imagenet_main.py 12.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Runs a ResNet model on the ImageNet dataset."""
16
17
18
19
20
21
22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

23
24
from absl import app as absl_app
from absl import flags
Karmel Allison's avatar
Karmel Allison committed
25
import tensorflow as tf  # pylint: disable=g-bad-import-order
26

27
from official.utils.flags import core as flags_core
28
from official.utils.logs import logger
29
from official.resnet import imagenet_preprocessing
30
31
from official.resnet import resnet_model
from official.resnet import resnet_run_loop
32

33
34
35
DEFAULT_IMAGE_SIZE = 224
NUM_CHANNELS = 3
NUM_CLASSES = 1001
36

37
NUM_IMAGES = {
38
39
40
    'train': 1281167,
    'validation': 50000,
}
41

42
_NUM_TRAIN_FILES = 1024
43
_SHUFFLE_BUFFER = 10000
44

45
DATASET_NAME = 'ImageNet'
46

47
48
49
###############################################################################
# Data processing
###############################################################################
50
def get_filenames(is_training, data_dir):
51
52
53
  """Return filenames for dataset."""
  if is_training:
    return [
54
        os.path.join(data_dir, 'train-%05d-of-01024' % i)
55
        for i in range(_NUM_TRAIN_FILES)]
56
57
  else:
    return [
58
        os.path.join(data_dir, 'validation-%05d-of-00128' % i)
Neal Wu's avatar
Neal Wu committed
59
        for i in range(128)]
60
61


62
63
64
def _parse_example_proto(example_serialized):
  """Parses an Example proto containing a training example of an image.

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
  The output of the build_image_data.py image preprocessing script is a dataset
  containing serialized Example protocol buffers. Each Example proto contains
  the following fields (values are included as examples):

    image/height: 462
    image/width: 581
    image/colorspace: 'RGB'
    image/channels: 3
    image/class/label: 615
    image/class/synset: 'n03623198'
    image/class/text: 'knee pad'
    image/object/bbox/xmin: 0.1
    image/object/bbox/xmax: 0.9
    image/object/bbox/ymin: 0.2
    image/object/bbox/ymax: 0.6
    image/object/bbox/label: 615
    image/format: 'JPEG'
    image/filename: 'ILSVRC2012_val_00041207.JPEG'
    image/encoded: <JPEG encoded string>
84
85
86
87
88
89
90

  Args:
    example_serialized: scalar Tensor tf.string containing a serialized
      Example protocol buffer.

  Returns:
    image_buffer: Tensor tf.string containing the contents of a JPEG file.
91
92
93
94
    label: Tensor tf.int32 containing the label.
    bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
      where each coordinate is [0, 1) and the coordinates are arranged as
      [ymin, xmin, ymax, xmax].
95
96
97
  """
  # Dense features in Example proto.
  feature_map = {
98
      'image/encoded': tf.io.FixedLenFeature([], dtype=tf.string,
99
                                             default_value=''),
100
101
102
103
      'image/class/label': tf.io.FixedLenFeature([], dtype=tf.int64,
                                                 default_value=-1),
      'image/class/text': tf.io.FixedLenFeature([], dtype=tf.string,
                                                default_value=''),
104
  }
105
  sparse_float32 = tf.io.VarLenFeature(dtype=tf.float32)
106
107
108
109
110
111
  # Sparse features in Example proto.
  feature_map.update(
      {k: sparse_float32 for k in ['image/object/bbox/xmin',
                                   'image/object/bbox/ymin',
                                   'image/object/bbox/xmax',
                                   'image/object/bbox/ymax']})
112

113
114
  features = tf.io.parse_single_example(serialized=example_serialized,
                                        features=feature_map)
115
  label = tf.cast(features['image/class/label'], dtype=tf.int32)
116

117
118
119
120
121
122
123
124
125
126
127
  xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 0)
  ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 0)
  xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 0)
  ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 0)

  # Note that we impose an ordering of (y, x) just to make life difficult.
  bbox = tf.concat([ymin, xmin, ymax, xmax], 0)

  # Force the variable number of bounding boxes into the shape
  # [1, num_boxes, coords].
  bbox = tf.expand_dims(bbox, 0)
128
  bbox = tf.transpose(a=bbox, perm=[0, 2, 1])
129
130

  return features['image/encoded'], label, bbox
131
132


133
def parse_record(raw_record, is_training, dtype):
134
135
136
137
138
139
140
141
142
  """Parses a record containing a training example of an image.

  The input record is parsed into a label and image, and the image is passed
  through preprocessing steps (cropping, flipping, and so on).

  Args:
    raw_record: scalar Tensor tf.string containing a serialized
      Example protocol buffer.
    is_training: A boolean denoting whether the input is for training.
143
    dtype: data type to use for images/features.
144

145
146
  Returns:
    Tuple with processed image tensor and one-hot-encoded label tensor.
147
148
149
150
151
152
  """
  image_buffer, label, bbox = _parse_example_proto(raw_record)

  image = imagenet_preprocessing.preprocess_image(
      image_buffer=image_buffer,
      bbox=bbox,
153
154
155
      output_height=DEFAULT_IMAGE_SIZE,
      output_width=DEFAULT_IMAGE_SIZE,
      num_channels=NUM_CHANNELS,
156
      is_training=is_training)
157
  image = tf.cast(image, dtype)
158

159
  return image, label
160
161


162
163
164
165
166
167
168
169
170
def input_fn(is_training,
             data_dir,
             batch_size,
             num_epochs=1,
             dtype=tf.float32,
             datasets_num_private_threads=None,
             num_parallel_batches=1,
             parse_record_fn=parse_record,
             input_context=None):
171
  """Input function which provides batches for train or eval.
Karmel Allison's avatar
Karmel Allison committed
172

173
174
175
176
177
  Args:
    is_training: A boolean denoting whether the input is for training.
    data_dir: The directory containing the input data.
    batch_size: The number of samples per batch.
    num_epochs: The number of epochs to repeat the dataset.
178
    dtype: Data type to use for images/features
Toby Boyd's avatar
Toby Boyd committed
179
180
    datasets_num_private_threads: Number of private threads for tf.data.
    num_parallel_batches: Number of parallel batches for tf.data.
Priya Gupta's avatar
Priya Gupta committed
181
    parse_record_fn: Function to use for parsing the records.
182
183
    input_context: A `tf.distribute.InputContext` object passed in by
      `tf.distribute.Strategy`.
184
185
186
187
188
189

  Returns:
    A dataset that can be used for iteration.
  """
  filenames = get_filenames(is_training, data_dir)
  dataset = tf.data.Dataset.from_tensor_slices(filenames)
190

191
  if input_context:
192
193
194
    tf.compat.v1.logging.info(
        'Sharding the dataset: input_pipeline_id=%d num_input_pipelines=%d' % (
            input_context.input_pipeline_id, input_context.num_input_pipelines))
195
196
197
    dataset = dataset.shard(input_context.num_input_pipelines,
                            input_context.input_pipeline_id)

198
  if is_training:
199
200
    # Shuffle the input files
    dataset = dataset.shuffle(buffer_size=_NUM_TRAIN_FILES)
201

202
203
204
205
206
  # Convert to individual records.
  # cycle_length = 10 means 10 files will be read and deserialized in parallel.
  # This number is low enough to not cause too much contention on small systems
  # but high enough to provide the benefits of parallelization. You may want
  # to increase this number if you have a large number of CPU cores.
207
  dataset = dataset.apply(tf.data.experimental.parallel_interleave(
208
      tf.data.TFRecordDataset, cycle_length=10))
209

210
  return resnet_run_loop.process_record_dataset(
Taylor Robie's avatar
Taylor Robie committed
211
212
213
214
      dataset=dataset,
      is_training=is_training,
      batch_size=batch_size,
      shuffle_buffer=_SHUFFLE_BUFFER,
Priya Gupta's avatar
Priya Gupta committed
215
      parse_record_fn=parse_record_fn,
Taylor Robie's avatar
Taylor Robie committed
216
      num_epochs=num_epochs,
Toby Boyd's avatar
Toby Boyd committed
217
218
219
      dtype=dtype,
      datasets_num_private_threads=datasets_num_private_threads,
      num_parallel_batches=num_parallel_batches
220
  )
221
222


Toby Boyd's avatar
Toby Boyd committed
223
def get_synth_input_fn(dtype):
224
  return resnet_run_loop.get_synth_input_fn(
225
      DEFAULT_IMAGE_SIZE, DEFAULT_IMAGE_SIZE, NUM_CHANNELS, NUM_CLASSES,
Toby Boyd's avatar
Toby Boyd committed
226
      dtype=dtype)
227
228


229
230
231
###############################################################################
# Running the model
###############################################################################
232
class ImagenetModel(resnet_model.Model):
Karmel Allison's avatar
Karmel Allison committed
233
  """Model class with appropriate defaults for Imagenet data."""
234

235
  def __init__(self, resnet_size, data_format=None, num_classes=NUM_CLASSES,
236
               resnet_version=resnet_model.DEFAULT_VERSION,
237
               dtype=resnet_model.DEFAULT_DTYPE):
Neal Wu's avatar
Neal Wu committed
238
239
240
241
242
243
244
    """These are the parameters that work for Imagenet data.

    Args:
      resnet_size: The number of convolutional layers needed in the model.
      data_format: Either 'channels_first' or 'channels_last', specifying which
        data format to use when setting up the model.
      num_classes: The number of output classes needed from the model. This
245
        enables users to extend the same model to their own datasets.
246
247
      resnet_version: Integer representing which version of the ResNet network
        to use. See README for details. Valid values: [1, 2]
248
      dtype: The TensorFlow dtype to use for calculations.
Neal Wu's avatar
Neal Wu committed
249
    """
250
251
252

    # For bigger models, we want to use "bottleneck" layers
    if resnet_size < 50:
253
      bottleneck = False
254
    else:
255
      bottleneck = True
256
257
258

    super(ImagenetModel, self).__init__(
        resnet_size=resnet_size,
259
        bottleneck=bottleneck,
260
        num_classes=num_classes,
261
262
263
264
265
266
267
        num_filters=64,
        kernel_size=7,
        conv_stride=2,
        first_pool_size=3,
        first_pool_stride=2,
        block_sizes=_get_block_sizes(resnet_size),
        block_strides=[1, 2, 2, 2],
268
        resnet_version=resnet_version,
269
270
271
        data_format=data_format,
        dtype=dtype
    )
272
273
274


def _get_block_sizes(resnet_size):
Karmel Allison's avatar
Karmel Allison committed
275
276
277
  """Retrieve the size of each block_layer in the ResNet model.

  The number of block layers used for the Resnet model varies according
278
279
  to the size of the model. This helper grabs the layer set we want, throwing
  an error if a non-standard size has been selected.
Karmel Allison's avatar
Karmel Allison committed
280
281
282
283
284
285
286
287
288

  Args:
    resnet_size: The number of convolutional layers needed in the model.

  Returns:
    A list of block sizes to use in building the model.

  Raises:
    KeyError: if invalid resnet_size is received.
289
290
291
292
293
294
295
296
  """
  choices = {
      18: [2, 2, 2, 2],
      34: [3, 4, 6, 3],
      50: [3, 4, 6, 3],
      101: [3, 4, 23, 3],
      152: [3, 8, 36, 3],
      200: [3, 24, 36, 3]
297
298
  }

299
300
301
302
303
304
305
  try:
    return choices[resnet_size]
  except KeyError:
    err = ('Could not find layers for selected Resnet size.\n'
           'Size received: {}; sizes allowed: {}.'.format(
               resnet_size, choices.keys()))
    raise ValueError(err)
306
307


308
309
def imagenet_model_fn(features, labels, mode, params):
  """Our model_fn for ResNet to be used with our Estimator."""
310
311
312
313
314
315
316
317
318
319

  # Warmup and higher lr may not be valid for fine tuning with small batches
  # and smaller numbers of training images.
  if params['fine_tune']:
    warmup = False
    base_lr = .1
  else:
    warmup = True
    base_lr = .128

320
  learning_rate_fn = resnet_run_loop.learning_rate_with_decay(
321
      batch_size=params['batch_size'], batch_denom=256,
322
      num_images=NUM_IMAGES['train'], boundary_epochs=[30, 60, 80, 90],
323
      decay_rates=[1, 0.1, 0.01, 0.001, 1e-4], warmup=warmup, base_lr=base_lr)
324

325
326
327
328
329
330
  return resnet_run_loop.resnet_model_fn(
      features=features,
      labels=labels,
      mode=mode,
      model_class=ImagenetModel,
      resnet_size=params['resnet_size'],
pkanwar23's avatar
pkanwar23 committed
331
      weight_decay=flags.FLAGS.weight_decay,
332
333
334
      learning_rate_fn=learning_rate_fn,
      momentum=0.9,
      data_format=params['data_format'],
335
      resnet_version=params['resnet_version'],
336
337
      loss_scale=params['loss_scale'],
      loss_filter_fn=None,
Zac Wellmer's avatar
Zac Wellmer committed
338
      dtype=params['dtype'],
pkanwar23's avatar
pkanwar23 committed
339
340
      fine_tune=params['fine_tune'],
      label_smoothing=flags.FLAGS.label_smoothing
341
  )
342
343


344
345
346
347
def define_imagenet_flags():
  resnet_run_loop.define_resnet_flags(
      resnet_size_choices=['18', '34', '50', '101', '152', '200'])
  flags.adopt_module_key_flags(resnet_run_loop)
Toby Boyd's avatar
Toby Boyd committed
348
  flags_core.set_defaults(train_epochs=90)
349

350

351
352
353
354
355
356
def run_imagenet(flags_obj):
  """Run ResNet ImageNet training and eval loop.

  Args:
    flags_obj: An object containing parsed flag values.
  """
Toby Boyd's avatar
Toby Boyd committed
357
358
359
  input_function = (flags_obj.use_synthetic_data and
                    get_synth_input_fn(flags_core.get_tf_dtype(flags_obj)) or
                    input_fn)
360
361

  resnet_run_loop.resnet_main(
362
      flags_obj, imagenet_model_fn, input_function, DATASET_NAME,
363
      shape=[DEFAULT_IMAGE_SIZE, DEFAULT_IMAGE_SIZE, NUM_CHANNELS])
364
365


366
def main(_):
367
368
  with logger.benchmark_context(flags.FLAGS):
    run_imagenet(flags.FLAGS)
369
370


371
if __name__ == '__main__':
372
  tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
373
374
  define_imagenet_flags()
  absl_app.run(main)