imagenet_main.py 8.94 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Runs a ResNet model on the ImageNet dataset."""
16
17
18
19
20
21

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
22
import sys
23
24
25

import tensorflow as tf

26
27
from official.resnet import resnet
from official.resnet import vgg_preprocessing
28

29
_DEFAULT_IMAGE_SIZE = 224
30
_NUM_CHANNELS = 3
31
_NUM_CLASSES = 1001
32

33
34
35
36
_NUM_IMAGES = {
    'train': 1281167,
    'validation': 50000,
}
37

38
_NUM_TRAIN_FILES = 1024
39
_SHUFFLE_BUFFER = 1500
40

41

42
43
44
###############################################################################
# Data processing
###############################################################################
45
def get_filenames(is_training, data_dir):
46
47
48
  """Return filenames for dataset."""
  if is_training:
    return [
49
        os.path.join(data_dir, 'train-%05d-of-01024' % i)
50
        for i in range(_NUM_TRAIN_FILES)]
51
52
  else:
    return [
53
        os.path.join(data_dir, 'validation-%05d-of-00128' % i)
Neal Wu's avatar
Neal Wu committed
54
        for i in range(128)]
55
56


57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
def _parse_example_proto(example_serialized):
  """Parses an Example proto containing a training example of an image.

  The dataset contains serialized Example protocol buffers.
  The Example proto is expected to contain features named
  image/encoded (a JPEG-encoded string) and image/class/label (int)

  Args:
    example_serialized: scalar Tensor tf.string containing a serialized
      Example protocol buffer.

  Returns:
    image_buffer: Tensor tf.string containing the contents of a JPEG file.
    label: Tensor tf.int64 containing the label.
  """
  # Dense features in Example proto.
  feature_map = {
      'image/encoded': tf.FixedLenFeature([], dtype=tf.string,
                                          default_value=''),
      'image/class/label': tf.FixedLenFeature([1], dtype=tf.int64,
                                              default_value=-1)
78
79
  }

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
  features = tf.parse_single_example(example_serialized, feature_map)

  return features['image/encoded'], features['image/class/label']


def parse_record(raw_record, is_training):
  """Parses a record containing a training example of an image.

  The input record is parsed into a label and image, and the image is passed
  through preprocessing steps (cropping, flipping, and so on).

  Args:
    raw_record: scalar Tensor tf.string containing a serialized
      Example protocol buffer.
    is_training: A boolean denoting whether the input is for training.
95

96
97
98
99
  Returns:
    Tuple with processed image tensor and one-hot-encoded label tensor.
"""
  image, label = _parse_example_proto(raw_record)
100

101
102
103
104
  # Decode the string as an RGB JPEG.
  # Note that the resulting image contains an unknown height and width
  # that is set dynamically by decode_jpeg. In other words, the height
  # and width of image is unknown at compile-time.
Karmel Allison's avatar
Karmel Allison committed
105
106
  # Results in a 3-D int8 Tensor. This will be converted to a float later,
  # during resizing.
107
  image = tf.image.decode_jpeg(image, channels=_NUM_CHANNELS)
108

109
  image = vgg_preprocessing.preprocess_image(
110
      image=image,
111
112
      output_height=_DEFAULT_IMAGE_SIZE,
      output_width=_DEFAULT_IMAGE_SIZE,
113
114
      is_training=is_training)

115
116
  label = tf.cast(tf.reshape(label, shape=[]), dtype=tf.int32)
  label = tf.one_hot(label, _NUM_CLASSES)
117

118
  return image, label
119
120


121
def input_fn(is_training, data_dir, batch_size, num_epochs=1,
Karmel Allison's avatar
Karmel Allison committed
122
             num_parallel_calls=1, multi_gpu=False):
123
124
125
126
127
128
129
130
131
  """Input function which provides batches for train or eval.
  Args:
    is_training: A boolean denoting whether the input is for training.
    data_dir: The directory containing the input data.
    batch_size: The number of samples per batch.
    num_epochs: The number of epochs to repeat the dataset.
    num_parallel_calls: The number of records that are processed in parallel.
      This can be optimized per data set but for generally homogeneous data
      sets, should be approximately the number of available CPU cores.
Karmel Allison's avatar
Karmel Allison committed
132
133
134
    multi_gpu: Whether this is run multi-GPU. Note that this is only required
      currently to handle the batch leftovers, and can be removed
      when that is handled directly by Estimator.
135
136
137
138
139
140

  Returns:
    A dataset that can be used for iteration.
  """
  filenames = get_filenames(is_training, data_dir)
  dataset = tf.data.Dataset.from_tensor_slices(filenames)
141

142
  if is_training:
143
144
    # Shuffle the input files
    dataset = dataset.shuffle(buffer_size=_NUM_TRAIN_FILES)
145

Karmel Allison's avatar
Karmel Allison committed
146
147
  num_images = is_training and _NUM_IMAGES['train'] or _NUM_IMAGES['validation']

148
  # Convert to individual records
149
  dataset = dataset.flat_map(tf.data.TFRecordDataset)
150

151
152
153
154
155
156
157
158
159
  return resnet.process_record_dataset(
      dataset, is_training, batch_size, _SHUFFLE_BUFFER, parse_record,
      num_epochs, num_parallel_calls, examples_per_epoch=num_images,
      multi_gpu=multi_gpu)


def get_synth_input_fn():
  return resnet.get_synth_input_fn(
        _DEFAULT_IMAGE_SIZE, _DEFAULT_IMAGE_SIZE, _NUM_CHANNELS, _NUM_CLASSES)
160
161


162
163
164
###############################################################################
# Running the model
###############################################################################
Karmel Allison's avatar
Karmel Allison committed
165
class ImagenetModel(resnet.Model):
166

167
168
  def __init__(self, resnet_size, data_format=None, num_classes=_NUM_CLASSES,
    version=resnet.DEFAULT_VERSION):
Neal Wu's avatar
Neal Wu committed
169
170
171
172
173
174
175
    """These are the parameters that work for Imagenet data.

    Args:
      resnet_size: The number of convolutional layers needed in the model.
      data_format: Either 'channels_first' or 'channels_last', specifying which
        data format to use when setting up the model.
      num_classes: The number of output classes needed from the model. This
176
        enables users to extend the same model to their own datasets.
177
178
      version: Integer representing which version of the ResNet network to use.
        See README for details. Valid values: [1, 2]
Neal Wu's avatar
Neal Wu committed
179
    """
180
181
182

    # For bigger models, we want to use "bottleneck" layers
    if resnet_size < 50:
183
      bottleneck = False
184
185
      final_size = 512
    else:
186
      bottleneck = True
187
188
189
190
      final_size = 2048

    super(ImagenetModel, self).__init__(
        resnet_size=resnet_size,
191
        bottleneck=bottleneck,
192
        num_classes=num_classes,
193
194
195
196
197
198
199
200
201
202
        num_filters=64,
        kernel_size=7,
        conv_stride=2,
        first_pool_size=3,
        first_pool_stride=2,
        second_pool_size=7,
        second_pool_stride=1,
        block_sizes=_get_block_sizes(resnet_size),
        block_strides=[1, 2, 2, 2],
        final_size=final_size,
203
        version=version,
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        data_format=data_format)


def _get_block_sizes(resnet_size):
  """The number of block layers used for the Resnet model varies according
  to the size of the model. This helper grabs the layer set we want, throwing
  an error if a non-standard size has been selected.
  """
  choices = {
      18: [2, 2, 2, 2],
      34: [3, 4, 6, 3],
      50: [3, 4, 6, 3],
      101: [3, 4, 23, 3],
      152: [3, 8, 36, 3],
      200: [3, 24, 36, 3]
219
220
  }

221
222
223
224
225
226
227
  try:
    return choices[resnet_size]
  except KeyError:
    err = ('Could not find layers for selected Resnet size.\n'
           'Size received: {}; sizes allowed: {}.'.format(
               resnet_size, choices.keys()))
    raise ValueError(err)
228
229


230
231
def imagenet_model_fn(features, labels, mode, params):
  """Our model_fn for ResNet to be used with our Estimator."""
Karmel Allison's avatar
Karmel Allison committed
232
  learning_rate_fn = resnet.learning_rate_with_decay(
233
234
235
      batch_size=params['batch_size'], batch_denom=256,
      num_images=_NUM_IMAGES['train'], boundary_epochs=[30, 60, 80, 90],
      decay_rates=[1, 0.1, 0.01, 0.001, 1e-4])
236

Karmel Allison's avatar
Karmel Allison committed
237
238
239
240
241
242
  return resnet.resnet_model_fn(features, labels, mode, ImagenetModel,
                                resnet_size=params['resnet_size'],
                                weight_decay=1e-4,
                                learning_rate_fn=learning_rate_fn,
                                momentum=0.9,
                                data_format=params['data_format'],
243
                                version=params['version'],
Karmel Allison's avatar
Karmel Allison committed
244
245
                                loss_filter_fn=None,
                                multi_gpu=params['multi_gpu'])
246
247
248


def main(unused_argv):
249
250
  input_function = FLAGS.use_synthetic_data and get_synth_input_fn() or input_fn
  resnet.resnet_main(FLAGS, imagenet_model_fn, input_function)
251
252
253
254


if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.INFO)
255

Karmel Allison's avatar
Karmel Allison committed
256
  parser = resnet.ResnetArgParser(
257
      resnet_size_choices=[18, 34, 50, 101, 152, 200])
258
259
  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(argv=[sys.argv[0]] + unparsed)