imagenet_main.py 11.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Runs a ResNet model on the ImageNet dataset."""
16
17
18
19
20
21
22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

23
24
from absl import app as absl_app
from absl import flags
Karmel Allison's avatar
Karmel Allison committed
25
import tensorflow as tf  # pylint: disable=g-bad-import-order
26

27
from official.utils.flags import core as flags_core
28
from official.utils.logs import logger
29
from official.resnet import imagenet_preprocessing
30
31
from official.resnet import resnet_model
from official.resnet import resnet_run_loop
32

33
_DEFAULT_IMAGE_SIZE = 224
34
_NUM_CHANNELS = 3
35
_NUM_CLASSES = 1001
36

37
38
39
40
_NUM_IMAGES = {
    'train': 1281167,
    'validation': 50000,
}
41

42
_NUM_TRAIN_FILES = 1024
43
_SHUFFLE_BUFFER = 10000
44

45
DATASET_NAME = 'ImageNet'
46

47
48
49
###############################################################################
# Data processing
###############################################################################
50
def get_filenames(is_training, data_dir):
51
52
53
  """Return filenames for dataset."""
  if is_training:
    return [
54
        os.path.join(data_dir, 'train-%05d-of-01024' % i)
55
        for i in range(_NUM_TRAIN_FILES)]
56
57
  else:
    return [
58
        os.path.join(data_dir, 'validation-%05d-of-00128' % i)
Neal Wu's avatar
Neal Wu committed
59
        for i in range(128)]
60
61


62
63
64
def _parse_example_proto(example_serialized):
  """Parses an Example proto containing a training example of an image.

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
  The output of the build_image_data.py image preprocessing script is a dataset
  containing serialized Example protocol buffers. Each Example proto contains
  the following fields (values are included as examples):

    image/height: 462
    image/width: 581
    image/colorspace: 'RGB'
    image/channels: 3
    image/class/label: 615
    image/class/synset: 'n03623198'
    image/class/text: 'knee pad'
    image/object/bbox/xmin: 0.1
    image/object/bbox/xmax: 0.9
    image/object/bbox/ymin: 0.2
    image/object/bbox/ymax: 0.6
    image/object/bbox/label: 615
    image/format: 'JPEG'
    image/filename: 'ILSVRC2012_val_00041207.JPEG'
    image/encoded: <JPEG encoded string>
84
85
86
87
88
89
90

  Args:
    example_serialized: scalar Tensor tf.string containing a serialized
      Example protocol buffer.

  Returns:
    image_buffer: Tensor tf.string containing the contents of a JPEG file.
91
92
93
94
    label: Tensor tf.int32 containing the label.
    bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
      where each coordinate is [0, 1) and the coordinates are arranged as
      [ymin, xmin, ymax, xmax].
95
96
97
98
99
  """
  # Dense features in Example proto.
  feature_map = {
      'image/encoded': tf.FixedLenFeature([], dtype=tf.string,
                                          default_value=''),
100
      'image/class/label': tf.FixedLenFeature([], dtype=tf.int64,
101
102
103
                                              default_value=-1),
      'image/class/text': tf.FixedLenFeature([], dtype=tf.string,
                                             default_value=''),
104
  }
105
106
107
108
109
110
111
  sparse_float32 = tf.VarLenFeature(dtype=tf.float32)
  # Sparse features in Example proto.
  feature_map.update(
      {k: sparse_float32 for k in ['image/object/bbox/xmin',
                                   'image/object/bbox/ymin',
                                   'image/object/bbox/xmax',
                                   'image/object/bbox/ymax']})
112

113
  features = tf.parse_single_example(example_serialized, feature_map)
114
  label = tf.cast(features['image/class/label'], dtype=tf.int32)
115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
  xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 0)
  ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 0)
  xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 0)
  ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 0)

  # Note that we impose an ordering of (y, x) just to make life difficult.
  bbox = tf.concat([ymin, xmin, ymax, xmax], 0)

  # Force the variable number of bounding boxes into the shape
  # [1, num_boxes, coords].
  bbox = tf.expand_dims(bbox, 0)
  bbox = tf.transpose(bbox, [0, 2, 1])

  return features['image/encoded'], label, bbox
130
131


132
def parse_record(raw_record, is_training, dtype):
133
134
135
136
137
138
139
140
141
  """Parses a record containing a training example of an image.

  The input record is parsed into a label and image, and the image is passed
  through preprocessing steps (cropping, flipping, and so on).

  Args:
    raw_record: scalar Tensor tf.string containing a serialized
      Example protocol buffer.
    is_training: A boolean denoting whether the input is for training.
142
    dtype: data type to use for images/features.
143

144
145
  Returns:
    Tuple with processed image tensor and one-hot-encoded label tensor.
146
147
148
149
150
151
  """
  image_buffer, label, bbox = _parse_example_proto(raw_record)

  image = imagenet_preprocessing.preprocess_image(
      image_buffer=image_buffer,
      bbox=bbox,
152
153
      output_height=_DEFAULT_IMAGE_SIZE,
      output_width=_DEFAULT_IMAGE_SIZE,
154
      num_channels=_NUM_CHANNELS,
155
      is_training=is_training)
156
  image = tf.cast(image, dtype)
157

158
  return image, label
159
160


161
162
def input_fn(is_training, data_dir, batch_size, num_epochs=1, num_gpus=None,
             dtype=tf.float32):
163
  """Input function which provides batches for train or eval.
Karmel Allison's avatar
Karmel Allison committed
164

165
166
167
168
169
  Args:
    is_training: A boolean denoting whether the input is for training.
    data_dir: The directory containing the input data.
    batch_size: The number of samples per batch.
    num_epochs: The number of epochs to repeat the dataset.
Taylor Robie's avatar
Taylor Robie committed
170
    num_gpus: The number of gpus used for training.
171
    dtype: Data type to use for images/features
172
173
174
175
176
177

  Returns:
    A dataset that can be used for iteration.
  """
  filenames = get_filenames(is_training, data_dir)
  dataset = tf.data.Dataset.from_tensor_slices(filenames)
178

179
  if is_training:
180
181
    # Shuffle the input files
    dataset = dataset.shuffle(buffer_size=_NUM_TRAIN_FILES)
182

183
184
185
186
187
188
189
  # Convert to individual records.
  # cycle_length = 10 means 10 files will be read and deserialized in parallel.
  # This number is low enough to not cause too much contention on small systems
  # but high enough to provide the benefits of parallelization. You may want
  # to increase this number if you have a large number of CPU cores.
  dataset = dataset.apply(tf.contrib.data.parallel_interleave(
      tf.data.TFRecordDataset, cycle_length=10))
190

191
  return resnet_run_loop.process_record_dataset(
Taylor Robie's avatar
Taylor Robie committed
192
193
194
195
196
197
198
      dataset=dataset,
      is_training=is_training,
      batch_size=batch_size,
      shuffle_buffer=_SHUFFLE_BUFFER,
      parse_record_fn=parse_record,
      num_epochs=num_epochs,
      num_gpus=num_gpus,
199
200
      examples_per_epoch=_NUM_IMAGES['train'] if is_training else None,
      dtype=dtype
201
  )
202
203


Toby Boyd's avatar
Toby Boyd committed
204
def get_synth_input_fn(dtype):
205
  return resnet_run_loop.get_synth_input_fn(
Toby Boyd's avatar
Toby Boyd committed
206
207
      _DEFAULT_IMAGE_SIZE, _DEFAULT_IMAGE_SIZE, _NUM_CHANNELS, _NUM_CLASSES,
      dtype=dtype)
208
209


210
211
212
###############################################################################
# Running the model
###############################################################################
213
class ImagenetModel(resnet_model.Model):
Karmel Allison's avatar
Karmel Allison committed
214
  """Model class with appropriate defaults for Imagenet data."""
215

216
  def __init__(self, resnet_size, data_format=None, num_classes=_NUM_CLASSES,
217
               resnet_version=resnet_model.DEFAULT_VERSION,
218
               dtype=resnet_model.DEFAULT_DTYPE):
Neal Wu's avatar
Neal Wu committed
219
220
221
222
223
224
225
    """These are the parameters that work for Imagenet data.

    Args:
      resnet_size: The number of convolutional layers needed in the model.
      data_format: Either 'channels_first' or 'channels_last', specifying which
        data format to use when setting up the model.
      num_classes: The number of output classes needed from the model. This
226
        enables users to extend the same model to their own datasets.
227
228
      resnet_version: Integer representing which version of the ResNet network
        to use. See README for details. Valid values: [1, 2]
229
      dtype: The TensorFlow dtype to use for calculations.
Neal Wu's avatar
Neal Wu committed
230
    """
231
232
233

    # For bigger models, we want to use "bottleneck" layers
    if resnet_size < 50:
234
      bottleneck = False
235
    else:
236
      bottleneck = True
237
238
239

    super(ImagenetModel, self).__init__(
        resnet_size=resnet_size,
240
        bottleneck=bottleneck,
241
        num_classes=num_classes,
242
243
244
245
246
247
248
        num_filters=64,
        kernel_size=7,
        conv_stride=2,
        first_pool_size=3,
        first_pool_stride=2,
        block_sizes=_get_block_sizes(resnet_size),
        block_strides=[1, 2, 2, 2],
249
        resnet_version=resnet_version,
250
251
252
        data_format=data_format,
        dtype=dtype
    )
253
254
255


def _get_block_sizes(resnet_size):
Karmel Allison's avatar
Karmel Allison committed
256
257
258
  """Retrieve the size of each block_layer in the ResNet model.

  The number of block layers used for the Resnet model varies according
259
260
  to the size of the model. This helper grabs the layer set we want, throwing
  an error if a non-standard size has been selected.
Karmel Allison's avatar
Karmel Allison committed
261
262
263
264
265
266
267
268
269

  Args:
    resnet_size: The number of convolutional layers needed in the model.

  Returns:
    A list of block sizes to use in building the model.

  Raises:
    KeyError: if invalid resnet_size is received.
270
271
272
273
274
275
276
277
  """
  choices = {
      18: [2, 2, 2, 2],
      34: [3, 4, 6, 3],
      50: [3, 4, 6, 3],
      101: [3, 4, 23, 3],
      152: [3, 8, 36, 3],
      200: [3, 24, 36, 3]
278
279
  }

280
281
282
283
284
285
286
  try:
    return choices[resnet_size]
  except KeyError:
    err = ('Could not find layers for selected Resnet size.\n'
           'Size received: {}; sizes allowed: {}.'.format(
               resnet_size, choices.keys()))
    raise ValueError(err)
287
288


289
290
def imagenet_model_fn(features, labels, mode, params):
  """Our model_fn for ResNet to be used with our Estimator."""
291
292
293
294
295
296
297
298
299
300

  # Warmup and higher lr may not be valid for fine tuning with small batches
  # and smaller numbers of training images.
  if params['fine_tune']:
    warmup = False
    base_lr = .1
  else:
    warmup = True
    base_lr = .128

301
  learning_rate_fn = resnet_run_loop.learning_rate_with_decay(
302
303
      batch_size=params['batch_size'], batch_denom=256,
      num_images=_NUM_IMAGES['train'], boundary_epochs=[30, 60, 80, 90],
304
      decay_rates=[1, 0.1, 0.01, 0.001, 1e-4], warmup=warmup, base_lr=base_lr)
305

306
307
308
309
310
311
312
313
314
315
  return resnet_run_loop.resnet_model_fn(
      features=features,
      labels=labels,
      mode=mode,
      model_class=ImagenetModel,
      resnet_size=params['resnet_size'],
      weight_decay=1e-4,
      learning_rate_fn=learning_rate_fn,
      momentum=0.9,
      data_format=params['data_format'],
316
      resnet_version=params['resnet_version'],
317
318
      loss_scale=params['loss_scale'],
      loss_filter_fn=None,
Zac Wellmer's avatar
Zac Wellmer committed
319
320
      dtype=params['dtype'],
      fine_tune=params['fine_tune']
321
  )
322
323


324
325
326
327
def define_imagenet_flags():
  resnet_run_loop.define_resnet_flags(
      resnet_size_choices=['18', '34', '50', '101', '152', '200'])
  flags.adopt_module_key_flags(resnet_run_loop)
Toby Boyd's avatar
Toby Boyd committed
328
  flags_core.set_defaults(train_epochs=90)
329

330

331
332
333
334
335
336
def run_imagenet(flags_obj):
  """Run ResNet ImageNet training and eval loop.

  Args:
    flags_obj: An object containing parsed flag values.
  """
Toby Boyd's avatar
Toby Boyd committed
337
338
339
  input_function = (flags_obj.use_synthetic_data and
                    get_synth_input_fn(flags_core.get_tf_dtype(flags_obj)) or
                    input_fn)
340
341

  resnet_run_loop.resnet_main(
342
      flags_obj, imagenet_model_fn, input_function, DATASET_NAME,
343
      shape=[_DEFAULT_IMAGE_SIZE, _DEFAULT_IMAGE_SIZE, _NUM_CHANNELS])
344
345


346
def main(_):
347
348
  with logger.benchmark_context(flags.FLAGS):
    run_imagenet(flags.FLAGS)
349
350


351
352
if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.INFO)
353
354
  define_imagenet_flags()
  absl_app.run(main)