imagenet_main.py 9.41 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Runs a ResNet model on the ImageNet dataset."""
16
17
18
19
20
21
22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import os
23
import sys
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

import tensorflow as tf

import resnet_model
import vgg_preprocessing

parser = argparse.ArgumentParser()

parser.add_argument(
    '--data_dir', type=str, default='',
    help='The directory where the ImageNet input data is stored.')

parser.add_argument(
    '--model_dir', type=str, default='/tmp/resnet_model',
    help='The directory where the model will be stored.')

parser.add_argument(
    '--resnet_size', type=int, default=50, choices=[18, 34, 50, 101, 152, 200],
    help='The size of the ResNet model to use.')

parser.add_argument(
45
46
    '--train_epochs', type=int, default=100,
    help='The number of epochs to use for training.')
47
48

parser.add_argument(
49
50
    '--epochs_per_eval', type=int, default=1,
    help='The number of training epochs to run between evaluations.')
51
52

parser.add_argument(
53
54
    '--batch_size', type=int, default=32,
    help='Batch size for training and evaluation.')
55

56
57
58
59
60
61
62
63
parser.add_argument(
    '--data_format', type=str, default=None,
    choices=['channels_first', 'channels_last'],
    help='A flag to override the data format used in the model. channels_first '
         'provides a performance boost on GPU but is not always compatible '
         'with CPU. If left unspecified, the data format will be chosen '
         'automatically based on whether TensorFlow was built for CPU or GPU.')

64
_DEFAULT_IMAGE_SIZE = 224
65
66
_NUM_CHANNELS = 3
_LABEL_CLASSES = 1001
67
68
69
70

_MOMENTUM = 0.9
_WEIGHT_DECAY = 1e-4

71
72
73
74
_NUM_IMAGES = {
    'train': 1281167,
    'validation': 50000,
}
75

Neal Wu's avatar
Neal Wu committed
76
_FILE_SHUFFLE_BUFFER = 1024
77
_SHUFFLE_BUFFER = 1500
78

79
80

def filenames(is_training, data_dir):
81
82
83
  """Return filenames for dataset."""
  if is_training:
    return [
84
        os.path.join(data_dir, 'train-%05d-of-01024' % i)
Neal Wu's avatar
Neal Wu committed
85
        for i in range(1024)]
86
87
  else:
    return [
88
        os.path.join(data_dir, 'validation-%05d-of-00128' % i)
Neal Wu's avatar
Neal Wu committed
89
        for i in range(128)]
90
91


92
93
def record_parser(value, is_training):
  """Parse an ImageNet record from `value`."""
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
  keys_to_features = {
      'image/encoded':
          tf.FixedLenFeature((), tf.string, default_value=''),
      'image/format':
          tf.FixedLenFeature((), tf.string, default_value='jpeg'),
      'image/class/label':
          tf.FixedLenFeature([], dtype=tf.int64, default_value=-1),
      'image/class/text':
          tf.FixedLenFeature([], dtype=tf.string, default_value=''),
      'image/object/bbox/xmin':
          tf.VarLenFeature(dtype=tf.float32),
      'image/object/bbox/ymin':
          tf.VarLenFeature(dtype=tf.float32),
      'image/object/bbox/xmax':
          tf.VarLenFeature(dtype=tf.float32),
      'image/object/bbox/ymax':
          tf.VarLenFeature(dtype=tf.float32),
      'image/object/class/label':
          tf.VarLenFeature(dtype=tf.int64),
  }

  parsed = tf.parse_single_example(value, keys_to_features)
116

117
118
119
120
121
  image = tf.image.decode_image(
      tf.reshape(parsed['image/encoded'], shape=[]),
      _NUM_CHANNELS)
  image = tf.image.convert_image_dtype(image, dtype=tf.float32)

122
  image = vgg_preprocessing.preprocess_image(
123
      image=image,
124
125
      output_height=_DEFAULT_IMAGE_SIZE,
      output_width=_DEFAULT_IMAGE_SIZE,
126
127
128
129
130
131
132
      is_training=is_training)

  label = tf.cast(
      tf.reshape(parsed['image/class/label'], shape=[]),
      dtype=tf.int32)

  return image, tf.one_hot(label, _LABEL_CLASSES)
133
134


135
def input_fn(is_training, data_dir, batch_size, num_epochs=1):
136
  """Input function which provides batches for train or eval."""
137
  dataset = tf.data.Dataset.from_tensor_slices(filenames(is_training, data_dir))
138

139
  if is_training:
Neal Wu's avatar
Neal Wu committed
140
    dataset = dataset.shuffle(buffer_size=_FILE_SHUFFLE_BUFFER)
141

142
  dataset = dataset.flat_map(tf.data.TFRecordDataset)
143
144
145
  dataset = dataset.map(lambda value: record_parser(value, is_training),
                        num_parallel_calls=5)
  dataset = dataset.prefetch(batch_size)
146
147

  if is_training:
148
149
150
    # When choosing shuffle buffer sizes, larger sizes result in better
    # randomness, while smaller sizes have better performance.
    dataset = dataset.shuffle(buffer_size=_SHUFFLE_BUFFER)
151

Neal Wu's avatar
Neal Wu committed
152
153
154
155
156
157
  # We call repeat after shuffling, rather than before, to prevent separate
  # epochs from blending together.
  dataset = dataset.repeat(num_epochs)
  dataset = dataset.batch(batch_size)

  iterator = dataset.make_one_shot_iterator()
158
  images, labels = iterator.get_next()
159
160
161
  return images, labels


162
def resnet_model_fn(features, labels, mode, params):
163
  """Our model_fn for ResNet to be used with our Estimator."""
164
165
  tf.summary.image('images', features, max_outputs=6)

166
  network = resnet_model.imagenet_resnet_v2(
167
      params['resnet_size'], _LABEL_CLASSES, params['data_format'])
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
  logits = network(
      inputs=features, is_training=(mode == tf.estimator.ModeKeys.TRAIN))

  predictions = {
      'classes': tf.argmax(logits, axis=1),
      'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
  }

  if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

  # Calculate loss, which includes softmax cross entropy and L2 regularization.
  cross_entropy = tf.losses.softmax_cross_entropy(
      logits=logits, onehot_labels=labels)

  # Create a tensor named cross_entropy for logging purposes.
  tf.identity(cross_entropy, name='cross_entropy')
  tf.summary.scalar('cross_entropy', cross_entropy)

187
188
  # Add weight decay to the loss. We exclude the batch norm variables because
  # doing so leads to a small improvement in accuracy.
189
  loss = cross_entropy + _WEIGHT_DECAY * tf.add_n(
190
191
      [tf.nn.l2_loss(v) for v in tf.trainable_variables()
       if 'batch_normalization' not in v.name])
192
193

  if mode == tf.estimator.ModeKeys.TRAIN:
Neal Wu's avatar
Neal Wu committed
194
195
    # Scale the learning rate linearly with the batch size. When the batch size
    # is 256, the learning rate should be 0.1.
196
197
    initial_learning_rate = 0.1 * params['batch_size'] / 256
    batches_per_epoch = _NUM_IMAGES['train'] / params['batch_size']
198
199
    global_step = tf.train.get_or_create_global_step()

200
    # Multiply the learning rate by 0.1 at 30, 60, 80, and 90 epochs.
201
    boundaries = [
202
        int(batches_per_epoch * epoch) for epoch in [30, 60, 80, 90]]
203
    values = [
204
        initial_learning_rate * decay for decay in [1, 0.1, 0.01, 1e-3, 1e-4]]
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    learning_rate = tf.train.piecewise_constant(
        tf.cast(global_step, tf.int32), boundaries, values)

    # Create a tensor named learning_rate for logging purposes.
    tf.identity(learning_rate, name='learning_rate')
    tf.summary.scalar('learning_rate', learning_rate)

    optimizer = tf.train.MomentumOptimizer(
        learning_rate=learning_rate,
        momentum=_MOMENTUM)

    # Batch norm requires update_ops to be added as a train_op dependency.
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
      train_op = optimizer.minimize(loss, global_step)
  else:
    train_op = None

  accuracy = tf.metrics.accuracy(
      tf.argmax(labels, axis=1), predictions['classes'])
  metrics = {'accuracy': accuracy}

  # Create a tensor named train_accuracy for logging purposes.
  tf.identity(accuracy[1], name='train_accuracy')
  tf.summary.scalar('train_accuracy', accuracy[1])

  return tf.estimator.EstimatorSpec(
      mode=mode,
      predictions=predictions,
      loss=loss,
      train_op=train_op,
      eval_metric_ops=metrics)


def main(unused_argv):
  # Using the Winograd non-fused algorithms provides a small performance boost.
  os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'

243
244
  # Set up a RunConfig to only save checkpoints once per training cycle.
  run_config = tf.estimator.RunConfig().replace(save_checkpoints_secs=1e9)
245
  resnet_classifier = tf.estimator.Estimator(
246
247
248
249
250
251
      model_fn=resnet_model_fn, model_dir=FLAGS.model_dir, config=run_config,
      params={
          'resnet_size': FLAGS.resnet_size,
          'data_format': FLAGS.data_format,
          'batch_size': FLAGS.batch_size,
      })
252

253
  for _ in range(FLAGS.train_epochs // FLAGS.epochs_per_eval):
254
255
256
257
258
259
260
261
262
263
264
    tensors_to_log = {
        'learning_rate': 'learning_rate',
        'cross_entropy': 'cross_entropy',
        'train_accuracy': 'train_accuracy'
    }

    logging_hook = tf.train.LoggingTensorHook(
        tensors=tensors_to_log, every_n_iter=100)

    print('Starting a training cycle.')
    resnet_classifier.train(
265
        input_fn=lambda: input_fn(
266
            True, FLAGS.data_dir, FLAGS.batch_size, FLAGS.epochs_per_eval),
267
268
269
        hooks=[logging_hook])

    print('Starting to evaluate.')
270
    eval_results = resnet_classifier.evaluate(
271
        input_fn=lambda: input_fn(False, FLAGS.data_dir, FLAGS.batch_size))
272
273
274
275
276
    print(eval_results)


if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.INFO)
277
278
  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(argv=[sys.argv[0]] + unparsed)