imagenet_main.py 11.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Runs a ResNet model on the ImageNet dataset."""
16
17
18
19
20
21
22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

23
24
from absl import app as absl_app
from absl import flags
Karmel Allison's avatar
Karmel Allison committed
25
import tensorflow as tf  # pylint: disable=g-bad-import-order
26

27
from official.utils.flags import core as flags_core
28
from official.utils.logs import logger
29
from official.resnet import imagenet_preprocessing
30
31
from official.resnet import resnet_model
from official.resnet import resnet_run_loop
32

33
_DEFAULT_IMAGE_SIZE = 224
34
_NUM_CHANNELS = 3
35
_NUM_CLASSES = 1001
36

37
38
39
40
_NUM_IMAGES = {
    'train': 1281167,
    'validation': 50000,
}
41

42
_NUM_TRAIN_FILES = 1024
43
_SHUFFLE_BUFFER = 10000
44

45
DATASET_NAME = 'ImageNet'
46

47
48
49
###############################################################################
# Data processing
###############################################################################
50
def get_filenames(is_training, data_dir):
51
52
53
  """Return filenames for dataset."""
  if is_training:
    return [
54
        os.path.join(data_dir, 'train-%05d-of-01024' % i)
55
        for i in range(_NUM_TRAIN_FILES)]
56
57
  else:
    return [
58
        os.path.join(data_dir, 'validation-%05d-of-00128' % i)
Neal Wu's avatar
Neal Wu committed
59
        for i in range(128)]
60
61


62
63
64
def _parse_example_proto(example_serialized):
  """Parses an Example proto containing a training example of an image.

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
  The output of the build_image_data.py image preprocessing script is a dataset
  containing serialized Example protocol buffers. Each Example proto contains
  the following fields (values are included as examples):

    image/height: 462
    image/width: 581
    image/colorspace: 'RGB'
    image/channels: 3
    image/class/label: 615
    image/class/synset: 'n03623198'
    image/class/text: 'knee pad'
    image/object/bbox/xmin: 0.1
    image/object/bbox/xmax: 0.9
    image/object/bbox/ymin: 0.2
    image/object/bbox/ymax: 0.6
    image/object/bbox/label: 615
    image/format: 'JPEG'
    image/filename: 'ILSVRC2012_val_00041207.JPEG'
    image/encoded: <JPEG encoded string>
84
85
86
87
88
89
90

  Args:
    example_serialized: scalar Tensor tf.string containing a serialized
      Example protocol buffer.

  Returns:
    image_buffer: Tensor tf.string containing the contents of a JPEG file.
91
92
93
94
    label: Tensor tf.int32 containing the label.
    bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
      where each coordinate is [0, 1) and the coordinates are arranged as
      [ymin, xmin, ymax, xmax].
95
96
97
98
99
100
  """
  # Dense features in Example proto.
  feature_map = {
      'image/encoded': tf.FixedLenFeature([], dtype=tf.string,
                                          default_value=''),
      'image/class/label': tf.FixedLenFeature([1], dtype=tf.int64,
101
102
103
                                              default_value=-1),
      'image/class/text': tf.FixedLenFeature([], dtype=tf.string,
                                             default_value=''),
104
  }
105
106
107
108
109
110
111
  sparse_float32 = tf.VarLenFeature(dtype=tf.float32)
  # Sparse features in Example proto.
  feature_map.update(
      {k: sparse_float32 for k in ['image/object/bbox/xmin',
                                   'image/object/bbox/ymin',
                                   'image/object/bbox/xmax',
                                   'image/object/bbox/ymax']})
112

113
  features = tf.parse_single_example(example_serialized, feature_map)
114
  label = tf.cast(features['image/class/label'], dtype=tf.int32)
115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
  xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 0)
  ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 0)
  xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 0)
  ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 0)

  # Note that we impose an ordering of (y, x) just to make life difficult.
  bbox = tf.concat([ymin, xmin, ymax, xmax], 0)

  # Force the variable number of bounding boxes into the shape
  # [1, num_boxes, coords].
  bbox = tf.expand_dims(bbox, 0)
  bbox = tf.transpose(bbox, [0, 2, 1])

  return features['image/encoded'], label, bbox
130
131
132
133
134
135
136
137
138
139
140
141


def parse_record(raw_record, is_training):
  """Parses a record containing a training example of an image.

  The input record is parsed into a label and image, and the image is passed
  through preprocessing steps (cropping, flipping, and so on).

  Args:
    raw_record: scalar Tensor tf.string containing a serialized
      Example protocol buffer.
    is_training: A boolean denoting whether the input is for training.
142

143
144
  Returns:
    Tuple with processed image tensor and one-hot-encoded label tensor.
145
146
147
148
149
150
  """
  image_buffer, label, bbox = _parse_example_proto(raw_record)

  image = imagenet_preprocessing.preprocess_image(
      image_buffer=image_buffer,
      bbox=bbox,
151
152
      output_height=_DEFAULT_IMAGE_SIZE,
      output_width=_DEFAULT_IMAGE_SIZE,
153
      num_channels=_NUM_CHANNELS,
154
155
      is_training=is_training)

156
  return image, label
157
158


159
def input_fn(is_training, data_dir, batch_size, num_epochs=1):
160
  """Input function which provides batches for train or eval.
Karmel Allison's avatar
Karmel Allison committed
161

162
163
164
165
166
167
168
169
170
171
172
  Args:
    is_training: A boolean denoting whether the input is for training.
    data_dir: The directory containing the input data.
    batch_size: The number of samples per batch.
    num_epochs: The number of epochs to repeat the dataset.

  Returns:
    A dataset that can be used for iteration.
  """
  filenames = get_filenames(is_training, data_dir)
  dataset = tf.data.Dataset.from_tensor_slices(filenames)
173

174
  if is_training:
175
176
    # Shuffle the input files
    dataset = dataset.shuffle(buffer_size=_NUM_TRAIN_FILES)
177

178
179
180
181
182
183
184
  # Convert to individual records.
  # cycle_length = 10 means 10 files will be read and deserialized in parallel.
  # This number is low enough to not cause too much contention on small systems
  # but high enough to provide the benefits of parallelization. You may want
  # to increase this number if you have a large number of CPU cores.
  dataset = dataset.apply(tf.contrib.data.parallel_interleave(
      tf.data.TFRecordDataset, cycle_length=10))
185

186
  return resnet_run_loop.process_record_dataset(
187
      dataset, is_training, batch_size, _SHUFFLE_BUFFER, parse_record,
188
189
      num_epochs
  )
190
191
192


def get_synth_input_fn():
193
  return resnet_run_loop.get_synth_input_fn(
Karmel Allison's avatar
Karmel Allison committed
194
      _DEFAULT_IMAGE_SIZE, _DEFAULT_IMAGE_SIZE, _NUM_CHANNELS, _NUM_CLASSES)
195
196


197
198
199
###############################################################################
# Running the model
###############################################################################
200
class ImagenetModel(resnet_model.Model):
Karmel Allison's avatar
Karmel Allison committed
201
  """Model class with appropriate defaults for Imagenet data."""
202

203
  def __init__(self, resnet_size, data_format=None, num_classes=_NUM_CLASSES,
204
               resnet_version=resnet_model.DEFAULT_VERSION,
205
               dtype=resnet_model.DEFAULT_DTYPE):
Neal Wu's avatar
Neal Wu committed
206
207
208
209
210
211
212
    """These are the parameters that work for Imagenet data.

    Args:
      resnet_size: The number of convolutional layers needed in the model.
      data_format: Either 'channels_first' or 'channels_last', specifying which
        data format to use when setting up the model.
      num_classes: The number of output classes needed from the model. This
213
        enables users to extend the same model to their own datasets.
214
215
      resnet_version: Integer representing which version of the ResNet network
        to use. See README for details. Valid values: [1, 2]
216
      dtype: The TensorFlow dtype to use for calculations.
Neal Wu's avatar
Neal Wu committed
217
    """
218
219
220

    # For bigger models, we want to use "bottleneck" layers
    if resnet_size < 50:
221
      bottleneck = False
222
223
      final_size = 512
    else:
224
      bottleneck = True
225
226
227
228
      final_size = 2048

    super(ImagenetModel, self).__init__(
        resnet_size=resnet_size,
229
        bottleneck=bottleneck,
230
        num_classes=num_classes,
231
232
233
234
235
236
237
238
        num_filters=64,
        kernel_size=7,
        conv_stride=2,
        first_pool_size=3,
        first_pool_stride=2,
        block_sizes=_get_block_sizes(resnet_size),
        block_strides=[1, 2, 2, 2],
        final_size=final_size,
239
        resnet_version=resnet_version,
240
241
242
        data_format=data_format,
        dtype=dtype
    )
243
244
245


def _get_block_sizes(resnet_size):
Karmel Allison's avatar
Karmel Allison committed
246
247
248
  """Retrieve the size of each block_layer in the ResNet model.

  The number of block layers used for the Resnet model varies according
249
250
  to the size of the model. This helper grabs the layer set we want, throwing
  an error if a non-standard size has been selected.
Karmel Allison's avatar
Karmel Allison committed
251
252
253
254
255
256
257
258
259

  Args:
    resnet_size: The number of convolutional layers needed in the model.

  Returns:
    A list of block sizes to use in building the model.

  Raises:
    KeyError: if invalid resnet_size is received.
260
261
262
263
264
265
266
267
  """
  choices = {
      18: [2, 2, 2, 2],
      34: [3, 4, 6, 3],
      50: [3, 4, 6, 3],
      101: [3, 4, 23, 3],
      152: [3, 8, 36, 3],
      200: [3, 24, 36, 3]
268
269
  }

270
271
272
273
274
275
276
  try:
    return choices[resnet_size]
  except KeyError:
    err = ('Could not find layers for selected Resnet size.\n'
           'Size received: {}; sizes allowed: {}.'.format(
               resnet_size, choices.keys()))
    raise ValueError(err)
277
278


279
280
def imagenet_model_fn(features, labels, mode, params):
  """Our model_fn for ResNet to be used with our Estimator."""
281
  learning_rate_fn = resnet_run_loop.learning_rate_with_decay(
282
283
284
      batch_size=params['batch_size'], batch_denom=256,
      num_images=_NUM_IMAGES['train'], boundary_epochs=[30, 60, 80, 90],
      decay_rates=[1, 0.1, 0.01, 0.001, 1e-4])
285

286
287
288
289
290
291
292
293
294
295
  return resnet_run_loop.resnet_model_fn(
      features=features,
      labels=labels,
      mode=mode,
      model_class=ImagenetModel,
      resnet_size=params['resnet_size'],
      weight_decay=1e-4,
      learning_rate_fn=learning_rate_fn,
      momentum=0.9,
      data_format=params['data_format'],
296
      resnet_version=params['resnet_version'],
297
298
299
300
      loss_scale=params['loss_scale'],
      loss_filter_fn=None,
      dtype=params['dtype']
  )
301
302


303
304
305
306
307
def define_imagenet_flags():
  resnet_run_loop.define_resnet_flags(
      resnet_size_choices=['18', '34', '50', '101', '152', '200'])
  flags.adopt_module_key_flags(resnet_run_loop)
  flags_core.set_defaults(train_epochs=100)
308

309

310
311
312
313
314
315
def run_imagenet(flags_obj):
  """Run ResNet ImageNet training and eval loop.

  Args:
    flags_obj: An object containing parsed flag values.
  """
316
317
  input_function = (flags_obj.use_synthetic_data and get_synth_input_fn()
                    or input_fn)
318
319

  resnet_run_loop.resnet_main(
320
      flags_obj, imagenet_model_fn, input_function, DATASET_NAME,
321
      shape=[_DEFAULT_IMAGE_SIZE, _DEFAULT_IMAGE_SIZE, _NUM_CHANNELS])
322
323


324
def main(_):
325
326
  with logger.benchmark_context(flags.FLAGS):
    run_imagenet(flags.FLAGS)
327
328


329
330
if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.INFO)
331
332
  define_imagenet_flags()
  absl_app.run(main)