Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
822875db
"torchvision/vscode:/vscode.git/clone" did not exist on "a0fcd083714f9378602d635afd95810a693ded47"
Unverified
Commit
822875db
authored
Mar 15, 2018
by
Taylor Robie
Committed by
GitHub
Mar 15, 2018
Browse files
partition code between resnet_run_loop and resnet_model (#3621)
parent
d3067c21
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
434 additions
and
402 deletions
+434
-402
official/resnet/cifar10_main.py
official/resnet/cifar10_main.py
+20
-19
official/resnet/imagenet_main.py
official/resnet/imagenet_main.py
+18
-17
official/resnet/resnet_model.py
official/resnet/resnet_model.py
+4
-360
official/resnet/resnet_run_loop.py
official/resnet/resnet_run_loop.py
+386
-0
official/resnet/resnet_test.py
official/resnet/resnet_test.py
+6
-6
No files found.
official/resnet/cifar10_main.py
View file @
822875db
...
...
@@ -23,7 +23,8 @@ import sys
import
tensorflow
as
tf
from
official.resnet
import
resnet
from
official.resnet
import
resnet_model
from
official.resnet
import
resnet_run_loop
_HEIGHT
=
32
_WIDTH
=
32
...
...
@@ -126,22 +127,22 @@ def input_fn(is_training, data_dir, batch_size, num_epochs=1,
num_images
=
is_training
and
_NUM_IMAGES
[
'train'
]
or
_NUM_IMAGES
[
'validation'
]
return
resnet
.
process_record_dataset
(
dataset
,
is_training
,
batch_size
,
_NUM_IMAGES
[
'train'
],
parse_record
,
num_epochs
,
num_parallel_calls
,
examples_per_epoch
=
num_images
,
multi_gpu
=
multi_gpu
)
return
resnet
_run_loop
.
process_record_dataset
(
dataset
,
is_training
,
batch_size
,
_NUM_IMAGES
[
'train'
],
parse_record
,
num_epochs
,
num_parallel_calls
,
examples_per_epoch
=
num_images
,
multi_gpu
=
multi_gpu
)
def
get_synth_input_fn
():
return
resnet
.
get_synth_input_fn
(
_HEIGHT
,
_WIDTH
,
_NUM_CHANNELS
,
_NUM_CLASSES
)
return
resnet
_run_loop
.
get_synth_input_fn
(
_HEIGHT
,
_WIDTH
,
_NUM_CHANNELS
,
_NUM_CLASSES
)
###############################################################################
# Running the model
###############################################################################
class
Cifar10Model
(
resnet
.
Model
):
class
Cifar10Model
(
resnet
_model
.
Model
):
def
__init__
(
self
,
resnet_size
,
data_format
=
None
,
num_classes
=
_NUM_CLASSES
,
version
=
resnet
.
DEFAULT_VERSION
):
version
=
resnet
_model
.
DEFAULT_VERSION
):
"""These are the parameters that work for CIFAR-10 data.
Args:
...
...
@@ -180,7 +181,7 @@ def cifar10_model_fn(features, labels, mode, params):
"""Model function for CIFAR-10."""
features
=
tf
.
reshape
(
features
,
[
-
1
,
_HEIGHT
,
_WIDTH
,
_NUM_CHANNELS
])
learning_rate_fn
=
resnet
.
learning_rate_with_decay
(
learning_rate_fn
=
resnet
_run_loop
.
learning_rate_with_decay
(
batch_size
=
params
[
'batch_size'
],
batch_denom
=
128
,
num_images
=
_NUM_IMAGES
[
'train'
],
boundary_epochs
=
[
100
,
150
,
200
],
decay_rates
=
[
1
,
0.1
,
0.01
,
0.001
])
...
...
@@ -197,26 +198,26 @@ def cifar10_model_fn(features, labels, mode, params):
def
loss_filter_fn
(
name
):
return
True
return
resnet
.
resnet_model_fn
(
features
,
labels
,
mode
,
Cifar10Model
,
resnet_size
=
params
[
'resnet_size'
],
weight_decay
=
weight_decay
,
learning_rate_fn
=
learning_rate_fn
,
momentum
=
0.9
,
data_format
=
params
[
'data_format'
],
version
=
params
[
'version'
],
loss_filter_fn
=
loss_filter_fn
,
multi_gpu
=
params
[
'multi_gpu'
])
return
resnet
_run_loop
.
resnet_model_fn
(
features
,
labels
,
mode
,
Cifar10Model
,
resnet_size
=
params
[
'resnet_size'
],
weight_decay
=
weight_decay
,
learning_rate_fn
=
learning_rate_fn
,
momentum
=
0.9
,
data_format
=
params
[
'data_format'
],
version
=
params
[
'version'
],
loss_filter_fn
=
loss_filter_fn
,
multi_gpu
=
params
[
'multi_gpu'
])
def
main
(
unused_argv
):
input_function
=
FLAGS
.
use_synthetic_data
and
get_synth_input_fn
()
or
input_fn
resnet
.
resnet_main
(
FLAGS
,
cifar10_model_fn
,
input_function
)
resnet
_run_loop
.
resnet_main
(
FLAGS
,
cifar10_model_fn
,
input_function
)
if
__name__
==
'__main__'
:
tf
.
logging
.
set_verbosity
(
tf
.
logging
.
INFO
)
parser
=
resnet
.
ResnetArgParser
()
parser
=
resnet
_run_loop
.
ResnetArgParser
()
# Set defaults that are reasonable for this model.
parser
.
set_defaults
(
data_dir
=
'/tmp/cifar10_data'
,
model_dir
=
'/tmp/cifar10_model'
,
...
...
official/resnet/imagenet_main.py
View file @
822875db
...
...
@@ -23,8 +23,9 @@ import sys
import
tensorflow
as
tf
from
official.resnet
import
resnet
from
official.resnet
import
imagenet_preprocessing
from
official.resnet
import
resnet_model
from
official.resnet
import
resnet_run_loop
_DEFAULT_IMAGE_SIZE
=
224
_NUM_CHANNELS
=
3
...
...
@@ -183,24 +184,24 @@ def input_fn(is_training, data_dir, batch_size, num_epochs=1,
# Convert to individual records
dataset
=
dataset
.
flat_map
(
tf
.
data
.
TFRecordDataset
)
return
resnet
.
process_record_dataset
(
return
resnet
_run_loop
.
process_record_dataset
(
dataset
,
is_training
,
batch_size
,
_SHUFFLE_BUFFER
,
parse_record
,
num_epochs
,
num_parallel_calls
,
examples_per_epoch
=
num_images
,
multi_gpu
=
multi_gpu
)
def
get_synth_input_fn
():
return
resnet
.
get_synth_input_fn
(
return
resnet
_run_loop
.
get_synth_input_fn
(
_DEFAULT_IMAGE_SIZE
,
_DEFAULT_IMAGE_SIZE
,
_NUM_CHANNELS
,
_NUM_CLASSES
)
###############################################################################
# Running the model
###############################################################################
class
ImagenetModel
(
resnet
.
Model
):
class
ImagenetModel
(
resnet
_model
.
Model
):
def
__init__
(
self
,
resnet_size
,
data_format
=
None
,
num_classes
=
_NUM_CLASSES
,
version
=
resnet
.
DEFAULT_VERSION
):
version
=
resnet
_model
.
DEFAULT_VERSION
):
"""These are the parameters that work for Imagenet data.
Args:
...
...
@@ -264,31 +265,31 @@ def _get_block_sizes(resnet_size):
def
imagenet_model_fn
(
features
,
labels
,
mode
,
params
):
"""Our model_fn for ResNet to be used with our Estimator."""
learning_rate_fn
=
resnet
.
learning_rate_with_decay
(
learning_rate_fn
=
resnet
_run_loop
.
learning_rate_with_decay
(
batch_size
=
params
[
'batch_size'
],
batch_denom
=
256
,
num_images
=
_NUM_IMAGES
[
'train'
],
boundary_epochs
=
[
30
,
60
,
80
,
90
],
decay_rates
=
[
1
,
0.1
,
0.01
,
0.001
,
1e-4
])
return
resnet
.
resnet_model_fn
(
features
,
labels
,
mode
,
ImagenetModel
,
resnet_size
=
params
[
'resnet_size'
],
weight_decay
=
1e-4
,
learning_rate_fn
=
learning_rate_fn
,
momentum
=
0.9
,
data_format
=
params
[
'data_format'
],
version
=
params
[
'version'
],
loss_filter_fn
=
None
,
multi_gpu
=
params
[
'multi_gpu'
])
return
resnet
_run_loop
.
resnet_model_fn
(
features
,
labels
,
mode
,
ImagenetModel
,
resnet_size
=
params
[
'resnet_size'
],
weight_decay
=
1e-4
,
learning_rate_fn
=
learning_rate_fn
,
momentum
=
0.9
,
data_format
=
params
[
'data_format'
],
version
=
params
[
'version'
],
loss_filter_fn
=
None
,
multi_gpu
=
params
[
'multi_gpu'
])
def
main
(
unused_argv
):
input_function
=
FLAGS
.
use_synthetic_data
and
get_synth_input_fn
()
or
input_fn
resnet
.
resnet_main
(
FLAGS
,
imagenet_model_fn
,
input_function
)
resnet
_run_loop
.
resnet_main
(
FLAGS
,
imagenet_model_fn
,
input_function
)
if
__name__
==
'__main__'
:
tf
.
logging
.
set_verbosity
(
tf
.
logging
.
INFO
)
parser
=
resnet
.
ResnetArgParser
(
parser
=
resnet
_run_loop
.
ResnetArgParser
(
resnet_size_choices
=
[
18
,
34
,
50
,
101
,
152
,
200
])
FLAGS
,
unparsed
=
parser
.
parse_known_args
()
tf
.
app
.
run
(
argv
=
[
sys
.
argv
[
0
]]
+
unparsed
)
official/resnet/resnet.py
→
official/resnet/resnet
_model
.py
View file @
822875db
...
...
@@ -31,116 +31,15 @@ from __future__ import absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
argparse
import
os
import
tensorflow
as
tf
from
official.utils.arg_parsers
import
parsers
# pylint: disable=g-bad-import-order
from
official.utils.logging
import
hooks_helper
_BATCH_NORM_DECAY
=
0.997
_BATCH_NORM_EPSILON
=
1e-5
DEFAULT_VERSION
=
2
################################################################################
# Functions for input processing.
################################################################################
def
process_record_dataset
(
dataset
,
is_training
,
batch_size
,
shuffle_buffer
,
parse_record_fn
,
num_epochs
=
1
,
num_parallel_calls
=
1
,
examples_per_epoch
=
0
,
multi_gpu
=
False
):
"""Given a Dataset with raw records, parse each record into images and labels,
and return an iterator over the records.
Args:
dataset: A Dataset representing raw records
is_training: A boolean denoting whether the input is for training.
batch_size: The number of samples per batch.
shuffle_buffer: The buffer size to use when shuffling records. A larger
value results in better randomness, but smaller values reduce startup
time and use less memory.
parse_record_fn: A function that takes a raw record and returns the
corresponding (image, label) pair.
num_epochs: The number of epochs to repeat the dataset.
num_parallel_calls: The number of records that are processed in parallel.
This can be optimized per data set but for generally homogeneous data
sets, should be approximately the number of available CPU cores.
examples_per_epoch: The number of examples in the current set that
are processed each epoch. Note that this is only used for multi-GPU mode,
and only to handle what will eventually be handled inside of Estimator.
multi_gpu: Whether this is run multi-GPU. Note that this is only required
currently to handle the batch leftovers (see below), and can be removed
when that is handled directly by Estimator.
Returns:
Dataset of (image, label) pairs ready for iteration.
"""
# We prefetch a batch at a time, This can help smooth out the time taken to
# load input files as we go through shuffling and processing.
dataset
=
dataset
.
prefetch
(
buffer_size
=
batch_size
)
if
is_training
:
# Shuffle the records. Note that we shuffle before repeating to ensure
# that the shuffling respects epoch boundaries.
dataset
=
dataset
.
shuffle
(
buffer_size
=
shuffle_buffer
)
# If we are training over multiple epochs before evaluating, repeat the
# dataset for the appropriate number of epochs.
dataset
=
dataset
.
repeat
(
num_epochs
)
# Currently, if we are using multiple GPUs, we can't pass in uneven batches.
# (For example, if we have 4 GPUs, the number of examples in each batch
# must be divisible by 4.) We already ensured this for the batch_size, but
# we have to additionally ensure that any "leftover" examples-- the remainder
# examples (total examples % batch_size) that get called a batch for the very
# last batch of an epoch-- do not raise an error when we try to split them
# over the GPUs. This will likely be handled by Estimator during replication
# in the future, but for now, we just drop the leftovers here.
if
multi_gpu
:
total_examples
=
num_epochs
*
examples_per_epoch
dataset
=
dataset
.
take
(
batch_size
*
(
total_examples
//
batch_size
))
# Parse the raw records into images and labels
dataset
=
dataset
.
map
(
lambda
value
:
parse_record_fn
(
value
,
is_training
),
num_parallel_calls
=
num_parallel_calls
)
dataset
=
dataset
.
batch
(
batch_size
)
# Operations between the final prefetch and the get_next call to the iterator
# will happen synchronously during run time. We prefetch here again to
# background all of the above processing work and keep it out of the
# critical training path.
dataset
=
dataset
.
prefetch
(
1
)
return
dataset
def
get_synth_input_fn
(
height
,
width
,
num_channels
,
num_classes
):
"""Returns an input function that returns a dataset with zeroes.
This is useful in debugging input pipeline performance, as it removes all
elements of file reading and image preprocessing.
Args:
height: Integer height that will be used to create a fake image tensor.
width: Integer width that will be used to create a fake image tensor.
num_channels: Integer depth that will be used to create a fake image tensor.
num_classes: Number of classes that should be represented in the fake labels
tensor
Returns:
An input_fn that can be used in place of a real one to return a dataset
that can be used for iteration.
"""
def
input_fn
(
is_training
,
data_dir
,
batch_size
,
*
args
):
images
=
tf
.
zeros
((
batch_size
,
height
,
width
,
num_channels
),
tf
.
float32
)
labels
=
tf
.
zeros
((
batch_size
,
num_classes
),
tf
.
int32
)
return
tf
.
data
.
Dataset
.
from_tensors
((
images
,
labels
)).
repeat
()
return
input_fn
################################################################################
# Convenience functions for building the ResNet model.
################################################################################
...
...
@@ -199,7 +98,7 @@ def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format):
# ResNet block definitions.
################################################################################
def
_building_block_v1
(
inputs
,
filters
,
training
,
projection_shortcut
,
strides
,
data_format
):
data_format
):
"""
Convolution then batch normalization then ReLU as described by:
Deep Residual Learning for Image Recognition
...
...
@@ -245,7 +144,7 @@ def _building_block_v1(inputs, filters, training, projection_shortcut, strides,
def
_building_block_v2
(
inputs
,
filters
,
training
,
projection_shortcut
,
strides
,
data_format
):
data_format
):
"""
Batch normalization then ReLu then convolution as described by:
Identity Mappings in Deep Residual Networks
...
...
@@ -290,7 +189,7 @@ def _building_block_v2(inputs, filters, training, projection_shortcut, strides,
def
_bottleneck_block_v1
(
inputs
,
filters
,
training
,
projection_shortcut
,
strides
,
data_format
):
strides
,
data_format
):
"""
Similar to _building_block_v1(), except using the "bottleneck" blocks
described in:
...
...
@@ -329,7 +228,7 @@ def _bottleneck_block_v1(inputs, filters, training, projection_shortcut,
def
_bottleneck_block_v2
(
inputs
,
filters
,
training
,
projection_shortcut
,
strides
,
data_format
):
strides
,
data_format
):
"""
Similar to _building_block_v2(), except using the "bottleneck" blocks
described in:
...
...
@@ -538,258 +437,3 @@ class Model(object):
return
inputs
################################################################################
# Functions for running training/eval/validation loops for the model.
################################################################################
def
learning_rate_with_decay
(
batch_size
,
batch_denom
,
num_images
,
boundary_epochs
,
decay_rates
):
"""Get a learning rate that decays step-wise as training progresses.
Args:
batch_size: the number of examples processed in each training batch.
batch_denom: this value will be used to scale the base learning rate.
`0.1 * batch size` is divided by this number, such that when
batch_denom == batch_size, the initial learning rate will be 0.1.
num_images: total number of images that will be used for training.
boundary_epochs: list of ints representing the epochs at which we
decay the learning rate.
decay_rates: list of floats representing the decay rates to be used
for scaling the learning rate. Should be the same length as
boundary_epochs.
Returns:
Returns a function that takes a single argument - the number of batches
trained so far (global_step)- and returns the learning rate to be used
for training the next batch.
"""
initial_learning_rate
=
0.1
*
batch_size
/
batch_denom
batches_per_epoch
=
num_images
/
batch_size
# Multiply the learning rate by 0.1 at 100, 150, and 200 epochs.
boundaries
=
[
int
(
batches_per_epoch
*
epoch
)
for
epoch
in
boundary_epochs
]
vals
=
[
initial_learning_rate
*
decay
for
decay
in
decay_rates
]
def
learning_rate_fn
(
global_step
):
global_step
=
tf
.
cast
(
global_step
,
tf
.
int32
)
return
tf
.
train
.
piecewise_constant
(
global_step
,
boundaries
,
vals
)
return
learning_rate_fn
def
resnet_model_fn
(
features
,
labels
,
mode
,
model_class
,
resnet_size
,
weight_decay
,
learning_rate_fn
,
momentum
,
data_format
,
version
,
loss_filter_fn
=
None
,
multi_gpu
=
False
):
"""Shared functionality for different resnet model_fns.
Initializes the ResnetModel representing the model layers
and uses that model to build the necessary EstimatorSpecs for
the `mode` in question. For training, this means building losses,
the optimizer, and the train op that get passed into the EstimatorSpec.
For evaluation and prediction, the EstimatorSpec is returned without
a train op, but with the necessary parameters for the given mode.
Args:
features: tensor representing input images
labels: tensor representing class labels for all input images
mode: current estimator mode; should be one of
`tf.estimator.ModeKeys.TRAIN`, `EVALUATE`, `PREDICT`
model_class: a class representing a TensorFlow model that has a __call__
function. We assume here that this is a subclass of ResnetModel.
resnet_size: A single integer for the size of the ResNet model.
weight_decay: weight decay loss rate used to regularize learned variables.
learning_rate_fn: function that returns the current learning rate given
the current global_step
momentum: momentum term used for optimization
data_format: Input format ('channels_last', 'channels_first', or None).
If set to None, the format is dependent on whether a GPU is available.
version: Integer representing which version of the ResNet network to use.
See README for details. Valid values: [1, 2]
loss_filter_fn: function that takes a string variable name and returns
True if the var should be included in loss calculation, and False
otherwise. If None, batch_normalization variables will be excluded
from the loss.
multi_gpu: If True, wrap the optimizer in a TowerOptimizer suitable for
data-parallel distribution across multiple GPUs.
Returns:
EstimatorSpec parameterized according to the input params and the
current mode.
"""
# Generate a summary node for the images
tf
.
summary
.
image
(
'images'
,
features
,
max_outputs
=
6
)
model
=
model_class
(
resnet_size
,
data_format
,
version
=
version
)
logits
=
model
(
features
,
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
)
predictions
=
{
'classes'
:
tf
.
argmax
(
logits
,
axis
=
1
),
'probabilities'
:
tf
.
nn
.
softmax
(
logits
,
name
=
'softmax_tensor'
)
}
if
mode
==
tf
.
estimator
.
ModeKeys
.
PREDICT
:
return
tf
.
estimator
.
EstimatorSpec
(
mode
=
mode
,
predictions
=
predictions
)
# Calculate loss, which includes softmax cross entropy and L2 regularization.
cross_entropy
=
tf
.
losses
.
softmax_cross_entropy
(
logits
=
logits
,
onehot_labels
=
labels
)
# Create a tensor named cross_entropy for logging purposes.
tf
.
identity
(
cross_entropy
,
name
=
'cross_entropy'
)
tf
.
summary
.
scalar
(
'cross_entropy'
,
cross_entropy
)
# If no loss_filter_fn is passed, assume we want the default behavior,
# which is that batch_normalization variables are excluded from loss.
if
not
loss_filter_fn
:
def
loss_filter_fn
(
name
):
return
'batch_normalization'
not
in
name
# Add weight decay to the loss.
loss
=
cross_entropy
+
weight_decay
*
tf
.
add_n
(
[
tf
.
nn
.
l2_loss
(
v
)
for
v
in
tf
.
trainable_variables
()
if
loss_filter_fn
(
v
.
name
)])
if
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
:
global_step
=
tf
.
train
.
get_or_create_global_step
()
learning_rate
=
learning_rate_fn
(
global_step
)
# Create a tensor named learning_rate for logging purposes
tf
.
identity
(
learning_rate
,
name
=
'learning_rate'
)
tf
.
summary
.
scalar
(
'learning_rate'
,
learning_rate
)
optimizer
=
tf
.
train
.
MomentumOptimizer
(
learning_rate
=
learning_rate
,
momentum
=
momentum
)
# If we are running multi-GPU, we need to wrap the optimizer.
if
multi_gpu
:
optimizer
=
tf
.
contrib
.
estimator
.
TowerOptimizer
(
optimizer
)
update_ops
=
tf
.
get_collection
(
tf
.
GraphKeys
.
UPDATE_OPS
)
train_op
=
tf
.
group
(
optimizer
.
minimize
(
loss
,
global_step
),
update_ops
)
else
:
train_op
=
None
accuracy
=
tf
.
metrics
.
accuracy
(
tf
.
argmax
(
labels
,
axis
=
1
),
predictions
[
'classes'
])
metrics
=
{
'accuracy'
:
accuracy
}
# Create a tensor named train_accuracy for logging purposes
tf
.
identity
(
accuracy
[
1
],
name
=
'train_accuracy'
)
tf
.
summary
.
scalar
(
'train_accuracy'
,
accuracy
[
1
])
return
tf
.
estimator
.
EstimatorSpec
(
mode
=
mode
,
predictions
=
predictions
,
loss
=
loss
,
train_op
=
train_op
,
eval_metric_ops
=
metrics
)
def
validate_batch_size_for_multi_gpu
(
batch_size
):
"""For multi-gpu, batch-size must be a multiple of the number of
available GPUs.
Note that this should eventually be handled by replicate_model_fn
directly. Multi-GPU support is currently experimental, however,
so doing the work here until that feature is in place.
"""
from
tensorflow.python.client
import
device_lib
local_device_protos
=
device_lib
.
list_local_devices
()
num_gpus
=
sum
([
1
for
d
in
local_device_protos
if
d
.
device_type
==
'GPU'
])
if
not
num_gpus
:
raise
ValueError
(
'Multi-GPU mode was specified, but no GPUs '
'were found. To use CPU, run without --multi_gpu.'
)
remainder
=
batch_size
%
num_gpus
if
remainder
:
err
=
(
'When running with multiple GPUs, batch size '
'must be a multiple of the number of available GPUs. '
'Found {} GPUs with a batch size of {}; try --batch_size={} instead.'
).
format
(
num_gpus
,
batch_size
,
batch_size
-
remainder
)
raise
ValueError
(
err
)
def
resnet_main
(
flags
,
model_function
,
input_function
):
# Using the Winograd non-fused algorithms provides a small performance boost.
os
.
environ
[
'TF_ENABLE_WINOGRAD_NONFUSED'
]
=
'1'
if
flags
.
multi_gpu
:
validate_batch_size_for_multi_gpu
(
flags
.
batch_size
)
# There are two steps required if using multi-GPU: (1) wrap the model_fn,
# and (2) wrap the optimizer. The first happens here, and (2) happens
# in the model_fn itself when the optimizer is defined.
model_function
=
tf
.
contrib
.
estimator
.
replicate_model_fn
(
model_function
,
loss_reduction
=
tf
.
losses
.
Reduction
.
MEAN
)
# Create session config based on values of inter_op_parallelism_threads and
# intra_op_parallelism_threads. Note that we default to having
# allow_soft_placement = True, which is required for multi-GPU and not
# harmful for other modes.
session_config
=
tf
.
ConfigProto
(
inter_op_parallelism_threads
=
flags
.
inter_op_parallelism_threads
,
intra_op_parallelism_threads
=
flags
.
intra_op_parallelism_threads
,
allow_soft_placement
=
True
)
# Set up a RunConfig to save checkpoint and set session config.
run_config
=
tf
.
estimator
.
RunConfig
().
replace
(
save_checkpoints_secs
=
1e9
,
session_config
=
session_config
)
classifier
=
tf
.
estimator
.
Estimator
(
model_fn
=
model_function
,
model_dir
=
flags
.
model_dir
,
config
=
run_config
,
params
=
{
'resnet_size'
:
flags
.
resnet_size
,
'data_format'
:
flags
.
data_format
,
'batch_size'
:
flags
.
batch_size
,
'multi_gpu'
:
flags
.
multi_gpu
,
'version'
:
flags
.
version
,
})
for
_
in
range
(
flags
.
train_epochs
//
flags
.
epochs_per_eval
):
train_hooks
=
hooks_helper
.
get_train_hooks
(
flags
.
hooks
,
batch_size
=
flags
.
batch_size
)
print
(
'Starting a training cycle.'
)
def
input_fn_train
():
return
input_function
(
True
,
flags
.
data_dir
,
flags
.
batch_size
,
flags
.
epochs_per_eval
,
flags
.
num_parallel_calls
,
flags
.
multi_gpu
)
classifier
.
train
(
input_fn
=
input_fn_train
,
hooks
=
train_hooks
)
print
(
'Starting to evaluate.'
)
# Evaluate the model and print results
def
input_fn_eval
():
return
input_function
(
False
,
flags
.
data_dir
,
flags
.
batch_size
,
1
,
flags
.
num_parallel_calls
,
flags
.
multi_gpu
)
eval_results
=
classifier
.
evaluate
(
input_fn
=
input_fn_eval
)
print
(
eval_results
)
class
ResnetArgParser
(
argparse
.
ArgumentParser
):
"""Arguments for configuring and running a Resnet Model.
"""
def
__init__
(
self
,
resnet_size_choices
=
None
):
super
(
ResnetArgParser
,
self
).
__init__
(
parents
=
[
parsers
.
BaseParser
(),
parsers
.
PerformanceParser
(),
parsers
.
ImageModelParser
(),
])
self
.
add_argument
(
'--version'
,
'-v'
,
type
=
int
,
choices
=
[
1
,
2
],
default
=
DEFAULT_VERSION
,
help
=
"Version of ResNet. (1 or 2) See README.md for details."
)
self
.
add_argument
(
'--resnet_size'
,
'-rs'
,
type
=
int
,
default
=
50
,
choices
=
resnet_size_choices
,
help
=
'[default: %(default)s]The size of the ResNet model to use.'
,
metavar
=
'<RS>'
)
official/resnet/resnet_run_loop.py
0 → 100644
View file @
822875db
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains utility and supporting functions for ResNet.
This module contains ResNet code which does not directly build layers. This
includes dataset management, hyperparameter and optimizer code, and argument
parsing. Code for defining the ResNet layers can be found in resnet_model.py.
"""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
argparse
import
os
import
tensorflow
as
tf
from
official.utils.arg_parsers
import
parsers
# pylint: disable=g-bad-import-order
from
official.utils.logging
import
hooks_helper
from
official.resnet
import
resnet_model
################################################################################
# Functions for input processing.
################################################################################
def
process_record_dataset
(
dataset
,
is_training
,
batch_size
,
shuffle_buffer
,
parse_record_fn
,
num_epochs
=
1
,
num_parallel_calls
=
1
,
examples_per_epoch
=
0
,
multi_gpu
=
False
):
"""Given a Dataset with raw records, parse each record into images and labels,
and return an iterator over the records.
Args:
dataset: A Dataset representing raw records
is_training: A boolean denoting whether the input is for training.
batch_size: The number of samples per batch.
shuffle_buffer: The buffer size to use when shuffling records. A larger
value results in better randomness, but smaller values reduce startup
time and use less memory.
parse_record_fn: A function that takes a raw record and returns the
corresponding (image, label) pair.
num_epochs: The number of epochs to repeat the dataset.
num_parallel_calls: The number of records that are processed in parallel.
This can be optimized per data set but for generally homogeneous data
sets, should be approximately the number of available CPU cores.
examples_per_epoch: The number of examples in the current set that
are processed each epoch. Note that this is only used for multi-GPU mode,
and only to handle what will eventually be handled inside of Estimator.
multi_gpu: Whether this is run multi-GPU. Note that this is only required
currently to handle the batch leftovers (see below), and can be removed
when that is handled directly by Estimator.
Returns:
Dataset of (image, label) pairs ready for iteration.
"""
# We prefetch a batch at a time, This can help smooth out the time taken to
# load input files as we go through shuffling and processing.
dataset
=
dataset
.
prefetch
(
buffer_size
=
batch_size
)
if
is_training
:
# Shuffle the records. Note that we shuffle before repeating to ensure
# that the shuffling respects epoch boundaries.
dataset
=
dataset
.
shuffle
(
buffer_size
=
shuffle_buffer
)
# If we are training over multiple epochs before evaluating, repeat the
# dataset for the appropriate number of epochs.
dataset
=
dataset
.
repeat
(
num_epochs
)
# Currently, if we are using multiple GPUs, we can't pass in uneven batches.
# (For example, if we have 4 GPUs, the number of examples in each batch
# must be divisible by 4.) We already ensured this for the batch_size, but
# we have to additionally ensure that any "leftover" examples-- the remainder
# examples (total examples % batch_size) that get called a batch for the very
# last batch of an epoch-- do not raise an error when we try to split them
# over the GPUs. This will likely be handled by Estimator during replication
# in the future, but for now, we just drop the leftovers here.
if
multi_gpu
:
total_examples
=
num_epochs
*
examples_per_epoch
dataset
=
dataset
.
take
(
batch_size
*
(
total_examples
//
batch_size
))
# Parse the raw records into images and labels
dataset
=
dataset
.
map
(
lambda
value
:
parse_record_fn
(
value
,
is_training
),
num_parallel_calls
=
num_parallel_calls
)
dataset
=
dataset
.
batch
(
batch_size
)
# Operations between the final prefetch and the get_next call to the iterator
# will happen synchronously during run time. We prefetch here again to
# background all of the above processing work and keep it out of the
# critical training path.
dataset
=
dataset
.
prefetch
(
1
)
return
dataset
def
get_synth_input_fn
(
height
,
width
,
num_channels
,
num_classes
):
"""Returns an input function that returns a dataset with zeroes.
This is useful in debugging input pipeline performance, as it removes all
elements of file reading and image preprocessing.
Args:
height: Integer height that will be used to create a fake image tensor.
width: Integer width that will be used to create a fake image tensor.
num_channels: Integer depth that will be used to create a fake image tensor.
num_classes: Number of classes that should be represented in the fake labels
tensor
Returns:
An input_fn that can be used in place of a real one to return a dataset
that can be used for iteration.
"""
def
input_fn
(
is_training
,
data_dir
,
batch_size
,
*
args
):
images
=
tf
.
zeros
((
batch_size
,
height
,
width
,
num_channels
),
tf
.
float32
)
labels
=
tf
.
zeros
((
batch_size
,
num_classes
),
tf
.
int32
)
return
tf
.
data
.
Dataset
.
from_tensors
((
images
,
labels
)).
repeat
()
return
input_fn
################################################################################
# Functions for running training/eval/validation loops for the model.
################################################################################
def
learning_rate_with_decay
(
batch_size
,
batch_denom
,
num_images
,
boundary_epochs
,
decay_rates
):
"""Get a learning rate that decays step-wise as training progresses.
Args:
batch_size: the number of examples processed in each training batch.
batch_denom: this value will be used to scale the base learning rate.
`0.1 * batch size` is divided by this number, such that when
batch_denom == batch_size, the initial learning rate will be 0.1.
num_images: total number of images that will be used for training.
boundary_epochs: list of ints representing the epochs at which we
decay the learning rate.
decay_rates: list of floats representing the decay rates to be used
for scaling the learning rate. Should be the same length as
boundary_epochs.
Returns:
Returns a function that takes a single argument - the number of batches
trained so far (global_step)- and returns the learning rate to be used
for training the next batch.
"""
initial_learning_rate
=
0.1
*
batch_size
/
batch_denom
batches_per_epoch
=
num_images
/
batch_size
# Multiply the learning rate by 0.1 at 100, 150, and 200 epochs.
boundaries
=
[
int
(
batches_per_epoch
*
epoch
)
for
epoch
in
boundary_epochs
]
vals
=
[
initial_learning_rate
*
decay
for
decay
in
decay_rates
]
def
learning_rate_fn
(
global_step
):
global_step
=
tf
.
cast
(
global_step
,
tf
.
int32
)
return
tf
.
train
.
piecewise_constant
(
global_step
,
boundaries
,
vals
)
return
learning_rate_fn
def
resnet_model_fn
(
features
,
labels
,
mode
,
model_class
,
resnet_size
,
weight_decay
,
learning_rate_fn
,
momentum
,
data_format
,
version
,
loss_filter_fn
=
None
,
multi_gpu
=
False
):
"""Shared functionality for different resnet model_fns.
Initializes the ResnetModel representing the model layers
and uses that model to build the necessary EstimatorSpecs for
the `mode` in question. For training, this means building losses,
the optimizer, and the train op that get passed into the EstimatorSpec.
For evaluation and prediction, the EstimatorSpec is returned without
a train op, but with the necessary parameters for the given mode.
Args:
features: tensor representing input images
labels: tensor representing class labels for all input images
mode: current estimator mode; should be one of
`tf.estimator.ModeKeys.TRAIN`, `EVALUATE`, `PREDICT`
model_class: a class representing a TensorFlow model that has a __call__
function. We assume here that this is a subclass of ResnetModel.
resnet_size: A single integer for the size of the ResNet model.
weight_decay: weight decay loss rate used to regularize learned variables.
learning_rate_fn: function that returns the current learning rate given
the current global_step
momentum: momentum term used for optimization
data_format: Input format ('channels_last', 'channels_first', or None).
If set to None, the format is dependent on whether a GPU is available.
version: Integer representing which version of the ResNet network to use.
See README for details. Valid values: [1, 2]
loss_filter_fn: function that takes a string variable name and returns
True if the var should be included in loss calculation, and False
otherwise. If None, batch_normalization variables will be excluded
from the loss.
multi_gpu: If True, wrap the optimizer in a TowerOptimizer suitable for
data-parallel distribution across multiple GPUs.
Returns:
EstimatorSpec parameterized according to the input params and the
current mode.
"""
# Generate a summary node for the images
tf
.
summary
.
image
(
'images'
,
features
,
max_outputs
=
6
)
model
=
model_class
(
resnet_size
,
data_format
,
version
=
version
)
logits
=
model
(
features
,
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
)
predictions
=
{
'classes'
:
tf
.
argmax
(
logits
,
axis
=
1
),
'probabilities'
:
tf
.
nn
.
softmax
(
logits
,
name
=
'softmax_tensor'
)
}
if
mode
==
tf
.
estimator
.
ModeKeys
.
PREDICT
:
return
tf
.
estimator
.
EstimatorSpec
(
mode
=
mode
,
predictions
=
predictions
)
# Calculate loss, which includes softmax cross entropy and L2 regularization.
cross_entropy
=
tf
.
losses
.
softmax_cross_entropy
(
logits
=
logits
,
onehot_labels
=
labels
)
# Create a tensor named cross_entropy for logging purposes.
tf
.
identity
(
cross_entropy
,
name
=
'cross_entropy'
)
tf
.
summary
.
scalar
(
'cross_entropy'
,
cross_entropy
)
# If no loss_filter_fn is passed, assume we want the default behavior,
# which is that batch_normalization variables are excluded from loss.
if
not
loss_filter_fn
:
def
loss_filter_fn
(
name
):
return
'batch_normalization'
not
in
name
# Add weight decay to the loss.
loss
=
cross_entropy
+
weight_decay
*
tf
.
add_n
(
[
tf
.
nn
.
l2_loss
(
v
)
for
v
in
tf
.
trainable_variables
()
if
loss_filter_fn
(
v
.
name
)])
if
mode
==
tf
.
estimator
.
ModeKeys
.
TRAIN
:
global_step
=
tf
.
train
.
get_or_create_global_step
()
learning_rate
=
learning_rate_fn
(
global_step
)
# Create a tensor named learning_rate for logging purposes
tf
.
identity
(
learning_rate
,
name
=
'learning_rate'
)
tf
.
summary
.
scalar
(
'learning_rate'
,
learning_rate
)
optimizer
=
tf
.
train
.
MomentumOptimizer
(
learning_rate
=
learning_rate
,
momentum
=
momentum
)
# If we are running multi-GPU, we need to wrap the optimizer.
if
multi_gpu
:
optimizer
=
tf
.
contrib
.
estimator
.
TowerOptimizer
(
optimizer
)
update_ops
=
tf
.
get_collection
(
tf
.
GraphKeys
.
UPDATE_OPS
)
train_op
=
tf
.
group
(
optimizer
.
minimize
(
loss
,
global_step
),
update_ops
)
else
:
train_op
=
None
accuracy
=
tf
.
metrics
.
accuracy
(
tf
.
argmax
(
labels
,
axis
=
1
),
predictions
[
'classes'
])
metrics
=
{
'accuracy'
:
accuracy
}
# Create a tensor named train_accuracy for logging purposes
tf
.
identity
(
accuracy
[
1
],
name
=
'train_accuracy'
)
tf
.
summary
.
scalar
(
'train_accuracy'
,
accuracy
[
1
])
return
tf
.
estimator
.
EstimatorSpec
(
mode
=
mode
,
predictions
=
predictions
,
loss
=
loss
,
train_op
=
train_op
,
eval_metric_ops
=
metrics
)
def
validate_batch_size_for_multi_gpu
(
batch_size
):
"""For multi-gpu, batch-size must be a multiple of the number of
available GPUs.
Note that this should eventually be handled by replicate_model_fn
directly. Multi-GPU support is currently experimental, however,
so doing the work here until that feature is in place.
"""
from
tensorflow.python.client
import
device_lib
local_device_protos
=
device_lib
.
list_local_devices
()
num_gpus
=
sum
([
1
for
d
in
local_device_protos
if
d
.
device_type
==
'GPU'
])
if
not
num_gpus
:
raise
ValueError
(
'Multi-GPU mode was specified, but no GPUs '
'were found. To use CPU, run without --multi_gpu.'
)
remainder
=
batch_size
%
num_gpus
if
remainder
:
err
=
(
'When running with multiple GPUs, batch size '
'must be a multiple of the number of available GPUs. '
'Found {} GPUs with a batch size of {}; try --batch_size={} instead.'
).
format
(
num_gpus
,
batch_size
,
batch_size
-
remainder
)
raise
ValueError
(
err
)
def
resnet_main
(
flags
,
model_function
,
input_function
):
# Using the Winograd non-fused algorithms provides a small performance boost.
os
.
environ
[
'TF_ENABLE_WINOGRAD_NONFUSED'
]
=
'1'
if
flags
.
multi_gpu
:
validate_batch_size_for_multi_gpu
(
flags
.
batch_size
)
# There are two steps required if using multi-GPU: (1) wrap the model_fn,
# and (2) wrap the optimizer. The first happens here, and (2) happens
# in the model_fn itself when the optimizer is defined.
model_function
=
tf
.
contrib
.
estimator
.
replicate_model_fn
(
model_function
,
loss_reduction
=
tf
.
losses
.
Reduction
.
MEAN
)
# Create session config based on values of inter_op_parallelism_threads and
# intra_op_parallelism_threads. Note that we default to having
# allow_soft_placement = True, which is required for multi-GPU and not
# harmful for other modes.
session_config
=
tf
.
ConfigProto
(
inter_op_parallelism_threads
=
flags
.
inter_op_parallelism_threads
,
intra_op_parallelism_threads
=
flags
.
intra_op_parallelism_threads
,
allow_soft_placement
=
True
)
# Set up a RunConfig to save checkpoint and set session config.
run_config
=
tf
.
estimator
.
RunConfig
().
replace
(
save_checkpoints_secs
=
1e9
,
session_config
=
session_config
)
classifier
=
tf
.
estimator
.
Estimator
(
model_fn
=
model_function
,
model_dir
=
flags
.
model_dir
,
config
=
run_config
,
params
=
{
'resnet_size'
:
flags
.
resnet_size
,
'data_format'
:
flags
.
data_format
,
'batch_size'
:
flags
.
batch_size
,
'multi_gpu'
:
flags
.
multi_gpu
,
'version'
:
flags
.
version
,
})
for
_
in
range
(
flags
.
train_epochs
//
flags
.
epochs_per_eval
):
train_hooks
=
hooks_helper
.
get_train_hooks
(
flags
.
hooks
,
batch_size
=
flags
.
batch_size
)
print
(
'Starting a training cycle.'
)
def
input_fn_train
():
return
input_function
(
True
,
flags
.
data_dir
,
flags
.
batch_size
,
flags
.
epochs_per_eval
,
flags
.
num_parallel_calls
,
flags
.
multi_gpu
)
classifier
.
train
(
input_fn
=
input_fn_train
,
hooks
=
train_hooks
)
print
(
'Starting to evaluate.'
)
# Evaluate the model and print results
def
input_fn_eval
():
return
input_function
(
False
,
flags
.
data_dir
,
flags
.
batch_size
,
1
,
flags
.
num_parallel_calls
,
flags
.
multi_gpu
)
eval_results
=
classifier
.
evaluate
(
input_fn
=
input_fn_eval
)
print
(
eval_results
)
class
ResnetArgParser
(
argparse
.
ArgumentParser
):
"""Arguments for configuring and running a Resnet Model.
"""
def
__init__
(
self
,
resnet_size_choices
=
None
):
super
(
ResnetArgParser
,
self
).
__init__
(
parents
=
[
parsers
.
BaseParser
(),
parsers
.
PerformanceParser
(),
parsers
.
ImageModelParser
(),
])
self
.
add_argument
(
'--version'
,
'-v'
,
type
=
int
,
choices
=
[
1
,
2
],
default
=
resnet_model
.
DEFAULT_VERSION
,
help
=
"Version of ResNet. (1 or 2) See README.md for details."
)
self
.
add_argument
(
'--resnet_size'
,
'-rs'
,
type
=
int
,
default
=
50
,
choices
=
resnet_size_choices
,
help
=
'[default: %(default)s]The size of the ResNet model to use.'
,
metavar
=
'<RS>'
)
official/resnet/resnet_test.py
View file @
822875db
...
...
@@ -22,7 +22,7 @@ import numpy as np
import
tensorflow
as
tf
from
official.resnet
import
resnet
# pylint: disable=g-bad-import-order
from
official.resnet
import
resnet
_model
# pylint: disable=g-bad-import-order
class
BlockTest
(
tf
.
test
.
TestCase
):
...
...
@@ -63,7 +63,7 @@ class BlockTest(tf.test.TestCase):
A 1 wide CNN projector function.
"""
def
projection_shortcut
(
inputs
):
return
resnet
.
conv2d_fixed_padding
(
return
resnet
_model
.
conv2d_fixed_padding
(
inputs
=
inputs
,
filters
=
filters_out
,
kernel_size
=
1
,
strides
=
strides
,
data_format
=
data_format
)
return
projection_shortcut
...
...
@@ -91,13 +91,13 @@ class BlockTest(tf.test.TestCase):
data_format
=
"channels_last"
if
version
==
1
:
block_fn
=
resnet
.
_building_block_v1
block_fn
=
resnet
_model
.
_building_block_v1
if
bottleneck
:
block_fn
=
resnet
.
_bottleneck_block_v1
block_fn
=
resnet
_model
.
_bottleneck_block_v1
else
:
block_fn
=
resnet
.
_building_block_v2
block_fn
=
resnet
_model
.
_building_block_v2
if
bottleneck
:
block_fn
=
resnet
.
_bottleneck_block_v2
block_fn
=
resnet
_model
.
_bottleneck_block_v2
with
self
.
test_session
(
graph
=
tf
.
Graph
())
as
sess
:
tf
.
set_random_seed
(
tf_seed
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment