imagenet_main.py 10.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Runs a ResNet model on the ImageNet dataset."""
16
17
18
19
20
21

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
22
import sys
23

Karmel Allison's avatar
Karmel Allison committed
24
import tensorflow as tf  # pylint: disable=g-bad-import-order
25

26
from official.resnet import imagenet_preprocessing
27
28
from official.resnet import resnet_model
from official.resnet import resnet_run_loop
29

30
_DEFAULT_IMAGE_SIZE = 224
31
_NUM_CHANNELS = 3
32
_NUM_CLASSES = 1001
33

34
35
36
37
_NUM_IMAGES = {
    'train': 1281167,
    'validation': 50000,
}
38

39
_NUM_TRAIN_FILES = 1024
40
_SHUFFLE_BUFFER = 1500
41

42

43
44
45
###############################################################################
# Data processing
###############################################################################
46
def get_filenames(is_training, data_dir):
47
48
49
  """Return filenames for dataset."""
  if is_training:
    return [
50
        os.path.join(data_dir, 'train-%05d-of-01024' % i)
51
        for i in range(_NUM_TRAIN_FILES)]
52
53
  else:
    return [
54
        os.path.join(data_dir, 'validation-%05d-of-00128' % i)
Neal Wu's avatar
Neal Wu committed
55
        for i in range(128)]
56
57


58
59
60
def _parse_example_proto(example_serialized):
  """Parses an Example proto containing a training example of an image.

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
  The output of the build_image_data.py image preprocessing script is a dataset
  containing serialized Example protocol buffers. Each Example proto contains
  the following fields (values are included as examples):

    image/height: 462
    image/width: 581
    image/colorspace: 'RGB'
    image/channels: 3
    image/class/label: 615
    image/class/synset: 'n03623198'
    image/class/text: 'knee pad'
    image/object/bbox/xmin: 0.1
    image/object/bbox/xmax: 0.9
    image/object/bbox/ymin: 0.2
    image/object/bbox/ymax: 0.6
    image/object/bbox/label: 615
    image/format: 'JPEG'
    image/filename: 'ILSVRC2012_val_00041207.JPEG'
    image/encoded: <JPEG encoded string>
80
81
82
83
84
85
86

  Args:
    example_serialized: scalar Tensor tf.string containing a serialized
      Example protocol buffer.

  Returns:
    image_buffer: Tensor tf.string containing the contents of a JPEG file.
87
88
89
90
    label: Tensor tf.int32 containing the label.
    bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
      where each coordinate is [0, 1) and the coordinates are arranged as
      [ymin, xmin, ymax, xmax].
91
92
93
94
95
96
  """
  # Dense features in Example proto.
  feature_map = {
      'image/encoded': tf.FixedLenFeature([], dtype=tf.string,
                                          default_value=''),
      'image/class/label': tf.FixedLenFeature([1], dtype=tf.int64,
97
98
99
                                              default_value=-1),
      'image/class/text': tf.FixedLenFeature([], dtype=tf.string,
                                             default_value=''),
100
  }
101
102
103
104
105
106
107
  sparse_float32 = tf.VarLenFeature(dtype=tf.float32)
  # Sparse features in Example proto.
  feature_map.update(
      {k: sparse_float32 for k in ['image/object/bbox/xmin',
                                   'image/object/bbox/ymin',
                                   'image/object/bbox/xmax',
                                   'image/object/bbox/ymax']})
108

109
  features = tf.parse_single_example(example_serialized, feature_map)
110
  label = tf.cast(features['image/class/label'], dtype=tf.int32)
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
  xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 0)
  ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 0)
  xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 0)
  ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 0)

  # Note that we impose an ordering of (y, x) just to make life difficult.
  bbox = tf.concat([ymin, xmin, ymax, xmax], 0)

  # Force the variable number of bounding boxes into the shape
  # [1, num_boxes, coords].
  bbox = tf.expand_dims(bbox, 0)
  bbox = tf.transpose(bbox, [0, 2, 1])

  return features['image/encoded'], label, bbox
126
127
128
129
130
131
132
133
134
135
136
137


def parse_record(raw_record, is_training):
  """Parses a record containing a training example of an image.

  The input record is parsed into a label and image, and the image is passed
  through preprocessing steps (cropping, flipping, and so on).

  Args:
    raw_record: scalar Tensor tf.string containing a serialized
      Example protocol buffer.
    is_training: A boolean denoting whether the input is for training.
138

139
140
  Returns:
    Tuple with processed image tensor and one-hot-encoded label tensor.
141
142
143
144
145
146
  """
  image_buffer, label, bbox = _parse_example_proto(raw_record)

  image = imagenet_preprocessing.preprocess_image(
      image_buffer=image_buffer,
      bbox=bbox,
147
148
      output_height=_DEFAULT_IMAGE_SIZE,
      output_width=_DEFAULT_IMAGE_SIZE,
149
      num_channels=_NUM_CHANNELS,
150
151
      is_training=is_training)

152
  label = tf.one_hot(tf.reshape(label, shape=[]), _NUM_CLASSES)
153

154
  return image, label
155
156


157
def input_fn(is_training, data_dir, batch_size, num_epochs=1,
Karmel Allison's avatar
Karmel Allison committed
158
             num_parallel_calls=1, multi_gpu=False):
159
  """Input function which provides batches for train or eval.
Karmel Allison's avatar
Karmel Allison committed
160

161
162
163
164
165
166
167
168
  Args:
    is_training: A boolean denoting whether the input is for training.
    data_dir: The directory containing the input data.
    batch_size: The number of samples per batch.
    num_epochs: The number of epochs to repeat the dataset.
    num_parallel_calls: The number of records that are processed in parallel.
      This can be optimized per data set but for generally homogeneous data
      sets, should be approximately the number of available CPU cores.
Karmel Allison's avatar
Karmel Allison committed
169
170
171
    multi_gpu: Whether this is run multi-GPU. Note that this is only required
      currently to handle the batch leftovers, and can be removed
      when that is handled directly by Estimator.
172
173
174
175
176
177

  Returns:
    A dataset that can be used for iteration.
  """
  filenames = get_filenames(is_training, data_dir)
  dataset = tf.data.Dataset.from_tensor_slices(filenames)
178

179
  if is_training:
180
181
    # Shuffle the input files
    dataset = dataset.shuffle(buffer_size=_NUM_TRAIN_FILES)
182

Karmel Allison's avatar
Karmel Allison committed
183
184
  num_images = is_training and _NUM_IMAGES['train'] or _NUM_IMAGES['validation']

185
  # Convert to individual records
186
  dataset = dataset.flat_map(tf.data.TFRecordDataset)
187

188
  return resnet_run_loop.process_record_dataset(
189
190
191
192
193
194
      dataset, is_training, batch_size, _SHUFFLE_BUFFER, parse_record,
      num_epochs, num_parallel_calls, examples_per_epoch=num_images,
      multi_gpu=multi_gpu)


def get_synth_input_fn():
195
  return resnet_run_loop.get_synth_input_fn(
Karmel Allison's avatar
Karmel Allison committed
196
      _DEFAULT_IMAGE_SIZE, _DEFAULT_IMAGE_SIZE, _NUM_CHANNELS, _NUM_CLASSES)
197
198


199
200
201
###############################################################################
# Running the model
###############################################################################
202
class ImagenetModel(resnet_model.Model):
Karmel Allison's avatar
Karmel Allison committed
203
  """Model class with appropriate defaults for Imagenet data."""
204

205
  def __init__(self, resnet_size, data_format=None, num_classes=_NUM_CLASSES,
Karmel Allison's avatar
Karmel Allison committed
206
               version=resnet_model.DEFAULT_VERSION):
Neal Wu's avatar
Neal Wu committed
207
208
209
210
211
212
213
    """These are the parameters that work for Imagenet data.

    Args:
      resnet_size: The number of convolutional layers needed in the model.
      data_format: Either 'channels_first' or 'channels_last', specifying which
        data format to use when setting up the model.
      num_classes: The number of output classes needed from the model. This
214
        enables users to extend the same model to their own datasets.
215
216
      version: Integer representing which version of the ResNet network to use.
        See README for details. Valid values: [1, 2]
Neal Wu's avatar
Neal Wu committed
217
    """
218
219
220

    # For bigger models, we want to use "bottleneck" layers
    if resnet_size < 50:
221
      bottleneck = False
222
223
      final_size = 512
    else:
224
      bottleneck = True
225
226
227
228
      final_size = 2048

    super(ImagenetModel, self).__init__(
        resnet_size=resnet_size,
229
        bottleneck=bottleneck,
230
        num_classes=num_classes,
231
232
233
234
235
236
237
238
239
240
        num_filters=64,
        kernel_size=7,
        conv_stride=2,
        first_pool_size=3,
        first_pool_stride=2,
        second_pool_size=7,
        second_pool_stride=1,
        block_sizes=_get_block_sizes(resnet_size),
        block_strides=[1, 2, 2, 2],
        final_size=final_size,
241
        version=version,
242
243
244
245
        data_format=data_format)


def _get_block_sizes(resnet_size):
Karmel Allison's avatar
Karmel Allison committed
246
247
248
  """Retrieve the size of each block_layer in the ResNet model.

  The number of block layers used for the Resnet model varies according
249
250
  to the size of the model. This helper grabs the layer set we want, throwing
  an error if a non-standard size has been selected.
Karmel Allison's avatar
Karmel Allison committed
251
252
253
254
255
256
257
258
259

  Args:
    resnet_size: The number of convolutional layers needed in the model.

  Returns:
    A list of block sizes to use in building the model.

  Raises:
    KeyError: if invalid resnet_size is received.
260
261
262
263
264
265
266
267
  """
  choices = {
      18: [2, 2, 2, 2],
      34: [3, 4, 6, 3],
      50: [3, 4, 6, 3],
      101: [3, 4, 23, 3],
      152: [3, 8, 36, 3],
      200: [3, 24, 36, 3]
268
269
  }

270
271
272
273
274
275
276
  try:
    return choices[resnet_size]
  except KeyError:
    err = ('Could not find layers for selected Resnet size.\n'
           'Size received: {}; sizes allowed: {}.'.format(
               resnet_size, choices.keys()))
    raise ValueError(err)
277
278


279
280
def imagenet_model_fn(features, labels, mode, params):
  """Our model_fn for ResNet to be used with our Estimator."""
281
  learning_rate_fn = resnet_run_loop.learning_rate_with_decay(
282
283
284
      batch_size=params['batch_size'], batch_denom=256,
      num_images=_NUM_IMAGES['train'], boundary_epochs=[30, 60, 80, 90],
      decay_rates=[1, 0.1, 0.01, 0.001, 1e-4])
285

286
287
288
289
290
291
292
293
294
  return resnet_run_loop.resnet_model_fn(features, labels, mode, ImagenetModel,
                                         resnet_size=params['resnet_size'],
                                         weight_decay=1e-4,
                                         learning_rate_fn=learning_rate_fn,
                                         momentum=0.9,
                                         data_format=params['data_format'],
                                         version=params['version'],
                                         loss_filter_fn=None,
                                         multi_gpu=params['multi_gpu'])
295
296


297
298
299
300
301
302
303
def main(argv):
  parser = resnet_run_loop.ResnetArgParser(
      resnet_size_choices=[18, 34, 50, 101, 152, 200])
  flags = parser.parse_args(args=argv[1:])

  input_function = flags.use_synthetic_data and get_synth_input_fn() or input_fn
  resnet_run_loop.resnet_main(flags, imagenet_model_fn, input_function)
304
305
306
307


if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.INFO)
308
  tf.app.run(argv=sys.argv)