imagenet_main.py 11 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Runs a ResNet model on the ImageNet dataset."""
16
17
18
19
20
21
22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

23
24
from absl import app as absl_app
from absl import flags
Karmel Allison's avatar
Karmel Allison committed
25
import tensorflow as tf  # pylint: disable=g-bad-import-order
26

27
from official.utils.flags import core as flags_core
28
from official.resnet import imagenet_preprocessing
29
30
from official.resnet import resnet_model
from official.resnet import resnet_run_loop
31

32
_DEFAULT_IMAGE_SIZE = 224
33
_NUM_CHANNELS = 3
34
_NUM_CLASSES = 1001
35

36
37
38
39
_NUM_IMAGES = {
    'train': 1281167,
    'validation': 50000,
}
40

41
_NUM_TRAIN_FILES = 1024
42
_SHUFFLE_BUFFER = 10000
43

44
DATASET_NAME = 'ImageNet'
45

46
47
48
###############################################################################
# Data processing
###############################################################################
49
def get_filenames(is_training, data_dir):
50
51
52
  """Return filenames for dataset."""
  if is_training:
    return [
53
        os.path.join(data_dir, 'train-%05d-of-01024' % i)
54
        for i in range(_NUM_TRAIN_FILES)]
55
56
  else:
    return [
57
        os.path.join(data_dir, 'validation-%05d-of-00128' % i)
Neal Wu's avatar
Neal Wu committed
58
        for i in range(128)]
59
60


61
62
63
def _parse_example_proto(example_serialized):
  """Parses an Example proto containing a training example of an image.

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
  The output of the build_image_data.py image preprocessing script is a dataset
  containing serialized Example protocol buffers. Each Example proto contains
  the following fields (values are included as examples):

    image/height: 462
    image/width: 581
    image/colorspace: 'RGB'
    image/channels: 3
    image/class/label: 615
    image/class/synset: 'n03623198'
    image/class/text: 'knee pad'
    image/object/bbox/xmin: 0.1
    image/object/bbox/xmax: 0.9
    image/object/bbox/ymin: 0.2
    image/object/bbox/ymax: 0.6
    image/object/bbox/label: 615
    image/format: 'JPEG'
    image/filename: 'ILSVRC2012_val_00041207.JPEG'
    image/encoded: <JPEG encoded string>
83
84
85
86
87
88
89

  Args:
    example_serialized: scalar Tensor tf.string containing a serialized
      Example protocol buffer.

  Returns:
    image_buffer: Tensor tf.string containing the contents of a JPEG file.
90
91
92
93
    label: Tensor tf.int32 containing the label.
    bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
      where each coordinate is [0, 1) and the coordinates are arranged as
      [ymin, xmin, ymax, xmax].
94
95
96
97
98
99
  """
  # Dense features in Example proto.
  feature_map = {
      'image/encoded': tf.FixedLenFeature([], dtype=tf.string,
                                          default_value=''),
      'image/class/label': tf.FixedLenFeature([1], dtype=tf.int64,
100
101
102
                                              default_value=-1),
      'image/class/text': tf.FixedLenFeature([], dtype=tf.string,
                                             default_value=''),
103
  }
104
105
106
107
108
109
110
  sparse_float32 = tf.VarLenFeature(dtype=tf.float32)
  # Sparse features in Example proto.
  feature_map.update(
      {k: sparse_float32 for k in ['image/object/bbox/xmin',
                                   'image/object/bbox/ymin',
                                   'image/object/bbox/xmax',
                                   'image/object/bbox/ymax']})
111

112
  features = tf.parse_single_example(example_serialized, feature_map)
113
  label = tf.cast(features['image/class/label'], dtype=tf.int32)
114

115
116
117
118
119
120
121
122
123
124
125
126
127
128
  xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 0)
  ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 0)
  xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 0)
  ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 0)

  # Note that we impose an ordering of (y, x) just to make life difficult.
  bbox = tf.concat([ymin, xmin, ymax, xmax], 0)

  # Force the variable number of bounding boxes into the shape
  # [1, num_boxes, coords].
  bbox = tf.expand_dims(bbox, 0)
  bbox = tf.transpose(bbox, [0, 2, 1])

  return features['image/encoded'], label, bbox
129
130
131
132
133
134
135
136
137
138
139
140


def parse_record(raw_record, is_training):
  """Parses a record containing a training example of an image.

  The input record is parsed into a label and image, and the image is passed
  through preprocessing steps (cropping, flipping, and so on).

  Args:
    raw_record: scalar Tensor tf.string containing a serialized
      Example protocol buffer.
    is_training: A boolean denoting whether the input is for training.
141

142
143
  Returns:
    Tuple with processed image tensor and one-hot-encoded label tensor.
144
145
146
147
148
149
  """
  image_buffer, label, bbox = _parse_example_proto(raw_record)

  image = imagenet_preprocessing.preprocess_image(
      image_buffer=image_buffer,
      bbox=bbox,
150
151
      output_height=_DEFAULT_IMAGE_SIZE,
      output_width=_DEFAULT_IMAGE_SIZE,
152
      num_channels=_NUM_CHANNELS,
153
154
      is_training=is_training)

155
  return image, label
156
157


158
def input_fn(is_training, data_dir, batch_size, num_epochs=1):
159
  """Input function which provides batches for train or eval.
Karmel Allison's avatar
Karmel Allison committed
160

161
162
163
164
165
166
167
168
169
170
171
  Args:
    is_training: A boolean denoting whether the input is for training.
    data_dir: The directory containing the input data.
    batch_size: The number of samples per batch.
    num_epochs: The number of epochs to repeat the dataset.

  Returns:
    A dataset that can be used for iteration.
  """
  filenames = get_filenames(is_training, data_dir)
  dataset = tf.data.Dataset.from_tensor_slices(filenames)
172

173
  if is_training:
174
175
    # Shuffle the input files
    dataset = dataset.shuffle(buffer_size=_NUM_TRAIN_FILES)
176

177
178
179
180
181
182
183
  # Convert to individual records.
  # cycle_length = 10 means 10 files will be read and deserialized in parallel.
  # This number is low enough to not cause too much contention on small systems
  # but high enough to provide the benefits of parallelization. You may want
  # to increase this number if you have a large number of CPU cores.
  dataset = dataset.apply(tf.contrib.data.parallel_interleave(
      tf.data.TFRecordDataset, cycle_length=10))
184

185
  return resnet_run_loop.process_record_dataset(
186
      dataset, is_training, batch_size, _SHUFFLE_BUFFER, parse_record,
187
188
      num_epochs
  )
189
190
191


def get_synth_input_fn():
192
  return resnet_run_loop.get_synth_input_fn(
Karmel Allison's avatar
Karmel Allison committed
193
      _DEFAULT_IMAGE_SIZE, _DEFAULT_IMAGE_SIZE, _NUM_CHANNELS, _NUM_CLASSES)
194
195


196
197
198
###############################################################################
# Running the model
###############################################################################
199
class ImagenetModel(resnet_model.Model):
Karmel Allison's avatar
Karmel Allison committed
200
  """Model class with appropriate defaults for Imagenet data."""
201

202
  def __init__(self, resnet_size, data_format=None, num_classes=_NUM_CLASSES,
203
               resnet_version=resnet_model.DEFAULT_VERSION,
204
               dtype=resnet_model.DEFAULT_DTYPE):
Neal Wu's avatar
Neal Wu committed
205
206
207
208
209
210
211
    """These are the parameters that work for Imagenet data.

    Args:
      resnet_size: The number of convolutional layers needed in the model.
      data_format: Either 'channels_first' or 'channels_last', specifying which
        data format to use when setting up the model.
      num_classes: The number of output classes needed from the model. This
212
        enables users to extend the same model to their own datasets.
213
214
      resnet_version: Integer representing which version of the ResNet network
        to use. See README for details. Valid values: [1, 2]
215
      dtype: The TensorFlow dtype to use for calculations.
Neal Wu's avatar
Neal Wu committed
216
    """
217
218
219

    # For bigger models, we want to use "bottleneck" layers
    if resnet_size < 50:
220
      bottleneck = False
221
222
      final_size = 512
    else:
223
      bottleneck = True
224
225
226
227
      final_size = 2048

    super(ImagenetModel, self).__init__(
        resnet_size=resnet_size,
228
        bottleneck=bottleneck,
229
        num_classes=num_classes,
230
231
232
233
234
235
236
237
        num_filters=64,
        kernel_size=7,
        conv_stride=2,
        first_pool_size=3,
        first_pool_stride=2,
        block_sizes=_get_block_sizes(resnet_size),
        block_strides=[1, 2, 2, 2],
        final_size=final_size,
238
        resnet_version=resnet_version,
239
240
241
        data_format=data_format,
        dtype=dtype
    )
242
243
244


def _get_block_sizes(resnet_size):
Karmel Allison's avatar
Karmel Allison committed
245
246
247
  """Retrieve the size of each block_layer in the ResNet model.

  The number of block layers used for the Resnet model varies according
248
249
  to the size of the model. This helper grabs the layer set we want, throwing
  an error if a non-standard size has been selected.
Karmel Allison's avatar
Karmel Allison committed
250
251
252
253
254
255
256
257
258

  Args:
    resnet_size: The number of convolutional layers needed in the model.

  Returns:
    A list of block sizes to use in building the model.

  Raises:
    KeyError: if invalid resnet_size is received.
259
260
261
262
263
264
265
266
  """
  choices = {
      18: [2, 2, 2, 2],
      34: [3, 4, 6, 3],
      50: [3, 4, 6, 3],
      101: [3, 4, 23, 3],
      152: [3, 8, 36, 3],
      200: [3, 24, 36, 3]
267
268
  }

269
270
271
272
273
274
275
  try:
    return choices[resnet_size]
  except KeyError:
    err = ('Could not find layers for selected Resnet size.\n'
           'Size received: {}; sizes allowed: {}.'.format(
               resnet_size, choices.keys()))
    raise ValueError(err)
276
277


278
279
def imagenet_model_fn(features, labels, mode, params):
  """Our model_fn for ResNet to be used with our Estimator."""
280
  learning_rate_fn = resnet_run_loop.learning_rate_with_decay(
281
282
283
      batch_size=params['batch_size'], batch_denom=256,
      num_images=_NUM_IMAGES['train'], boundary_epochs=[30, 60, 80, 90],
      decay_rates=[1, 0.1, 0.01, 0.001, 1e-4])
284

285
286
287
288
289
290
291
292
293
294
  return resnet_run_loop.resnet_model_fn(
      features=features,
      labels=labels,
      mode=mode,
      model_class=ImagenetModel,
      resnet_size=params['resnet_size'],
      weight_decay=1e-4,
      learning_rate_fn=learning_rate_fn,
      momentum=0.9,
      data_format=params['data_format'],
295
      resnet_version=params['resnet_version'],
296
297
298
299
      loss_scale=params['loss_scale'],
      loss_filter_fn=None,
      dtype=params['dtype']
  )
300
301


302
303
304
305
306
def define_imagenet_flags():
  resnet_run_loop.define_resnet_flags(
      resnet_size_choices=['18', '34', '50', '101', '152', '200'])
  flags.adopt_module_key_flags(resnet_run_loop)
  flags_core.set_defaults(train_epochs=100)
307

308

309
310
311
312
313
314
def run_imagenet(flags_obj):
  """Run ResNet ImageNet training and eval loop.

  Args:
    flags_obj: An object containing parsed flag values.
  """
315
316
  input_function = (flags_obj.use_synthetic_data and get_synth_input_fn()
                    or input_fn)
317
318

  resnet_run_loop.resnet_main(
319
      flags_obj, imagenet_model_fn, input_function, DATASET_NAME,
320
      shape=[_DEFAULT_IMAGE_SIZE, _DEFAULT_IMAGE_SIZE, _NUM_CHANNELS])
321
322


323
324
325
326
def main(_):
  run_imagenet(flags.FLAGS)


327
328
if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.INFO)
329
330
  define_imagenet_flags()
  absl_app.run(main)