imagenet_main.py 8.59 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import os

import tensorflow as tf

import resnet_model
import vgg_preprocessing

parser = argparse.ArgumentParser()

parser.add_argument(
    '--data_dir', type=str, default='',
    help='The directory where the ImageNet input data is stored.')

parser.add_argument(
    '--model_dir', type=str, default='/tmp/resnet_model',
    help='The directory where the model will be stored.')

parser.add_argument(
    '--resnet_size', type=int, default=50, choices=[18, 34, 50, 101, 152, 200],
    help='The size of the ResNet model to use.')

parser.add_argument(
    '--train_steps', type=int, default=6400000,
    help='The number of steps to use for training.')

parser.add_argument(
    '--steps_per_eval', type=int, default=40000,
    help='The number of training steps to run between evaluations.')

parser.add_argument(
51
52
    '--batch_size', type=int, default=32,
    help='Batch size for training and evaluation.')
53
54

parser.add_argument(
55
56
    '--map_threads', type=int, default=5,
    help='The number of threads for dataset.map.')
57
58
59
60
61
62
63
64
65
66

parser.add_argument(
    '--first_cycle_steps', type=int, default=None,
    help='The number of steps to run before the first evaluation. Useful if '
    'you have stopped partway through a training cycle.')

FLAGS = parser.parse_args()

# Scale the learning rate linearly with the batch size. When the batch size is
# 256, the learning rate should be 0.1.
67
68
69
70
_INITIAL_LEARNING_RATE = 0.1 * FLAGS.batch_size / 256

_NUM_CHANNELS = 3
_LABEL_CLASSES = 1001
71
72
73
74

_MOMENTUM = 0.9
_WEIGHT_DECAY = 1e-4

75
76
77
78
_NUM_IMAGES = {
    'train': 1281167,
    'validation': 50000,
}
79
80
81

image_preprocessing_fn = vgg_preprocessing.preprocess_image
network = resnet_model.resnet_v2(
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    resnet_size=FLAGS.resnet_size, num_classes=_LABEL_CLASSES)

batches_per_epoch = _NUM_IMAGES['train'] / FLAGS.batch_size


def filenames(is_training):
  """Return filenames for dataset."""
  if is_training:
    return [
        os.path.join(FLAGS.data_dir, 'train-%05d-of-01024' % i)
        for i in xrange(0, 1024)]
  else:
    return [
        os.path.join(FLAGS.data_dir, 'validation-%05d-of-00128' % i)
        for i in xrange(0, 128)]


def dataset_parser(value, is_training):
  """Parse an Imagenet record from value."""
  keys_to_features = {
      'image/encoded':
          tf.FixedLenFeature((), tf.string, default_value=''),
      'image/format':
          tf.FixedLenFeature((), tf.string, default_value='jpeg'),
      'image/class/label':
          tf.FixedLenFeature([], dtype=tf.int64, default_value=-1),
      'image/class/text':
          tf.FixedLenFeature([], dtype=tf.string, default_value=''),
      'image/object/bbox/xmin':
          tf.VarLenFeature(dtype=tf.float32),
      'image/object/bbox/ymin':
          tf.VarLenFeature(dtype=tf.float32),
      'image/object/bbox/xmax':
          tf.VarLenFeature(dtype=tf.float32),
      'image/object/bbox/ymax':
          tf.VarLenFeature(dtype=tf.float32),
      'image/object/class/label':
          tf.VarLenFeature(dtype=tf.int64),
  }

  parsed = tf.parse_single_example(value, keys_to_features)
123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
  image = tf.image.decode_image(
      tf.reshape(parsed['image/encoded'], shape=[]),
      _NUM_CHANNELS)
  image = tf.image.convert_image_dtype(image, dtype=tf.float32)

  image = image_preprocessing_fn(
      image=image,
      output_height=network.default_image_size,
      output_width=network.default_image_size,
      is_training=is_training)

  label = tf.cast(
      tf.reshape(parsed['image/class/label'], shape=[]),
      dtype=tf.int32)

  return image, tf.one_hot(label, _LABEL_CLASSES)
140
141
142
143


def input_fn(is_training):
  """Input function which provides a single batch for train or eval."""
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
  dataset = tf.contrib.data.Dataset.from_tensor_slices(filenames(is_training))
  if is_training:
    dataset = dataset.shuffle(buffer_size=1024)
  dataset = dataset.flat_map(tf.contrib.data.TFRecordDataset)

  if is_training:
    dataset = dataset.repeat()

  dataset = dataset.map(lambda value: dataset_parser(value, is_training),
                        num_threads=FLAGS.map_threads,
                        output_buffer_size=FLAGS.batch_size)

  if is_training:
    buffer_size = 1250 + 2 * FLAGS.batch_size
    dataset = dataset.shuffle(buffer_size=buffer_size)

  iterator = dataset.batch(FLAGS.batch_size).make_one_shot_iterator()
  images, labels = iterator.get_next()
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
  return images, labels


def resnet_model_fn(features, labels, mode):
  """ Our model_fn for ResNet to be used with our Estimator."""
  tf.summary.image('images', features, max_outputs=6)

  logits = network(
      inputs=features, is_training=(mode == tf.estimator.ModeKeys.TRAIN))

  predictions = {
      'classes': tf.argmax(logits, axis=1),
      'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
  }

  if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

  # Calculate loss, which includes softmax cross entropy and L2 regularization.
  cross_entropy = tf.losses.softmax_cross_entropy(
      logits=logits, onehot_labels=labels)

  # Create a tensor named cross_entropy for logging purposes.
  tf.identity(cross_entropy, name='cross_entropy')
  tf.summary.scalar('cross_entropy', cross_entropy)

  # Add weight decay to the loss. We perform weight decay on all trainable
  # variables, which includes batch norm beta and gamma variables.
  loss = cross_entropy + _WEIGHT_DECAY * tf.add_n(
      [tf.nn.l2_loss(v) for v in tf.trainable_variables()])

  if mode == tf.estimator.ModeKeys.TRAIN:
    global_step = tf.train.get_or_create_global_step()

    # Multiply the learning rate by 0.1 at 30, 60, 120, and 150 epochs.
    boundaries = [
        int(batches_per_epoch * epoch) for epoch in [30, 60, 120, 150]]
    values = [
        _INITIAL_LEARNING_RATE * decay for decay in [1, 0.1, 0.01, 1e-3, 1e-4]]
    learning_rate = tf.train.piecewise_constant(
        tf.cast(global_step, tf.int32), boundaries, values)

    # Create a tensor named learning_rate for logging purposes.
    tf.identity(learning_rate, name='learning_rate')
    tf.summary.scalar('learning_rate', learning_rate)

    optimizer = tf.train.MomentumOptimizer(
        learning_rate=learning_rate,
        momentum=_MOMENTUM)

    # Batch norm requires update_ops to be added as a train_op dependency.
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
      train_op = optimizer.minimize(loss, global_step)
  else:
    train_op = None

  accuracy = tf.metrics.accuracy(
      tf.argmax(labels, axis=1), predictions['classes'])
  metrics = {'accuracy': accuracy}

  # Create a tensor named train_accuracy for logging purposes.
  tf.identity(accuracy[1], name='train_accuracy')
  tf.summary.scalar('train_accuracy', accuracy[1])

  return tf.estimator.EstimatorSpec(
      mode=mode,
      predictions=predictions,
      loss=loss,
      train_op=train_op,
      eval_metric_ops=metrics)


def main(unused_argv):
  # Using the Winograd non-fused algorithms provides a small performance boost.
  os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'

  resnet_classifier = tf.estimator.Estimator(
      model_fn=resnet_model_fn, model_dir=FLAGS.model_dir)

  for cycle in range(FLAGS.train_steps // FLAGS.steps_per_eval):
    tensors_to_log = {
        'learning_rate': 'learning_rate',
        'cross_entropy': 'cross_entropy',
        'train_accuracy': 'train_accuracy'
    }

    logging_hook = tf.train.LoggingTensorHook(
        tensors=tensors_to_log, every_n_iter=100)

    print('Starting a training cycle.')
    resnet_classifier.train(
        input_fn=lambda: input_fn(True),
        steps=FLAGS.first_cycle_steps or FLAGS.steps_per_eval,
        hooks=[logging_hook])
    FLAGS.first_cycle_steps = None

    print('Starting to evaluate.')
260
    eval_results = resnet_classifier.evaluate(input_fn=lambda: input_fn(False))
261
262
263
264
265
266
    print(eval_results)


if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.INFO)
  tf.app.run()