=labels,
      mode=mode,
      model_class=ImagenetModel,
      resnet_size=params['resnet_size'],
pkanwar23's avatar
pkanwar23 committed
341
      weight_decay=flags.FLAGS.weight_decay,
342
343
344
      learning_rate_fn=learning_rate_fn,
      momentum=0.9,
      data_format=params['data_format'],
345
      resnet_version=params['resnet_version'],
346
347
      loss_scale=params['loss_scale'],
      loss_filter_fn=None,
Zac Wellmer's avatar
Zac Wellmer committed
348
      dtype=params['dtype'],
pkanwar23's avatar
pkanwar23 committed
349
350
      fine_tune=params['fine_tune'],
      label_smoothing=flags.FLAGS.label_smoothing
351
  )
352
353


354
def define_imagenet_flags(dynamic_loss_scale=False, fp16_implementation=False):
355
  resnet_run_loop.define_resnet_flags(
356
      resnet_size_choices=['18', '34', '50', '101', '152', '200'],
357
358
      dynamic_loss_scale=dynamic_loss_scale,
      fp16_implementation=fp16_implementation)
359
  flags.adopt_module_key_flags(resnet_run_loop)
Toby Boyd's avatar
Toby Boyd committed
360
  flags_core.set_defaults(train_epochs=90)
361

362

363
364
365
366
367
def run_imagenet(flags_obj):
  """Run ResNet ImageNet training and eval loop.

  Args:
    flags_obj: An object containing parsed flag values.
368
369
370
371
372
373

  Returns:
    Dict of results of the run.  Contains the keys `eval_results` and
      `train_hooks`. `eval_results` contains accuracy (top_1) and
      accuracy_top_5. `train_hooks` is a list the instances of hooks used during
      training.
374
  """
Toby Boyd's avatar
Toby Boyd committed
375
376
377
  input_function = (flags_obj.use_synthetic_data and
                    get_synth_input_fn(flags_core.get_tf_dtype(flags_obj)) or
                    input_fn)
378

379
  result = resnet_run_loop.resnet_main(
380
      flags_obj, imagenet_model_fn, input_function, DATASET_NAME,
381
      shape=[DEFAULT_IMAGE_SIZE, DEFAULT_IMAGE_SIZE, NUM_CHANNELS])
382

383
384
  return result

385

386
def main(_):
387
388
  with logger.benchmark_context(flags.FLAGS):
    run_imagenet(flags.FLAGS)
389
390


391
if __name__ == '__main__':
392
  tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
393
  define_imagenet_flags(dynamic_loss_scale=True, fp16_implementation=True)
394
  absl_app.run(main)