imagenet_main.py 13.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Runs a ResNet model on the ImageNet dataset."""
16
17
18
19
20
21
22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

23
24
from absl import app as absl_app
from absl import flags
Karmel Allison's avatar
Karmel Allison committed
25
import tensorflow as tf  # pylint: disable=g-bad-import-order
26

27
from official.utils.flags import core as flags_core
28
from official.utils.logs import logger
29
from official.resnet import imagenet_preprocessing
30
31
from official.resnet import resnet_model
from official.resnet import resnet_run_loop
32

33
34
35
DEFAULT_IMAGE_SIZE = 224
NUM_CHANNELS = 3
NUM_CLASSES = 1001
36

37
NUM_IMAGES = {
38
39
40
    'train': 1281167,
    'validation': 50000,
}
41

42
_NUM_TRAIN_FILES = 1024
43
_SHUFFLE_BUFFER = 10000
44

45
DATASET_NAME = 'ImageNet'
46

47
48
49
###############################################################################
# Data processing
###############################################################################
50
def get_filenames(is_training, data_dir):
51
52
53
  """Return filenames for dataset."""
  if is_training:
    return [
54
        os.path.join(data_dir, 'train-%05d-of-01024' % i)
55
        for i in range(_NUM_TRAIN_FILES)]
56
57
  else:
    return [
58
        os.path.join(data_dir, 'validation-%05d-of-00128' % i)
Neal Wu's avatar
Neal Wu committed
59
        for i in range(128)]
60
61


62
63
64
def _parse_example_proto(example_serialized):
  """Parses an Example proto containing a training example of an image.

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
  The output of the build_image_data.py image preprocessing script is a dataset
  containing serialized Example protocol buffers. Each Example proto contains
  the following fields (values are included as examples):

    image/height: 462
    image/width: 581
    image/colorspace: 'RGB'
    image/channels: 3
    image/class/label: 615
    image/class/synset: 'n03623198'
    image/class/text: 'knee pad'
    image/object/bbox/xmin: 0.1
    image/object/bbox/xmax: 0.9
    image/object/bbox/ymin: 0.2
    image/object/bbox/ymax: 0.6
    image/object/bbox/label: 615
    image/format: 'JPEG'
    image/filename: 'ILSVRC2012_val_00041207.JPEG'
    image/encoded: <JPEG encoded string>
84
85
86
87
88
89
90

  Args:
    example_serialized: scalar Tensor tf.string containing a serialized
      Example protocol buffer.

  Returns:
    image_buffer: Tensor tf.string containing the contents of a JPEG file.
91
92
93
94
    label: Tensor tf.int32 containing the label.
    bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords]
      where each coordinate is [0, 1) and the coordinates are arranged as
      [ymin, xmin, ymax, xmax].
95
96
97
  """
  # Dense features in Example proto.
  feature_map = {
98
      'image/encoded': tf.io.FixedLenFeature([], dtype=tf.string,
99
                                             default_value=''),
100
101
102
103
      'image/class/label': tf.io.FixedLenFeature([], dtype=tf.int64,
                                                 default_value=-1),
      'image/class/text': tf.io.FixedLenFeature([], dtype=tf.string,
                                                default_value=''),
104
  }
105
  sparse_float32 = tf.io.VarLenFeature(dtype=tf.float32)
106
107
108
109
110
111
  # Sparse features in Example proto.
  feature_map.update(
      {k: sparse_float32 for k in ['image/object/bbox/xmin',
                                   'image/object/bbox/ymin',
                                   'image/object/bbox/xmax',
                                   'image/object/bbox/ymax']})
112

113
114
  features = tf.io.parse_single_example(serialized=example_serialized,
                                        features=feature_map)
115
  label = tf.cast(features['image/class/label'], dtype=tf.int32)
116

117
118
119
120
121
122
123
124
125
126
127
  xmin = tf.expand_dims(features['image/object/bbox/xmin'].values, 0)
  ymin = tf.expand_dims(features['image/object/bbox/ymin'].values, 0)
  xmax = tf.expand_dims(features['image/object/bbox/xmax'].values, 0)
  ymax = tf.expand_dims(features['image/object/bbox/ymax'].values, 0)

  # Note that we impose an ordering of (y, x) just to make life difficult.
  bbox = tf.concat([ymin, xmin, ymax, xmax], 0)

  # Force the variable number of bounding boxes into the shape
  # [1, num_boxes, coords].
  bbox = tf.expand_dims(bbox, 0)
128
  bbox = tf.transpose(a=bbox, perm=[0, 2, 1])
129
130

  return features['image/encoded'], label, bbox
131
132


133
def parse_record(raw_record, is_training, dtype):
134
135
136
137
138
139
140
141
142
  """Parses a record containing a training example of an image.

  The input record is parsed into a label and image, and the image is passed
  through preprocessing steps (cropping, flipping, and so on).

  Args:
    raw_record: scalar Tensor tf.string containing a serialized
      Example protocol buffer.
    is_training: A boolean denoting whether the input is for training.
143
    dtype: data type to use for images/features.
144

145
146
  Returns:
    Tuple with processed image tensor and one-hot-encoded label tensor.
147
148
149
150
151
152
  """
  image_buffer, label, bbox = _parse_example_proto(raw_record)

  image = imagenet_preprocessing.preprocess_image(
      image_buffer=image_buffer,
      bbox=bbox,
153
154
155
      output_height=DEFAULT_IMAGE_SIZE,
      output_width=DEFAULT_IMAGE_SIZE,
      num_channels=NUM_CHANNELS,
156
      is_training=is_training)
157
  image = tf.cast(image, dtype)
158

159
  return image, label
160
161


162
163
164
165
166
167
168
169
def input_fn(is_training,
             data_dir,
             batch_size,
             num_epochs=1,
             dtype=tf.float32,
             datasets_num_private_threads=None,
             num_parallel_batches=1,
             parse_record_fn=parse_record,
170
             input_context=None,
171
172
173
             drop_remainder=False,
             tf_data_experimental_slack=False,
             ):
174
  """Input function which provides batches for train or eval.
Karmel Allison's avatar
Karmel Allison committed
175

176
177
178
179
180
  Args:
    is_training: A boolean denoting whether the input is for training.
    data_dir: The directory containing the input data.
    batch_size: The number of samples per batch.
    num_epochs: The number of epochs to repeat the dataset.
181
    dtype: Data type to use for images/features
Toby Boyd's avatar
Toby Boyd committed
182
183
    datasets_num_private_threads: Number of private threads for tf.data.
    num_parallel_batches: Number of parallel batches for tf.data.
Priya Gupta's avatar
Priya Gupta committed
184
    parse_record_fn: Function to use for parsing the records.
185
186
    input_context: A `tf.distribute.InputContext` object passed in by
      `tf.distribute.Strategy`.
187
188
    drop_remainder: A boolean indicates whether to drop the remainder of the
      batches. If True, the batch dimension will be static.
189
190
    tf_data_experimental_slack: Whether to enable tf.data's
      `experimental_slack` option.
191
192
193
194
195
196

  Returns:
    A dataset that can be used for iteration.
  """
  filenames = get_filenames(is_training, data_dir)
  dataset = tf.data.Dataset.from_tensor_slices(filenames)
197

198
  if input_context:
199
200
201
    tf.compat.v1.logging.info(
        'Sharding the dataset: input_pipeline_id=%d num_input_pipelines=%d' % (
            input_context.input_pipeline_id, input_context.num_input_pipelines))
202
203
204
    dataset = dataset.shard(input_context.num_input_pipelines,
                            input_context.input_pipeline_id)

205
  if is_training:
206
207
    # Shuffle the input files
    dataset = dataset.shuffle(buffer_size=_NUM_TRAIN_FILES)
208

209
  # Convert to individual records.
Haoyu Zhang's avatar
Haoyu Zhang committed
210
211
212
213
214
215
216
  # cycle_length = 10 means that up to 10 files will be read and deserialized in
  # parallel. You may want to increase this number if you have a large number of
  # CPU cores.
  dataset = dataset.interleave(
      tf.data.TFRecordDataset,
      cycle_length=10,
      num_parallel_calls=tf.data.experimental.AUTOTUNE)
217

218
  return resnet_run_loop.process_record_dataset(
Taylor Robie's avatar
Taylor Robie committed
219
220
221
222
      dataset=dataset,
      is_training=is_training,
      batch_size=batch_size,
      shuffle_buffer=_SHUFFLE_BUFFER,
Priya Gupta's avatar
Priya Gupta committed
223
      parse_record_fn=parse_record_fn,
Taylor Robie's avatar
Taylor Robie committed
224
      num_epochs=num_epochs,
Toby Boyd's avatar
Toby Boyd committed
225
226
      dtype=dtype,
      datasets_num_private_threads=datasets_num_private_threads,
227
      num_parallel_batches=num_parallel_batches,
228
229
      drop_remainder=drop_remainder,
      tf_data_experimental_slack=tf_data_experimental_slack,
230
  )
231
232


Toby Boyd's avatar
Toby Boyd committed
233
def get_synth_input_fn(dtype):
234
  return resnet_run_loop.get_synth_input_fn(
235
      DEFAULT_IMAGE_SIZE, DEFAULT_IMAGE_SIZE, NUM_CHANNELS, NUM_CLASSES,
Toby Boyd's avatar
Toby Boyd committed
236
      dtype=dtype)
237
238


239
240
241
###############################################################################
# Running the model
###############################################################################
242
class ImagenetModel(resnet_model.Model):
Karmel Allison's avatar
Karmel Allison committed
243
  """Model class with appropriate defaults for Imagenet data."""
244

245
  def __init__(self, resnet_size, data_format=None, num_classes=NUM_CLASSES,
246
               resnet_version=resnet_model.DEFAULT_VERSION,
247
               dtype=resnet_model.DEFAULT_DTYPE):
Neal Wu's avatar
Neal Wu committed
248
249
250
251
252
253
254
    """These are the parameters that work for Imagenet data.

    Args:
      resnet_size: The number of convolutional layers needed in the model.
      data_format: Either 'channels_first' or 'channels_last', specifying which
        data format to use when setting up the model.
      num_classes: The number of output classes needed from the model. This
255
        enables users to extend the same model to their own datasets.
256
257
      resnet_version: Integer representing which version of the ResNet network
        to use. See README for details. Valid values: [1, 2]
258
      dtype: The TensorFlow dtype to use for calculations.
Neal Wu's avatar
Neal Wu committed
259
    """
260
261
262

    # For bigger models, we want to use "bottleneck" layers
    if resnet_size < 50:
263
      bottleneck = False
264
    else:
265
      bottleneck = True
266
267
268

    super(ImagenetModel, self).__init__(
        resnet_size=resnet_size,
269
        bottleneck=bottleneck,
270
        num_classes=num_classes,
271
272
273
274
275
276
277
        num_filters=64,
        kernel_size=7,
        conv_stride=2,
        first_pool_size=3,
        first_pool_stride=2,
        block_sizes=_get_block_sizes(resnet_size),
        block_strides=[1, 2, 2, 2],
278
        resnet_version=resnet_version,
279
280
281
        data_format=data_format,
        dtype=dtype
    )
282
283
284


def _get_block_sizes(resnet_size):
Karmel Allison's avatar
Karmel Allison committed
285
286
287
  """Retrieve the size of each block_layer in the ResNet model.

  The number of block layers used for the Resnet model varies according
288
289
  to the size of the model. This helper grabs the layer set we want, throwing
  an error if a non-standard size has been selected.
Karmel Allison's avatar
Karmel Allison committed
290
291
292
293
294
295
296
297
298

  Args:
    resnet_size: The number of convolutional layers needed in the model.

  Returns:
    A list of block sizes to use in building the model.

  Raises:
    KeyError: if invalid resnet_size is received.
299
300
301
302
303
304
305
306
  """
  choices = {
      18: [2, 2, 2, 2],
      34: [3, 4, 6, 3],
      50: [3, 4, 6, 3],
      101: [3, 4, 23, 3],
      152: [3, 8, 36, 3],
      200: [3, 24, 36, 3]
307
308
  }

309
310
311
312
313
314
315
  try:
    return choices[resnet_size]
  except KeyError:
    err = ('Could not find layers for selected Resnet size.\n'
           'Size received: {}; sizes allowed: {}.'.format(
               resnet_size, choices.keys()))
    raise ValueError(err)
316
317


318
319
def imagenet_model_fn(features, labels, mode, params):
  """Our model_fn for ResNet to be used with our Estimator."""
320
321
322
323
324
325
326
327
328
329

  # Warmup and higher lr may not be valid for fine tuning with small batches
  # and smaller numbers of training images.
  if params['fine_tune']:
    warmup = False
    base_lr = .1
  else:
    warmup = True
    base_lr = .128

330
  learning_rate_fn = resnet_run_loop.learning_rate_with_decay(
331
332
333
334
      batch_size=params['batch_size'] * params.get('num_workers', 1),
      batch_denom=256, num_images=NUM_IMAGES['train'],
      boundary_epochs=[30, 60, 80, 90], decay_rates=[1, 0.1, 0.01, 0.001, 1e-4],
      warmup=warmup, base_lr=base_lr)
335

336
337
338
339
340
341
  return resnet_run_loop.resnet_model_fn(
      features=features,
      labels=labels,
      mode=mode,
      model_class=ImagenetModel,
      resnet_size=params['resnet_size'],
pkanwar23's avatar
pkanwar23 committed
342
      weight_decay=flags.FLAGS.weight_decay,
343
344
345
      learning_rate_fn=learning_rate_fn,
      momentum=0.9,
      data_format=params['data_format'],
346
      resnet_version=params['resnet_version'],
347
348
      loss_scale=params['loss_scale'],
      loss_filter_fn=None,
Zac Wellmer's avatar
Zac Wellmer committed
349
      dtype=params['dtype'],
pkanwar23's avatar
pkanwar23 committed
350
351
      fine_tune=params['fine_tune'],
      label_smoothing=flags.FLAGS.label_smoothing
352
  )
353
354


355
def define_imagenet_flags(dynamic_loss_scale=False, fp16_implementation=False):
356
  resnet_run_loop.define_resnet_flags(
357
      resnet_size_choices=['18', '34', '50', '101', '152', '200'],
358
359
      dynamic_loss_scale=dynamic_loss_scale,
      fp16_implementation=fp16_implementation)
360
  flags.adopt_module_key_flags(resnet_run_loop)
Toby Boyd's avatar
Toby Boyd committed
361
  flags_core.set_defaults(train_epochs=90)
362

363

364
365
366
367
368
def run_imagenet(flags_obj):
  """Run ResNet ImageNet training and eval loop.

  Args:
    flags_obj: An object containing parsed flag values.
369
370
371
372
373
374

  Returns:
    Dict of results of the run.  Contains the keys `eval_results` and
      `train_hooks`. `eval_results` contains accuracy (top_1) and
      accuracy_top_5. `train_hooks` is a list the instances of hooks used during
      training.
375
  """
Toby Boyd's avatar
Toby Boyd committed
376
377
378
  input_function = (flags_obj.use_synthetic_data and
                    get_synth_input_fn(flags_core.get_tf_dtype(flags_obj)) or
                    input_fn)
379

380
  result = resnet_run_loop.resnet_main(
381
      flags_obj, imagenet_model_fn, input_function, DATASET_NAME,
382
      shape=[DEFAULT_IMAGE_SIZE, DEFAULT_IMAGE_SIZE, NUM_CHANNELS])
383

384
385
  return result

386

387
def main(_):
388
389
  with logger.benchmark_context(flags.FLAGS):
    run_imagenet(flags.FLAGS)
390
391


392
if __name__ == '__main__':
393
  tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
394
  define_imagenet_flags(dynamic_loss_scale=True, fp16_implementation=True)
395
  absl_app.run(main)