gen_onnx.py 333 KB
Newer Older
1
2
3
#####################################################################################
# The MIT License (MIT)
#
Brian Pickrell's avatar
Brian Pickrell committed
4
# Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#####################################################################################
24
25
# This script generates onnx files for MIGraphX onnx operator tests.
# To generate an individual onnx file, you can use the following
Brian Pickrell's avatar
Brian Pickrell committed
26
# command: python3 -c "import gen_onnx; gen_onnx.{test_name}_test()"
Khalique's avatar
Khalique committed
27
28
29
import numpy as np
import onnx
from onnx import helper
30
from onnx import TensorProto
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from onnx.numpy_helper import from_array


def onnx_test(external_data=False):
    def create_onnx_test(op_test):
        def run_test():
            op_info = op_test()
            if len(op_info) > 3:
                graph_def = helper.make_graph(op_info[0],
                                              op_test.__name__,
                                              op_info[1],
                                              op_info[2],
                                              initializer=op_info[3])
            else:
                graph_def = helper.make_graph(op_info[0], op_test.__name__,
                                              op_info[1], op_info[2])
            model_def = helper.make_model(graph_def,
                                          producer_name=op_test.__name__)
            onnx.save_model(model_def,
                            '{}.onnx'.format(op_test.__name__),
                            save_as_external_data=external_data,
                            location='{}.weight'.format(op_test.__name__),
                            size_threshold=0,
                            convert_attribute=True)

        return run_test

    return create_onnx_test


@onnx_test()
Khalique's avatar
Khalique committed
62
63
64
65
66
67
68
69
70
71
def acos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
72
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
73

Khalique's avatar
Khalique committed
74

75
@onnx_test()
76
77
78
79
80
81
82
83
84
85
86
87
88
def acosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acosh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


89
@onnx_test()
Khalique's avatar
Khalique committed
90
91
92
def add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
93
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
94

Khalique's avatar
Khalique committed
95
96
97
98
99
100
101
    node = onnx.helper.make_node('Add',
                                 inputs=['0', '1'],
                                 broadcast=1,
                                 axis=1,
                                 outputs=['2'])

    return ([node], [x, y], [z])
Khalique's avatar
Khalique committed
102
103


104
@onnx_test()
Khalique's avatar
Khalique committed
105
106
107
108
109
110
111
112
113
114
115
def add_fp16_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
116
    return (
Khalique's avatar
Khalique committed
117
        [node],
Khalique's avatar
Khalique committed
118
        [x, y],
Khalique's avatar
Khalique committed
119
120
        [z],
        # '0' -> 1.5, '1' -> 2.5
Khalique's avatar
Khalique committed
121
122
123
124
        [
            onnx.helper.make_tensor('0', TensorProto.FLOAT16, [1], [15872]),
            onnx.helper.make_tensor('1', TensorProto.FLOAT16, [1], [16640])
        ])
Khalique's avatar
Khalique committed
125
126


127
@onnx_test()
Khalique's avatar
Khalique committed
128
def add_scalar_test():
129
130
131
    x = helper.make_tensor_value_info('0', TensorProto.UINT8, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.UINT8, [])
    z = helper.make_tensor_value_info('2', TensorProto.UINT8, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
132

Khalique's avatar
Khalique committed
133
134
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

135
    return ([node], [x, y], [z])
Khalique's avatar
Khalique committed
136
137


138
@onnx_test()
Khalique's avatar
Khalique committed
139
140
141
142
def argmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])

Khalique's avatar
Khalique committed
143
144
145
146
147
    node = onnx.helper.make_node('ArgMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=2,
                                 keepdims=0)
Khalique's avatar
Khalique committed
148

Khalique's avatar
Khalique committed
149
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
150

Khalique's avatar
Khalique committed
151

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
@onnx_test()
def argmax_select_last_index_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])

    node = onnx.helper.make_node('ArgMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=2,
                                 keepdims=0,
                                 select_last_index=1)

    return ([node], [x], [y])


167
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
168
169
170
171
172
173
174
175
176
177
178
179
180
def argmax_dyn_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 4, 6])

    node = onnx.helper.make_node('ArgMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=2,
                                 keepdims=0)

    return ([node], [x], [y])


181
@onnx_test()
Khalique's avatar
Khalique committed
182
183
184
185
def argmin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])

Khalique's avatar
Khalique committed
186
187
188
189
190
    node = onnx.helper.make_node('ArgMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=3,
                                 keepdims=0)
Khalique's avatar
Khalique committed
191

Khalique's avatar
Khalique committed
192
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
193

Khalique's avatar
Khalique committed
194

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
@onnx_test()
def argmin_select_last_index_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])

    node = onnx.helper.make_node('ArgMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=3,
                                 keepdims=0,
                                 select_last_index=1)

    return ([node], [x], [y])


210
@onnx_test()
Khalique's avatar
Khalique committed
211
212
213
214
215
216
217
218
219
220
def asin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
221
222
    return ([node], [x], [y])

Khalique's avatar
Khalique committed
223

224
@onnx_test()
225
226
227
228
229
230
231
232
233
234
235
236
237
def asinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asinh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


238
@onnx_test()
Khalique's avatar
Khalique committed
239
240
241
242
243
244
245
246
247
def atan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
248

Khalique's avatar
Khalique committed
249
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
250

Khalique's avatar
Khalique committed
251

252
@onnx_test()
253
254
255
256
257
258
259
260
261
262
263
264
265
def atanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atanh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


266
@onnx_test()
267
268
269
270
271
272
273
274
275
276
277
278
def averagepool_1d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    out = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['0'],
                                 outputs=['1'],
                                 kernel_shape=[3])

    return ([node], [x], [out])


279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
@onnx_test()
def averagepool_dilate_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 4, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 4, 2])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2],
                                 strides=[1],
                                 pads=[1, 1],
                                 dilations=[3])

    return ([node], [x], [y])


295
@onnx_test()
296
297
298
299
300
301
302
303
304
305
306
307
308
def averagepool_3d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
    out = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                        [1, 3, 3, 3, 3])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['0'],
                                 outputs=['1'],
                                 kernel_shape=[3, 3, 3])

    return ([node], [x], [out])


309
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
310
311
312
313
314
315
316
317
318
def averagepool_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 5, 5, 5])
    out = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                        [None, 3, 3, 3, 3])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['0'],
                                 outputs=['1'],
Brian Pickrell's avatar
Brian Pickrell committed
319
320
321
                                 kernel_shape=[3, 3, 3],
                                 strides=[2, 2, 2],
                                 pads=[1, 1, 1, 1, 1, 1])
Charlie Lin's avatar
Charlie Lin committed
322
323
324
    return ([node], [x], [out])


325
@onnx_test()
Brian Pickrell's avatar
Brian Pickrell committed
326
327
328
329
330
def averagepool_dyn_autopad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 5, 5, 5])
    out = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                        [None, 3, 3, 3, 3])
Charlie Lin's avatar
Charlie Lin committed
331
332

    node = onnx.helper.make_node('AveragePool',
Brian Pickrell's avatar
Brian Pickrell committed
333
334
335
336
337
338
                                 inputs=['0'],
                                 outputs=['1'],
                                 kernel_shape=[3, 3, 3],
                                 strides=[2, 2, 2],
                                 auto_pad='SAME_UPPER')
    return ([node], [x], [out])
Charlie Lin's avatar
Charlie Lin committed
339
340


341
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
342
343
344
345
346
347
348
349
350
351
352
353
354
355
def averagepool_dyn_asym_padding_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 1, 3, 3])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1])

    return ([node], [x], [y])


356
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
357
358
359
360
361
362
363
364
365
366
367
368
369
def averagepool_dyn_cip_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 1, 1, 1])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 count_include_pad=1)

    return ([node], [x], [y])


370
@onnx_test()
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
def averagepool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET')

    return ([node], [x], [y])


386
@onnx_test()
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
def averagepool_nt_cip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET',
                                 count_include_pad=1)

    return ([node], [x], [y])


403
@onnx_test()
404
405
406
407
408
409
410
411
412
413
414
415
416
def averagepool_same_lower_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_LOWER')

    return ([node], [x], [y])


417
@onnx_test()
418
419
420
421
422
423
424
425
426
427
428
429
430
431
def averagepool_sl_cip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_LOWER',
                                 count_include_pad=1)

    return ([node], [x], [y])


432
@onnx_test()
433
434
435
436
437
438
439
440
441
442
443
444
445
def averagepool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_UPPER')

    return ([node], [x], [y])


446
@onnx_test()
447
448
449
450
451
452
453
454
455
456
457
458
459
def batch_norm_flat_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [1])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [1])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [1])
    var = helper.make_tensor_value_info('variance', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['x', 'scale', 'bias', 'mean', 'variance'],
        outputs=['y'],
        epsilon=1e-6)
460
461
462
463

    return ([node], [x, scale, bias, mean, var], [out])


464
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
def batch_norm_rank_2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [5])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [5])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [5])
    var = helper.make_tensor_value_info('variance', TensorProto.FLOAT, [5])
    out = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 5])

    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['x', 'scale', 'bias', 'mean', 'variance'],
        outputs=['y'],
        epsilon=1e-6)

    return ([node], [x, scale, bias, mean, var], [out])


482
@onnx_test()
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
def batch_norm_1d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [2, 3, 4])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [3])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [3])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [3])
    var = helper.make_tensor_value_info('variance', TensorProto.FLOAT, [3])
    out = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [2, 3, 4])

    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['x', 'scale', 'bias', 'mean', 'variance'],
        outputs=['y'])

    return ([node], [x, scale, bias, mean, var], [out])


499
@onnx_test()
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
def batch_norm_2d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4, 4])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [3])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [3])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [3])
    var = helper.make_tensor_value_info('variance', TensorProto.FLOAT, [3])
    out = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 4])

    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['x', 'scale', 'bias', 'mean', 'variance'],
        outputs=['y'])

    return ([node], [x, scale, bias, mean, var], [out])


516
@onnx_test()
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
def batch_norm_3d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16,
                                      [2, 2, 2, 2, 2])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT16, [2])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT16, [2])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT16, [2])
    var = helper.make_tensor_value_info('variance', TensorProto.FLOAT16, [2])
    out = helper.make_tensor_value_info('y', TensorProto.FLOAT16,
                                        [2, 2, 2, 2, 2])

    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['x', 'scale', 'bias', 'mean', 'variance'],
        outputs=['y'],
        epsilon=1e-6)

    return ([node], [x, scale, bias, mean, var], [out])


536
@onnx_test()
537
538
539
540
541
542
543
544
545
546
547
548
def batch_norm_invalid_bias_rank_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4, 4])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [3])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [3, 1])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [3])
    var = helper.make_tensor_value_info('variance', TensorProto.FLOAT, [3])
    out = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 4])

    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['x', 'scale', 'bias', 'mean', 'variance'],
        outputs=['y'])
549
550
551
552

    return ([node], [x, scale, bias, mean, var], [out])


553
@onnx_test()
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
def binary_dyn_brcst_prelu_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                         [None, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [None, 3, 4, 5])

    node = onnx.helper.make_node(
        'PRelu',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


570
@onnx_test()
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
def binary_dyn_brcst_add_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                         [None, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [None, 3, 4, 5])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


587
@onnx_test()
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
def binary_dyn_brcst_attr_error_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                         [None, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [None, 3, 4, 5])

    node = onnx.helper.make_node('Add',
                                 inputs=['0', '1'],
                                 outputs=['out'],
                                 broadcast=1,
                                 axis=1)

    return ([node], [arg0, arg1], [arg_out])


604
@onnx_test()
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
def binary_dyn_brcst_mul_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                         [None, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [None, 3, 4, 5])

    node = onnx.helper.make_node(
        'Mul',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


621
@onnx_test()
Khalique's avatar
Khalique committed
622
623
624
625
def cast_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

Khalique's avatar
Khalique committed
626
627
    node = onnx.helper.make_node('Cast', inputs=['x'], outputs=['y'], to=1)

Khalique's avatar
Khalique committed
628
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
629

kahmed10's avatar
kahmed10 committed
630

631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
@onnx_test()
def castlike_test():
    input = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [10])
    target_type = helper.make_tensor_value_info('1', TensorProto.FLOAT, [10])
    output = helper.make_tensor_value_info('out', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node('CastLike',
                                 inputs=['0', '1'],
                                 outputs=['out'])

    return ([node], [input, target_type], [output])


@onnx_test()
def castlike_error_test():
    input = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [10])
    output = helper.make_tensor_value_info('out', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node('CastLike', inputs=['0'], outputs=['out'])

    return ([node], [input], [output])


654
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
655
656
657
658
659
660
661
662
663
664
665
def ceil_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Ceil',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
666

kahmed10's avatar
kahmed10 committed
667

668
@onnx_test()
669
670
671
672
673
674
675
676
677
678
679
680
def celu_alpha_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node('Celu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.8)

    return ([node], [x], [y])


681
@onnx_test()
682
683
684
685
686
687
688
689
690
def celu_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('Celu', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


691
@onnx_test()
692
693
694
695
696
697
698
699
700
701
702
703
def celu_verify_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('Celu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.5)

    return ([node], [x], [y])


704
@onnx_test()
705
706
707
708
709
710
711
712
713
def celu_wrong_type_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [2, 3])

    node = onnx.helper.make_node('Celu', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


714
@onnx_test()
715
716
717
718
719
720
721
722
723
724
725
726
def celu_zero_alpha_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('Celu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.0)

    return ([node], [x], [y])


727
@onnx_test()
Khalique's avatar
Khalique committed
728
729
730
731
def clip_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
732
733
734
735
736
    node = onnx.helper.make_node('Clip',
                                 inputs=['0'],
                                 outputs=['1'],
                                 max=6.0,
                                 min=0.0)
Khalique's avatar
Khalique committed
737

Khalique's avatar
Khalique committed
738
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
739

Khalique's avatar
Khalique committed
740

741
@onnx_test()
kahmed10's avatar
kahmed10 committed
742
743
744
745
746
747
748
749
750
751
752
753
754
755
def clip_test_op11():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])
    max_val = helper.make_tensor('max', TensorProto.FLOAT, [], [6.0])

    node = onnx.helper.make_node('Clip',
                                 inputs=['0', 'min', 'max'],
                                 outputs=['1'])

    return ([node], [x], [y], [min_val, max_val])


756
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
757
758
759
760
761
762
763
764
765
766
767
768
769
def clip_test_op11_max_only():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    max_val = helper.make_tensor('max', TensorProto.FLOAT, [], [0.0])

    node = onnx.helper.make_node('Clip',
                                 inputs=['0', '', 'max'],
                                 outputs=['1'])

    return ([node], [x], [y], [max_val])


770
@onnx_test()
kahmed10's avatar
kahmed10 committed
771
772
773
774
775
776
777
778
779
780
781
def clip_test_op11_min_only():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])

    node = onnx.helper.make_node('Clip', inputs=['0', 'min'], outputs=['1'])

    return ([node], [x], [y], [min_val])


782
@onnx_test()
kahmed10's avatar
kahmed10 committed
783
784
785
786
787
788
789
790
791
def clip_test_op11_no_args():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node('Clip', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


792
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
793
794
795
796
797
798
799
800
801
def clip_test_op11_no_args1():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node('Clip', inputs=['0', '', ''], outputs=['1'])

    return ([node], [x], [y])


802
@onnx_test()
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
def clip_test_args_type_mismatch():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [1, 3],
                                 [1.5, 2.5, 3.5])
    max_val = helper.make_tensor('max', TensorProto.INT64, [3, 1], [2, 3, 4])

    node = onnx.helper.make_node('Clip',
                                 inputs=['0', 'min', 'max'],
                                 outputs=['1'])

    return ([node], [x], [y], [min_val, max_val])


818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
@onnx_test()
def clip_dyn_min_max_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])
    max_val = helper.make_tensor('max', TensorProto.FLOAT, [], [6.0])

    node = onnx.helper.make_node('Clip',
                                 inputs=['0', 'min', 'max'],
                                 outputs=['1'])

    return ([node], [x], [y], [min_val, max_val])


@onnx_test()
def clip_dyn_min_only_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])

    node = onnx.helper.make_node('Clip', inputs=['0', 'min'], outputs=['1'])

    return ([node], [x], [y], [min_val])


845
@onnx_test()
Khalique's avatar
Khalique committed
846
847
848
849
850
851
852
853
854
855
856
857
def concat_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 4, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7, 4, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [9, 4, 3])

    node = onnx.helper.make_node(
        'Concat',
        inputs=['0', '1'],
        axis=0,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
858
859
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
860

861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
@onnx_test()
def concat_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, None, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, None, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [None, None, 3])

    node = onnx.helper.make_node(
        'Concat',
        inputs=['0', '1'],
        axis=0,
        outputs=['2'],
    )

    return ([node], [x, y], [z])


877
@onnx_test()
Khalique's avatar
Khalique committed
878
879
880
def constant_test():
    x = np.array([0, 1, 2])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
Khalique's avatar
Khalique committed
881

Khalique's avatar
Khalique committed
882
883
884
885
886
887
888
889
890
891
892
893
    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.FLOAT,
            dims=x.shape,
            vals=x.flatten().astype(float),
        ),
    )

Khalique's avatar
Khalique committed
894
    return ([node], [], [y])
Khalique's avatar
Khalique committed
895

Khalique's avatar
Khalique committed
896

897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
@onnx_test()
def constant_value_float_test():

    node = onnx.helper.make_node('Constant',
                                 inputs=[],
                                 outputs=[],
                                 value_float=[1.0])

    return ([node], [], [])


@onnx_test()
def constant_value_floats_test():

    node = onnx.helper.make_node('Constant',
                                 inputs=[],
                                 outputs=[],
                                 value_floats=[1.0, 2.0, 3.0])

    return ([node], [], [])


@onnx_test()
def constant_value_int_test():

    node = onnx.helper.make_node('Constant',
                                 inputs=[],
                                 outputs=[],
                                 value_int=[1])

    return ([node], [], [])


@onnx_test()
def constant_value_ints_test():

    node = onnx.helper.make_node('Constant',
                                 inputs=[],
                                 outputs=[],
                                 value_ints=[1, 2, 3])

    return ([node], [], [])


@onnx_test()
def constant_no_attributes_test():

    node = onnx.helper.make_node('Constant', inputs=[], outputs=[])

    return ([node], [], [])


@onnx_test()
def constant_multiple_attributes_test():
    x = np.array([0, 1, 2])

    node = onnx.helper.make_node('Constant',
                                 inputs=[],
                                 outputs=[],
                                 value_floats=[1.0, 2.0],
                                 value_ints=[1, 2],
                                 value=onnx.helper.make_tensor(
                                     name='const_tensor',
                                     data_type=TensorProto.FLOAT,
                                     dims=x.shape,
                                     vals=x.flatten().astype(float)))

    return ([node], [], [])


967
@onnx_test()
Khalique's avatar
Khalique committed
968
def constant_fill_test():
Khalique's avatar
Khalique committed
969
970
971
972
973
974
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=[],
        outputs=['value'],
Khalique's avatar
Khalique committed
975
976
977
978
        dtype=1,
        value=1.0,
        shape=[2, 3],
        input_as_shape=0,
Khalique's avatar
Khalique committed
979
980
    )

Khalique's avatar
Khalique committed
981
    return ([node], [], [value])
Khalique's avatar
Khalique committed
982

Khalique's avatar
Khalique committed
983

984
@onnx_test()
Khalique's avatar
Khalique committed
985
def constant_fill_input_as_shape_test():
Khalique's avatar
Khalique committed
986
    np_shape = np.array([2, 3])
Khalique's avatar
Khalique committed
987
988
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

Khalique's avatar
Khalique committed
989
990
991
992
    ts_shape = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=np_shape.shape,
                                  vals=np_shape.flatten().astype(int))
Khalique's avatar
Khalique committed
993
994
995
996
997
998
999
1000
1001
1002
1003
1004

    const_shape_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=ts_shape,
    )

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=['shape'],
        outputs=['value'],
Khalique's avatar
Khalique committed
1005
1006
1007
        dtype=1,
        value=1.0,
        input_as_shape=1,
Khalique's avatar
Khalique committed
1008
1009
    )

Khalique's avatar
Khalique committed
1010
    return ([const_shape_node, node], [], [value])
Khalique's avatar
Khalique committed
1011

Khalique's avatar
Khalique committed
1012

1013
@onnx_test()
Khalique's avatar
Khalique committed
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
def constant_scalar_test():
    x = np.array([1])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.INT32,
            dims=x.shape,
            vals=x.flatten().astype(int),
        ),
    )

Khalique's avatar
Khalique committed
1030
    return ([node], [], [y])
Khalique's avatar
Khalique committed
1031

Khalique's avatar
Khalique committed
1032

1033
@onnx_test()
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
def constant_empty_scalar_int64_test():
    x = np.array([]).astype(np.int64)
    y = helper.make_tensor_value_info('0', TensorProto.INT64, [0])

    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='one_element_tensor',
            data_type=TensorProto.INT64,
            dims=x.shape,
            vals=x.flatten().astype(np.int64),
        ),
    )

    return ([node], [], [y])


1053
@onnx_test()
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
def constant_one_val_int64_test():
    x = np.array([1]).astype(np.int64)
    y = helper.make_tensor_value_info('0', TensorProto.INT64, [0])

    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='empty_tensor',
            data_type=TensorProto.INT64,
            dims=x.shape,
            vals=x.flatten().astype(np.int64),
        ),
    )

    return ([node], [], [y])


1073
@onnx_test()
Khalique's avatar
Khalique committed
1074
def const_of_shape_empty_input_test():
Khalique's avatar
Khalique committed
1075
1076
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
1077
    empty_val = np.array([]).astype(np.int64)
Khalique's avatar
Khalique committed
1078
    empty_ts = helper.make_tensor(name='empty_tensor',
Charlie Lin's avatar
Charlie Lin committed
1079
                                  data_type=TensorProto.INT64,
Khalique's avatar
Khalique committed
1080
                                  dims=empty_val.shape,
Charlie Lin's avatar
Charlie Lin committed
1081
                                  vals=empty_val.flatten().astype(np.int64))
Khalique's avatar
Khalique committed
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=empty_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
Khalique's avatar
Khalique committed
1094
        value=tensor_val,
Khalique's avatar
Khalique committed
1095
1096
    )

Khalique's avatar
Khalique committed
1097
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
1098

Khalique's avatar
Khalique committed
1099

1100
@onnx_test()
Khalique's avatar
Khalique committed
1101
def const_of_shape_float_test():
Khalique's avatar
Khalique committed
1102
1103
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.FLOAT, [1],
                                         [10])
Khalique's avatar
Khalique committed
1104
1105

    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
1106
    shape_ts = helper.make_tensor(name='shape_tensor',
Charlie Lin's avatar
Charlie Lin committed
1107
                                  data_type=TensorProto.INT64,
Khalique's avatar
Khalique committed
1108
                                  dims=shape_val.shape,
Charlie Lin's avatar
Charlie Lin committed
1109
                                  vals=shape_val.flatten().astype(np.int64))
Khalique's avatar
Khalique committed
1110
1111
1112
1113
1114
1115
1116
1117
1118

    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

Khalique's avatar
Khalique committed
1119
1120
1121
1122
    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
1123

Khalique's avatar
Khalique committed
1124
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
1125

Khalique's avatar
Khalique committed
1126

Charlie Lin's avatar
Charlie Lin committed
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
@onnx_test()
def const_of_shape_default_test():
    shape_val = np.array([2, 3, 4]).astype(np.int64)
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT64,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(np.int64))
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2, 3, 4])

    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'])

    return ([shape_const, node], [], [y])


1149
@onnx_test()
Khalique's avatar
Khalique committed
1150
def const_of_shape_int64_test():
Khalique's avatar
Khalique committed
1151
1152
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
1153
    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
1154
    shape_ts = helper.make_tensor(name='shape_tensor',
Charlie Lin's avatar
Charlie Lin committed
1155
                                  data_type=TensorProto.INT64,
Khalique's avatar
Khalique committed
1156
                                  dims=shape_val.shape,
Charlie Lin's avatar
Charlie Lin committed
1157
                                  vals=shape_val.flatten().astype(np.int64))
Khalique's avatar
Khalique committed
1158
    shape_const = helper.make_node(
Khalique's avatar
Khalique committed
1159
1160
1161
1162
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
Khalique's avatar
Khalique committed
1163
    )
Charlie Lin's avatar
Charlie Lin committed
1164
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2, 3, 4])
Khalique's avatar
Khalique committed
1165
1166
1167
1168
1169

    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
1170

Khalique's avatar
Khalique committed
1171
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
1172

Khalique's avatar
Khalique committed
1173

1174
@onnx_test()
Khalique's avatar
Khalique committed
1175
1176
def const_of_shape_no_value_attr_test():
    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
1177
    shape_ts = helper.make_tensor(name='shape_tensor',
Charlie Lin's avatar
Charlie Lin committed
1178
                                  data_type=TensorProto.INT64,
Khalique's avatar
Khalique committed
1179
                                  dims=shape_val.shape,
Charlie Lin's avatar
Charlie Lin committed
1180
                                  vals=shape_val.flatten().astype(np.int64))
Khalique's avatar
Khalique committed
1181
1182
1183
1184
1185
1186
1187
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
1188

Khalique's avatar
Khalique committed
1189
1190
1191
1192
1193
1194
    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1195
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
1196

Khalique's avatar
Khalique committed
1197

Charlie Lin's avatar
Charlie Lin committed
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
@onnx_test()
def const_of_shape_dyn_float_test():
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.FLOAT, [1],
                                         [10])

    output_dims = helper.make_tensor_value_info('output_dims',
                                                TensorProto.INT64, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['output_dims'],
                                 outputs=['y'],
                                 value=tensor_val)

    return ([node], [output_dims], [y])


@onnx_test()
def const_of_shape_dyn_int64_test():
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])

    output_dims = helper.make_tensor_value_info('output_dims',
                                                TensorProto.INT64, [3])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2, 3, 4])

    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['output_dims'],
                                 outputs=['y'],
                                 value=tensor_val)

    return ([node], [output_dims], [y])


1232
@onnx_test()
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
def conv_1d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 3])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [out])


1243
@onnx_test()
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
def conv_3d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, 3, 3, 3])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [out])


1255
@onnx_test()
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
def conv_attr_fail_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 3])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 strides=[1, 1],
                                 outputs=['2'])

    return ([node], [x, y], [out])


1269
@onnx_test()
Khalique's avatar
Khalique committed
1270
1271
1272
1273
1274
def conv_autopad_fail_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 34, 34])

Khalique's avatar
Khalique committed
1275
1276
1277
1278
1279
1280
1281
1282
1283
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 dilations=[1, 1],
                                 strides=[1, 1],
                                 auto_pad='SAME',
                                 pads=[0, 0, 1, 1, 0, 0, 1, 1])

    return ([node], [x, y], [out])
Khalique's avatar
Khalique committed
1284
1285


1286
@onnx_test()
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
def conv_autopad_same_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 32, 32])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 dilations=[1, 1],
                                 strides=[1, 1],
                                 auto_pad='SAME')

    return ([node], [x, y], [out])


1302
@onnx_test()
Khalique's avatar
Khalique committed
1303
1304
1305
1306
1307
1308
def conv_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 28, 28])

Khalique's avatar
Khalique committed
1309
1310
1311
1312
1313
1314
1315
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])

    return ([node], [x, y, z], [out])
Khalique's avatar
Khalique committed
1316
1317


1318
@onnx_test()
Khalique's avatar
Khalique committed
1319
1320
1321
1322
1323
1324
1325
1326
def conv_bn_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    k = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1])
    l = helper.make_tensor_value_info('6', TensorProto.FLOAT, [1])
Khalique's avatar
Khalique committed
1327
1328
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT,
                                        [1, 1, 14, 14])
Khalique's avatar
Khalique committed
1329

Khalique's avatar
Khalique committed
1330
1331
1332
1333
1334
1335
    node0 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['7'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
1336

Khalique's avatar
Khalique committed
1337
1338
1339
1340
1341
    node1 = onnx.helper.make_node('BatchNormalization',
                                  inputs=['7', '3', '4', '5', '6'],
                                  outputs=['8'],
                                  epsilon=9.99999974737875e-06,
                                  momentum=0.899999976158142)
Khalique's avatar
Khalique committed
1342

Khalique's avatar
Khalique committed
1343
1344
1345
1346
1347
1348
1349
1350
1351
    node2 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node0, node1, node2, node3], [x, y, z, m, n, k, l], [out])
Khalique's avatar
Khalique committed
1352
1353


1354
@onnx_test()
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
def conv_dynamic_batch_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 3, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [None, 1, 3, 3])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])
    return ([node], [x, y], [out])


Charlie Lin's avatar
Charlie Lin committed
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
@onnx_test()
def conv_dynamic_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('3', TensorProto.FLOAT,
                                        [None, 2, 28, 28])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])

    return ([node], [x, y, z], [out])


1383
@onnx_test()
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
def conv_dynamic_img_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, None, None])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])
    return ([node], [x, y], [out])


1395
@onnx_test()
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
def conv_dynamic_weights_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [1, 3, None, None])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, None, None])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])
    return ([node], [x, y], [out])


1407
@onnx_test()
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
def conv_dynamic_img_and_weights_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [1, 3, None, None])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, None, None])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])
    return ([node], [x, y], [out])


1420
@onnx_test()
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
def conv_dynamic_batch_same_upper_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 3, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 auto_pad='SAME_UPPER')
    return ([node], [x, y], [out])


1433
@onnx_test()
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
def conv_dynamic_img_same_upper_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, None, None])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 auto_pad='SAME_UPPER')
    return ([node], [x, y], [out])


1448
@onnx_test()
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
def conv_dynamic_kernel_same_lower_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [1, 3, None, None])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 auto_pad='SAME_LOWER')
    return ([node], [x, y], [out])


1462
@onnx_test()
Khalique's avatar
Khalique committed
1463
1464
1465
1466
1467
1468
def conv_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1, 1, 14, 14])

Khalique's avatar
Khalique committed
1469
1470
1471
1472
1473
1474
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['3'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
1475

Khalique's avatar
Khalique committed
1476
    node2 = onnx.helper.make_node('Relu', inputs=['3'], outputs=['4'])
Khalique's avatar
Khalique committed
1477

Khalique's avatar
Khalique committed
1478
1479
1480
1481
1482
1483
1484
1485
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['4'],
                                  outputs=['5'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node1, node2, node3], [x, y, z], [out])
Khalique's avatar
Khalique committed
1486
1487


1488
@onnx_test()
Khalique's avatar
Khalique committed
1489
1490
1491
1492
1493
1494
1495
1496
def conv_relu_maxpool_x2_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 5, 5, 5])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT, [1, 1, 5, 5])

Khalique's avatar
Khalique committed
1497
1498
1499
1500
1501
1502
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['5'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
1503

Khalique's avatar
Khalique committed
1504
    node2 = onnx.helper.make_node('Relu', inputs=['5'], outputs=['6'])
Khalique's avatar
Khalique committed
1505

Khalique's avatar
Khalique committed
1506
1507
1508
1509
1510
1511
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['6'],
                                  outputs=['7'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])
Khalique's avatar
Khalique committed
1512

Khalique's avatar
Khalique committed
1513
1514
1515
1516
1517
1518
    node4 = onnx.helper.make_node('Conv',
                                  inputs=['7', '3', '4'],
                                  outputs=['8'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
1519

Khalique's avatar
Khalique committed
1520
    node5 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
Khalique's avatar
Khalique committed
1521

Khalique's avatar
Khalique committed
1522
1523
1524
1525
1526
1527
1528
1529
    node6 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node1, node2, node3, node4, node5, node6], [x, y, z, m, n], [out])
Khalique's avatar
Khalique committed
1530
1531


1532
@onnx_test()
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
def convinteger_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT8, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.INT8, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.INT32, [1])
    out = helper.make_tensor_value_info('3', TensorProto.INT32, [1, 2, 28, 28])

    node = onnx.helper.make_node('ConvInteger',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])

    return ([node], [x, y, z], [out])


1548
@onnx_test()
Khalique's avatar
Khalique committed
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
def cos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Cos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1559
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1560

Khalique's avatar
Khalique committed
1561

1562
@onnx_test()
Khalique's avatar
Khalique committed
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
def cosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Cosh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1573
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1574

Khalique's avatar
Khalique committed
1575

1576
@onnx_test()
1577
def conv_transpose_test():
kahmed10's avatar
kahmed10 committed
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w'],
                                 outputs=['y'])

    return ([node], [x, w], [y])


1590
@onnx_test()
1591
def conv_transpose_bias_test():
kahmed10's avatar
kahmed10 committed
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w', 'b'],
                                 outputs=['y'])

    return ([node], [x, w, b], [y])


1605
@onnx_test()
1606
def conv_transpose_input_pads_strides_test():
kahmed10's avatar
kahmed10 committed
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 7, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[1, 1, 1, 1])

    return ([node], [x, w], [y])


1620
@onnx_test()
1621
def conv_transpose_input_pads_asymm_test():
kahmed10's avatar
kahmed10 committed
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 8, 6])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[0, 0, 1, 1])

    return ([node], [x, w], [y])


1635
@onnx_test()
1636
def conv_transpose_input_pads_asymm_1d_test():
kahmed10's avatar
kahmed10 committed
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 6])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[2],
                                 pads=[0, 1],
                                 dilations=[1])

    return ([node], [x, w], [y])


1651
@onnx_test()
1652
def conv_transpose_output_padding_test():
kahmed10's avatar
kahmed10 committed
1653
1654
1655
1656
1657
1658
1659
1660
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
kahmed10's avatar
kahmed10 committed
1661
                                 output_padding=[1, 1])
kahmed10's avatar
kahmed10 committed
1662
1663
1664
1665

    return ([node], [x, w], [y])


1666
@onnx_test()
1667
def conv_transpose_output_padding_3d_test():
kahmed10's avatar
kahmed10 committed
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2, 2],
                                 output_padding=[1, 1, 1])

    return ([node], [x, w], [y])


1681
@onnx_test()
1682
def conv_transpose_output_shape_test():
kahmed10's avatar
kahmed10 committed
1683
1684
1685
1686
1687
1688
1689
1690
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
kahmed10's avatar
kahmed10 committed
1691
1692
1693
1694
1695
                                 output_shape=[10, 8])

    return ([node], [x, w], [y])


1696
@onnx_test()
1697
def conv_transpose_output_shape_3d_test():
kahmed10's avatar
kahmed10 committed
1698
1699
1700
1701
1702
1703
1704
1705
1706
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2, 2],
                                 output_shape=[10, 8, 8])
kahmed10's avatar
kahmed10 committed
1707
1708
1709
1710

    return ([node], [x, w], [y])


1711
@onnx_test()
1712
def conv_transpose_stride_test():
kahmed10's avatar
kahmed10 committed
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 7, 3])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2])

    return ([node], [x, w], [y])


1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
@onnx_test()
def conv_transpose_auto_pad_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 3, 3])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 auto_pad='SAME_UPPER')

    return ([node], [x, w], [y])


@onnx_test()
def conv_transpose_dyn_asym_padding_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 8, 6])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[0, 0, 1, 1])

    return ([node], [x, w], [y])


@onnx_test()
def conv_transpose_dyn_output_shape_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 2, 10, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 output_shape=[10, 8])

    return ([node], [x, w], [y])


@onnx_test()
def conv_transpose_dyn_batch_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 1, 5, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w'],
                                 outputs=['y'])

    return ([node], [x, w], [y])


@onnx_test()
def conv_transpose_dyn_img_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT,
                                      [1, 1, None, None])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT,
                                      [1, 1, None, None])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w'],
                                 outputs=['y'])

    return ([node], [x, w], [y])


1800
@onnx_test()
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
def depthtospace_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 8, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 10, 10])

    node = onnx.helper.make_node('DepthToSpace',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2,
                                 mode='DCR')

    return ([node], [x], [y])


1815
@onnx_test()
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
def depthtospace_simple_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 8, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 4, 6])

    node = onnx.helper.make_node('DepthToSpace',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2,
                                 mode='DCR')

    return ([node], [x], [y])


1830
@onnx_test()
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
def depthtospace_crd_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 8, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 10, 10])

    node = onnx.helper.make_node('DepthToSpace',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2,
                                 mode='CRD')

    return ([node], [x], [y])


1845
@onnx_test()
Umang Yadav's avatar
Umang Yadav committed
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
def spacetodepth_test():

    x = helper.make_tensor_value_info('x', TensorProto.float, [2, 2, 10, 10])
    y = helper.make_tensor_value_info('y', TensorProto.float, [2, 8, 5, 5])

    node = onnx.helper.make_node('spacetodepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2)

    return ([node], [x], [y])


1859
@onnx_test()
Umang Yadav's avatar
Umang Yadav committed
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
def spacetodepth_simple_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 4, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 8, 2, 3])

    node = onnx.helper.make_node('SpaceToDepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2)

    return ([node], [x], [y])


1873
@onnx_test()
Umang Yadav's avatar
Umang Yadav committed
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
def spacetodepth_invalid_blocksize_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 4, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 8, 2, 3])

    node = onnx.helper.make_node('SpaceToDepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=0.3)

    return ([node], [x], [y])


1887
@onnx_test()
Umang Yadav's avatar
Umang Yadav committed
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
def spacetodepth_nondivisibility_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 8, 2, 2])

    node = onnx.helper.make_node('SpaceToDepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2)

    return ([node], [x], [y])


1901
@onnx_test()
1902
def dequantizelinear_test():
turneram's avatar
turneram committed
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node(
        'DequantizeLinear',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


1916
@onnx_test()
turneram's avatar
turneram committed
1917
def dequantizelinear_zero_point_test():
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node(
        'DequantizeLinear',
        inputs=['0', '1', '2'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1, arg2], [arg_out])


def make_dequantizelinear_axis_graph(axis):
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [1, 1, 5, 1])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [1, 1, 5, 1])

    node = onnx.helper.make_node('DequantizeLinear',
                                 inputs=['0', '1', '2'],
                                 outputs=['out'],
                                 axis=axis)

    return ([node], [arg0, arg1, arg2], [arg_out])


1947
@onnx_test()
1948
1949
1950
1951
def dequantizelinear_axis_test():
    return make_dequantizelinear_axis_graph(2)


1952
@onnx_test()
1953
1954
1955
1956
def dequantizelinear_neg_axis_test():
    return make_dequantizelinear_axis_graph(-2)


1957
@onnx_test()
Khalique's avatar
Khalique committed
1958
def dropout_test():
Khalique's avatar
Khalique committed
1959
1960
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])
Khalique's avatar
Khalique committed
1961

Khalique's avatar
Khalique committed
1962
1963
1964
1965
1966
1967
1968
    node = onnx.helper.make_node(
        'Dropout',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1969
1970


1971
@onnx_test()
Khalique's avatar
Khalique committed
1972
1973
1974
1975
def elu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
1976
1977
1978
1979
    node = onnx.helper.make_node('Elu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
1980

Khalique's avatar
Khalique committed
1981
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1982

Khalique's avatar
Khalique committed
1983

1984
@onnx_test()
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
def embedding_bag_test():

    index_val = np.array([1, 0, 2])
    offset_val = np.array([0])

    index_tensor = helper.make_tensor(name='index_val',
                                      data_type=TensorProto.INT32,
                                      dims=index_val.shape,
                                      vals=index_val.astype(np.int32))

    index = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['index'],
                                  value=index_tensor)

    offset_tensor = helper.make_tensor(name='offset_val',
                                       data_type=TensorProto.INT32,
                                       dims=offset_val.reshape(()).shape,
                                       vals=offset_val.astype(np.int32))

    offset = onnx.helper.make_node('Constant',
                                   inputs=[],
                                   outputs=['offset'],
                                   value=offset_tensor)

    weight = helper.make_tensor_value_info('weight', TensorProto.FLOAT, [4, 2])

    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [1, 2])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [1, 2])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [1, 2])

    node1 = onnx.helper.make_node('ATen',
                                  inputs=['weight', 'index', 'offset'],
                                  outputs=['y1'],
                                  mode=0,
                                  operator='embedding_bag')

    node2 = onnx.helper.make_node('ATen',
                                  inputs=['weight', 'index', 'offset'],
                                  outputs=['y2'],
                                  mode=1,
                                  operator='embedding_bag')

    node3 = onnx.helper.make_node('ATen',
                                  inputs=['weight', 'index', 'offset'],
                                  outputs=['y3'],
                                  mode=2,
                                  operator='embedding_bag')

    return ([index, offset, node1, node2, node3], [weight], [y1, y2, y3])


2037
@onnx_test()
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
def embedding_bag_offset_test():

    index_val = np.array([1, 0])
    offset_val = np.array([0, 1])

    index_tensor = helper.make_tensor(name='index_val',
                                      data_type=TensorProto.INT32,
                                      dims=index_val.shape,
                                      vals=index_val.astype(np.int32))

    index = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['index'],
                                  value=index_tensor)

    offset_tensor = helper.make_tensor(name='offset_val',
                                       data_type=TensorProto.INT32,
                                       dims=offset_val.shape,
                                       vals=offset_val.astype(np.int32))

    offset = onnx.helper.make_node('Constant',
                                   inputs=[],
                                   outputs=['offset'],
                                   value=offset_tensor)

    weight = helper.make_tensor_value_info('weight', TensorProto.FLOAT, [2, 3])

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('ATen',
                                 inputs=['weight', 'index', 'offset'],
                                 outputs=['y'],
                                 mode=0,
                                 operator='embedding_bag')

    return ([index, offset, node], [weight], [y])


2076
@onnx_test()
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
def equal_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
    x1 = helper.make_tensor("x1",
                            data_type=TensorProto.FLOAT,
                            dims=(2, 3),
                            vals=ax1.astype(np.float32))

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Equal',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


2096
@onnx_test()
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
def equal_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Equal',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


2114
@onnx_test()
Khalique's avatar
Khalique committed
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
def erf_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Erf',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2125
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2126

Khalique's avatar
Khalique committed
2127

2128
@onnx_test()
Khalique's avatar
Khalique committed
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
def exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Exp',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2139
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2140

Khalique's avatar
Khalique committed
2141

2142
@onnx_test()
Khalique's avatar
Khalique committed
2143
2144
def expand_test():
    shape_val = np.array([2, 3, 4, 5]).astype(np.int64)
Khalique's avatar
Khalique committed
2145
2146
2147
2148
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
2149
2150
2151
2152
2153
2154
2155
2156
2157
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
2158
2159
2160
2161
2162
2163
    node = onnx.helper.make_node('Expand',
                                 inputs=['x', 'shape'],
                                 outputs=['y'])

    return ([shape_const, node], [x], [y])

Khalique's avatar
Khalique committed
2164

2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
@onnx_test(True)
def external_constant_test():
    x = np.array([0, 1, 2])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])

    tensor = from_array(x)
    tensor.name = 'const_tensor'

    node = onnx.helper.make_node('Constant',
                                 inputs=[],
                                 outputs=['0'],
                                 value=tensor)

    return ([node], [], [y])


@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
def eyelike_default_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


2194
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
def eyelike_double_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.DOUBLE, [6, 15])
    T2 = helper.make_tensor_value_info('T2', TensorProto.DOUBLE, [6, 15])

    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


2207
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
def eyelike_half_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT16, [8, 8])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT16, [8, 8])

    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


2220
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2221
2222
2223
2224
2225
2226
2227
def eyelike_k_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike', inputs=['T1'], outputs=['T2'], k=1)
    return ([node], [T1], [T2])


2228
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
def eyelike_k_outofbounds_neg_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [2, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [2, 4])
    node = onnx.helper.make_node('EyeLike',
                                 inputs=['T1'],
                                 outputs=['T2'],
                                 k=-2)
    return ([node], [T1], [T2])


2239
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2240
2241
2242
2243
2244
2245
2246
def eyelike_k_outofbounds_pos_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike', inputs=['T1'], outputs=['T2'], k=4)
    return ([node], [T1], [T2])


2247
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
def eyelike_not_rank2_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4, 2])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


2259
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2260
2261
2262
2263
2264
2265
2266
def eyelike_verify_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike', inputs=['T1'], outputs=['T2'], k=1)
    return ([node], [T1], [T2])


2267
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
def eyelike_verify_negk_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike',
                                 inputs=['T1'],
                                 outputs=['T2'],
                                 k=-2)
    return ([node], [T1], [T2])


2278
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
def eyelike_set_dtype_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.DOUBLE, [3, 4])
    node = onnx.helper.make_node('EyeLike',
                                 inputs=['T1'],
                                 outputs=['T2'],
                                 dtype=TensorProto.DOUBLE)
    return ([node], [T1], [T2])


2289
@onnx_test()
Khalique's avatar
Khalique committed
2290
2291
def flatten_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
2292
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [6, 20])
Khalique's avatar
Khalique committed
2293
2294
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 60])

Khalique's avatar
Khalique committed
2295
2296
2297
2298
    node = onnx.helper.make_node('Flatten',
                                 inputs=['0'],
                                 axis=2,
                                 outputs=['2'])
Khalique's avatar
Khalique committed
2299

Khalique's avatar
Khalique committed
2300
2301
2302
    node2 = onnx.helper.make_node('Flatten', inputs=['0'], outputs=['3'])

    return ([node, node2], [x], [y, y2])
Khalique's avatar
Khalique committed
2303

kahmed10's avatar
kahmed10 committed
2304

2305
@onnx_test()
Khalique's avatar
Khalique committed
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
def flatten_nonstd_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 5, 4])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [6, 20])
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 60])

    trans = helper.make_node(
        'Transpose',
        inputs=['0'],
        outputs=['tx'],
        perm=[0, 1, 3, 2],
    )

    node = onnx.helper.make_node('Flatten',
                                 inputs=['tx'],
                                 axis=2,
                                 outputs=['2'])

    node2 = onnx.helper.make_node('Flatten', inputs=['tx'], outputs=['3'])

    return ([trans, node, node2], [x], [y, y2])


2328
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
def flatten_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 3, 4, 5])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [None, 20])

    node = onnx.helper.make_node('Flatten',
                                 inputs=['0'],
                                 axis=2,
                                 outputs=['2'])

    return ([node], [x], [y])


2341
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
def floor_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Floor',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2353

kahmed10's avatar
kahmed10 committed
2354

2355
@onnx_test()
Khalique's avatar
Khalique committed
2356
2357
def gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
Khalique's avatar
Khalique committed
2358
2359
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
Khalique's avatar
Khalique committed
2360
2361
2362
2363
2364
2365
2366
2367
2368
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Gather',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
2369
2370
    return ([node], [x, i], [y])

Khalique's avatar
Khalique committed
2371

Brian Pickrell's avatar
Brian Pickrell committed
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
@onnx_test()
def gather_scalar_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32, [])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 5, 6])

    node = onnx.helper.make_node(
        'Gather',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

    return ([node], [x, i], [y])


@onnx_test()
def gather_dyn_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT,
                                      [None, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [None, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Gather',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

    return ([node], [x, i], [y])


2406
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
def gather_elements_axis0_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'GatherElements',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=0,
    )

    return ([node], [x, i], [y])


2422
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
def gather_elements_axis1_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'GatherElements',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

    return ([node], [x, i], [y])


2438
@onnx_test()
turneram's avatar
turneram committed
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
def gathernd_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2])
    i = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2])

    node = onnx.helper.make_node('GatherND',
                                 inputs=['data', 'indices'],
                                 outputs=['y'])

    return ([node], [x, i], [y])


Brian Pickrell's avatar
Brian Pickrell committed
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
@onnx_test()
def gathernd_dyn_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [None, 2])
    i = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2])

    node = onnx.helper.make_node('GatherND',
                                 inputs=['data', 'indices'],
                                 outputs=['y'])

    return ([node], [x, i], [y])


2464
@onnx_test()
turneram's avatar
turneram committed
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
def gathernd_batch_dims_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    i = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2])

    node = onnx.helper.make_node(
        'GatherND',
        inputs=['data', 'indices'],
        outputs=['y'],
        batch_dims=1,
    )

    return ([node], [x, i], [y])


2480
@onnx_test()
Khalique's avatar
Khalique committed
2481
def gemm_test():
Charlie Lin's avatar
Charlie Lin committed
2482
2483
2484
2485
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [8, 6])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [8, 7])
    C = helper.make_tensor_value_info('C', TensorProto.FLOAT, [6, 7])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [6, 7])
Khalique's avatar
Khalique committed
2486

Khalique's avatar
Khalique committed
2487
    node = onnx.helper.make_node('Gemm',
Charlie Lin's avatar
Charlie Lin committed
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
                                 inputs=['A', 'B', 'C'],
                                 outputs=['Y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

    return ([node], [A, B, C], [Y])


@onnx_test()
def gemm_no_C_test():
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [5, 7])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [11, 5])
    C = helper.make_tensor_value_info('C', TensorProto.FLOAT, [])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [7, 11])

    node = onnx.helper.make_node('Gemm',
                                 inputs=['A', 'B', 'C'],
                                 outputs=['Y'],
Khalique's avatar
Khalique committed
2507
2508
2509
2510
2511
                                 alpha=2.0,
                                 beta=2.0,
                                 transA=1,
                                 transB=1)

Charlie Lin's avatar
Charlie Lin committed
2512
    return ([node], [A, B, C], [Y])
Khalique's avatar
Khalique committed
2513
2514


2515
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2516
2517
2518
2519
2520
def gemm_brcst_C_test():
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [5, 6])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [5, 7])
    C = helper.make_tensor_value_info('C', TensorProto.FLOAT, [6, 1])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [6, 7])
Khalique's avatar
Khalique committed
2521

Khalique's avatar
Khalique committed
2522
    node = onnx.helper.make_node('Gemm',
Charlie Lin's avatar
Charlie Lin committed
2523
2524
                                 inputs=['A', 'B', 'C'],
                                 outputs=['Y'],
Khalique's avatar
Khalique committed
2525
2526
2527
2528
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

Charlie Lin's avatar
Charlie Lin committed
2529
    return ([node], [A, B, C], [Y])
Khalique's avatar
Khalique committed
2530
2531


2532
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2533
2534
2535
2536
2537
def gemm_half_test():
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT16, [8, 6])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT16, [8, 7])
    C = helper.make_tensor_value_info('C', TensorProto.FLOAT16, [6, 1])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT16, [6, 7])
Khalique's avatar
Khalique committed
2538

Khalique's avatar
Khalique committed
2539
    node = onnx.helper.make_node('Gemm',
Charlie Lin's avatar
Charlie Lin committed
2540
2541
                                 inputs=['A', 'B', 'C'],
                                 outputs=['Y'],
Khalique's avatar
Khalique committed
2542
2543
2544
2545
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

Charlie Lin's avatar
Charlie Lin committed
2546
    return ([node], [A, B, C], [Y])
Khalique's avatar
Khalique committed
2547
2548


2549
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2550
2551
2552
2553
def gemm_dyn_inner_test():
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [None, 6])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [None, 7])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [6, 7])
Shucai Xiao's avatar
Shucai Xiao committed
2554
2555

    node = onnx.helper.make_node('Gemm',
Charlie Lin's avatar
Charlie Lin committed
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
                                 inputs=['A', 'B'],
                                 outputs=['Y'],
                                 alpha=0.5,
                                 transA=1)

    return ([node], [A, B], [Y])


@onnx_test()
def gemm_dyn_outer_test():
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [5, None])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [11, 5])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [None, 11])

    node = onnx.helper.make_node('Gemm',
                                 inputs=['A', 'B'],
                                 outputs=['Y'],
                                 alpha=2.0,
                                 transA=1,
                                 transB=1)

    return ([node], [A, B], [Y])


@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2581
def gemm_dyn_bias_test():
Charlie Lin's avatar
Charlie Lin committed
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [8, None])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [8, 7])
    C = helper.make_tensor_value_info('C', TensorProto.FLOAT, [1, 7])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [None, 7])

    node = onnx.helper.make_node('Gemm',
                                 inputs=['A', 'B', 'C'],
                                 outputs=['Y'],
                                 alpha=1.0,
                                 beta=1.0,
                                 transA=1)

    return ([node], [A, B, C], [Y])


@onnx_test()
def gemm_rank_error():
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [4, 1, 8, 6])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [4, 1, 8, 7])
    C = helper.make_tensor_value_info('C', TensorProto.FLOAT, [6, 7])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [4, 1, 6, 7])

    node = onnx.helper.make_node('Gemm',
                                 inputs=['A', 'B', 'C'],
                                 outputs=['Y'],
Shucai Xiao's avatar
Shucai Xiao committed
2607
2608
2609
2610
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

Charlie Lin's avatar
Charlie Lin committed
2611
    return ([node], [A, B, C], [Y])
Shucai Xiao's avatar
Shucai Xiao committed
2612
2613


2614
@onnx_test()
Khalique's avatar
Khalique committed
2615
def globalavgpool_test():
Khalique's avatar
Khalique committed
2616
2617
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
2618
2619
2620
2621
2622
2623
2624

    node = onnx.helper.make_node(
        'GlobalAveragePool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
2625
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2626

Khalique's avatar
Khalique committed
2627

2628
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
def globalavgpool_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 3, 1, 1])

    node = onnx.helper.make_node(
        'GlobalAveragePool',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


2643
@onnx_test()
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
def globallppool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])

    node = onnx.helper.make_node(
        'GlobalLpPool',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


2657
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
def globallppool_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])

    node = onnx.helper.make_node(
        'GlobalLpPool',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


2672
@onnx_test()
Khalique's avatar
Khalique committed
2673
def globalmaxpool_test():
Khalique's avatar
Khalique committed
2674
2675
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
2676
2677
2678
2679
2680
2681
2682

    node = onnx.helper.make_node(
        'GlobalMaxPool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
2683
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2684

Khalique's avatar
Khalique committed
2685

2686
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
def globalmaxpool_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 3, 1, 1])

    node = onnx.helper.make_node(
        'GlobalMaxPool',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


2701
@onnx_test()
Khalique's avatar
Khalique committed
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
def greater_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
    x1 = helper.make_tensor("x1",
                            data_type=TensorProto.FLOAT,
                            dims=(2, 3),
                            vals=ax1.astype(np.float32))

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Greater',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


2721
@onnx_test()
Khalique's avatar
Khalique committed
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
def greater_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Greater',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


2739
@onnx_test()
turneram's avatar
turneram committed
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
def greaterorequal_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'GreaterOrEqual',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x1, x2], [y])


2755
@onnx_test()
Khalique's avatar
Khalique committed
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
def group_conv_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 4, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 1, 3, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 4, 14, 14])

    node = onnx.helper.make_node(
        'Conv',
        inputs=['0', '1'],
        group=4,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
2768
2769
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
2770

2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
def group_norm_test(x_dims,
                    scale_dims,
                    bias_dims,
                    y_dims,
                    num_groups,
                    eps_value=1e-5,
                    dtype=TensorProto.FLOAT):
    x = helper.make_tensor_value_info('x', dtype, x_dims)
    scale = helper.make_tensor_value_info('scale', dtype, scale_dims)
    bias = helper.make_tensor_value_info('bias', dtype, bias_dims)
    y = helper.make_tensor_value_info('y', dtype, y_dims)

    node = onnx.helper.make_node('GroupNormalization',
                                 inputs=['x', 'scale', 'bias'],
                                 outputs=['y'],
                                 num_groups=num_groups,
                                 epsilon=eps_value)

    return ([node], [x, scale, bias], [y])


@onnx_test()
def group_norm_3d_test():
    return group_norm_test([1, 4, 2], [2], [2], [1, 4, 2], 2)


@onnx_test()
def group_norm_3d_half_test():
    return group_norm_test([1, 4, 2], [2], [2], [1, 4, 2],
                           2,
                           dtype=TensorProto.FLOAT16)


@onnx_test()
def group_norm_4d_test():
    return group_norm_test([1, 4, 3, 3], [2], [2], [1, 4, 3, 3], 2)


@onnx_test()
def group_norm_4d_half_test():
    return group_norm_test([1, 4, 3, 3], [2], [2], [1, 4, 3, 3],
                           2,
                           dtype=TensorProto.FLOAT16)


@onnx_test()
def group_norm_5d_test():
    return group_norm_test([3, 3, 3, 3, 3], [1], [1], [3, 3, 3, 3, 3], 1)


@onnx_test()
def group_norm_5d_half_test():
    return group_norm_test([3, 3, 3, 3, 3], [1], [1], [3, 3, 3, 3, 3],
                           1,
                           dtype=TensorProto.FLOAT16)


@onnx_test()
def group_norm_small_eps_half_test():
    return group_norm_test([1, 4, 2], [2], [2], [1, 4, 2],
                           2,
                           eps_value=1e-12,
                           dtype=TensorProto.FLOAT16)


@onnx_test()
def group_norm_invalid_num_groups_error_test():
    return group_norm_test([1, 4, 3, 3], [2], [2], [1, 4, 3, 3], 3)


@onnx_test()
def group_norm_missing_attribute_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 4])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [2])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 4])

    node = onnx.helper.make_node('GroupNormalization',
                                 inputs=['x', 'scale', 'bias'],
                                 outputs=['y'])

    return ([node], [x, scale, bias], [y])


@onnx_test()
def group_norm_invalid_input_count_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 4, 3, 3])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 4, 3, 3])

    node = onnx.helper.make_node('GroupNormalization',
                                 inputs=['x', 'scale'],
                                 outputs=['y'],
                                 num_groups=2)

    return ([node], [x, scale], [y])


@onnx_test()
def group_norm_invalid_input_shape_error_test():
    return group_norm_test([1, 4], [2], [2], [1, 4], 2)


@onnx_test()
def group_norm_invalid_scale_shape_test():
    return group_norm_test([1, 4, 3, 3], [1], [2], [1, 4, 3, 3], 2)


@onnx_test()
def group_norm_invalid_bias_shape_test():
    return group_norm_test([1, 4, 3, 3], [2], [3], [1, 4, 3, 3], 2)


2884
@onnx_test()
turneram's avatar
turneram committed
2885
2886
2887
2888
2889
2890
2891
2892
2893
def hardsigmoid_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 3, 4, 5])

    node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


2894
@onnx_test()
turneram's avatar
turneram committed
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
def hardsigmoid_double_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [1, 3, 4, 5])

    node = onnx.helper.make_node('HardSigmoid',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.3,
                                 beta=0.7)

    return ([node], [x], [y])


2908
@onnx_test()
turneram's avatar
turneram committed
2909
2910
2911
2912
2913
2914
2915
2916
2917
def hardsigmoid_half_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [1, 3, 4, 5])

    node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


2918
@onnx_test()
turneram's avatar
turneram committed
2919
2920
2921
2922
2923
2924
2925
2926
2927
def hardsigmoid_verify_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 5])

    node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


2928
@onnx_test()
2929
2930
2931
2932
2933
2934
2935
2936
2937
def hardswish_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 5])

    node = onnx.helper.make_node('HardSwish', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


2938
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
2939
2940
2941
2942
def if_else_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    xt = np.ones((2, 3)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

    cond_tensor = onnx.helper.make_tensor_value_info("cond",
                                                     onnx.TensorProto.BOOL,
                                                     [1])
    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y, cond_tensor], [res], [xt_tensor, yt_tensor])


@onnx_test()
def if_else_test_inlined():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

Shucai Xiao's avatar
Shucai Xiao committed
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    xt = np.ones((2, 3)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

3028
    cond = np.array([0]).astype(bool)
Shucai Xiao's avatar
Shucai Xiao committed
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
    cond_tensor = helper.make_tensor(name="cond",
                                     data_type=TensorProto.BOOL,
                                     dims=cond.shape,
                                     vals=cond.astype(bool))
    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y], [res], [cond_tensor, xt_tensor, yt_tensor])


3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
@onnx_test()
def if_then_else_multi_output_shapes_inlined_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT,
                                           [2, 3, 1])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3, 1])
    then_out2 = onnx.helper.make_tensor_value_info('then_out2',
                                                   onnx.TensorProto.FLOAT,
                                                   [2, 3, 1])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    else_out2 = onnx.helper.make_tensor_value_info('else_out2',
                                                   onnx.TensorProto.FLOAT,
                                                   [2, 3])

    xt = np.ones((2, 3, 1)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    then_add_node2 = onnx.helper.make_node('Add',
                                           inputs=['x', 'x'],
                                           outputs=['then_out2'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    else_sub_node = onnx.helper.make_node('Sub',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out2'])

    then_body = onnx.helper.make_graph([then_add_node, then_add_node2],
                                       'then_body', [], [then_out, then_out2])

    else_body = onnx.helper.make_graph([else_mul_node, else_sub_node],
                                       'else_body', [], [else_out, else_out2])

3098
    cond = np.array([1]).astype(bool)
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
    cond_tensor = helper.make_tensor(name="cond",
                                     data_type=TensorProto.BOOL,
                                     dims=cond.shape,
                                     vals=cond.astype(bool))

    res1 = onnx.helper.make_tensor_value_info('res1', TensorProto.FLOAT, [])
    res2 = onnx.helper.make_tensor_value_info('res2', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res1', 'res2'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y], [res1, res2], [cond_tensor, xt_tensor, yt_tensor])


@onnx_test()
def if_then_else_multi_output_shapes_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT,
                                           [2, 3, 1])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT,
                                           [2, 3, 1])

    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3, 1])
    then_out2 = onnx.helper.make_tensor_value_info('then_out2',
                                                   onnx.TensorProto.FLOAT,
                                                   [2, 3, 1])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3, 1])

    else_out2 = onnx.helper.make_tensor_value_info('else_out2',
                                                   onnx.TensorProto.FLOAT,
                                                   [2, 3, 1])

    xt = np.ones((2, 3, 1)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3, 1).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    then_add_node2 = onnx.helper.make_node('Add',
                                           inputs=['x', 'x'],
                                           outputs=['then_out2'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    else_sub_node = onnx.helper.make_node('Sub',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out2'])

    then_body = onnx.helper.make_graph([then_add_node, then_add_node2],
                                       'then_body', [], [then_out, then_out2])

    else_body = onnx.helper.make_graph([else_mul_node, else_sub_node],
                                       'else_body', [], [else_out, else_out2])

    cond_tensor = onnx.helper.make_tensor_value_info("cond",
                                                     onnx.TensorProto.BOOL,
                                                     [1])

    res1 = onnx.helper.make_tensor_value_info('res1', TensorProto.FLOAT, [])
    res2 = onnx.helper.make_tensor_value_info('res2', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res1', 'res2'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y, cond_tensor], [res1, res2], [xt_tensor, yt_tensor])


3187
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3188
3189
3190
3191
3192
3193
3194
3195
def if_literal_test():
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT, [5])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT, [5])

    x = np.array([1, 2, 3, 4, 5]).astype(np.float32)
    y = np.array([5, 4, 3, 2, 1]).astype(np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
3196
    z = np.array([]).astype(np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209

    then_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['then_out'],
        value=onnx.numpy_helper.from_array(x))

    else_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['else_out'],
        value=onnx.numpy_helper.from_array(y))

Shucai Xiao's avatar
Shucai Xiao committed
3210
3211
3212
3213
3214
    empty_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['empty_out'],
        value=onnx.numpy_helper.from_array(z))
Shucai Xiao's avatar
Shucai Xiao committed
3215

Shucai Xiao's avatar
Shucai Xiao committed
3216
3217
3218
3219
3220
    then_body = onnx.helper.make_graph([then_const_node, empty_const_node],
                                       'then_body', [], [then_out])

    else_body = onnx.helper.make_graph([else_const_node, empty_const_node],
                                       'else_body', [], [else_out])
Shucai Xiao's avatar
Shucai Xiao committed
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input], [ret])


3235
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
def if_param_excp_test():
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 4])

    yt = np.random.randn(2, 4).astype(np.float)
    xt = np.random.randn(2, 3).astype(np.float)

    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out], [xt_tensor])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out], [yt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input, x, y], [ret])


3287
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
def if_param_excp1_test():
    then_out = onnx.helper.make_tensor_value_info('sub_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])

    xt = np.random.randn(2, 3).astype(np.float)

    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['sub_out'])

    sub_body = onnx.helper.make_graph([then_add_node], 'sub_body', [],
                                      [then_out], [xt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [2])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=sub_body,
                                 else_branch=sub_body)

    return ([node], [cond_input, x], [ret])


3322
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
def if_param_test():
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

    yt = np.random.randn(2, 3).astype(np.float)
    xt = np.random.randn(2, 3).astype(np.float)

    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out], [xt_tensor])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out], [yt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input, x, y], [ret])


3374
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
def if_pl_test():
    out_x = onnx.helper.make_tensor_value_info('out_x', onnx.TensorProto.FLOAT,
                                               [2, 3])
    out_l_x = onnx.helper.make_tensor_value_info('out_l_x',
                                                 onnx.TensorProto.FLOAT,
                                                 [2, 3])
    out_y = onnx.helper.make_tensor_value_info('out_y', onnx.TensorProto.FLOAT,
                                               [3, 3])
    out_l_y = onnx.helper.make_tensor_value_info('out_l_y',
                                                 onnx.TensorProto.FLOAT,
                                                 [3, 3])

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [3, 3])

    xt = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
    yt = np.array([[8, 7, 6], [5, 4, 3], [2, 1, 0]]).astype(np.float32)

    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['out_x'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['out_y'])

    then_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['out_l_y'],
        value=onnx.numpy_helper.from_array(yt))

    else_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['out_l_x'],
        value=onnx.numpy_helper.from_array(xt))

    then_body = onnx.helper.make_graph([then_add_node, then_const_node],
                                       'then_body', [], [out_x, out_l_y])

    else_body = onnx.helper.make_graph([else_mul_node, else_const_node],
                                       'else_body', [], [out_l_x, out_y])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input, x, y], [ret], [xt_tensor, yt_tensor])


3442
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
def if_then_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505

    xt = np.ones((2, 3)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

    cond_tensor = onnx.helper.make_tensor_value_info("cond",
                                                     onnx.TensorProto.BOOL,
                                                     [1])

    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y, cond_tensor], [res], [xt_tensor, yt_tensor])


@onnx_test()
def if_then_test_inlined():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532

    xt = np.ones((2, 3)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

3533
    cond = np.array([1]).astype(bool)
Shucai Xiao's avatar
Shucai Xiao committed
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
    cond_tensor = helper.make_tensor(name="cond",
                                     data_type=TensorProto.BOOL,
                                     dims=cond.shape,
                                     vals=cond.astype(bool))
    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y], [res], [cond_tensor, xt_tensor, yt_tensor])


3549
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
def if_tuple_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [1, 4])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [3, 4])
    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])

    then_out0 = onnx.helper.make_tensor_value_info('then_out0',
                                                   onnx.TensorProto.FLOAT,
                                                   [1, 4])
    then_out1 = onnx.helper.make_tensor_value_info('then_out1',
                                                   onnx.TensorProto.FLOAT,
                                                   [3, 4])
    else_out0 = onnx.helper.make_tensor_value_info('else_out0',
                                                   onnx.TensorProto.FLOAT,
                                                   [1, 4])
    else_out1 = onnx.helper.make_tensor_value_info('else_out1',
                                                   onnx.TensorProto.FLOAT,
                                                   [3, 4])

    one = np.ones([1]).astype(np.float)
    one_tensor = helper.make_tensor(name='one',
                                    data_type=TensorProto.FLOAT,
                                    dims=one.shape,
                                    vals=one.flatten().astype(np.float32))

    two = np.array([2]).astype(np.float)
    two_tensor = helper.make_tensor(name='two',
                                    data_type=TensorProto.FLOAT,
                                    dims=two.shape,
                                    vals=two.flatten().astype(np.float32))

    three = np.array([3]).astype(np.float)
    three_tensor = helper.make_tensor(name='three',
                                      data_type=TensorProto.FLOAT,
                                      dims=three.shape,
                                      vals=three.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'one'],
                                          outputs=['then_out0'])
    then_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'two'],
                                          outputs=['then_out1'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['x', 'three'],
                                          outputs=['else_out0'])
    else_add_node = onnx.helper.make_node('Add',
                                          inputs=['y', 'three'],
                                          outputs=['else_out1'])

    then_body = onnx.helper.make_graph([then_add_node, then_mul_node],
                                       'then_body', [], [then_out0, then_out1])

    else_body = onnx.helper.make_graph([else_mul_node, else_add_node],
                                       'else_body', [], [else_out0, else_out1])

    res0 = onnx.helper.make_tensor_value_info('res0', TensorProto.FLOAT, [])
    res1 = onnx.helper.make_tensor_value_info('res1', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res0', 'res1'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input, x,
                     y], [res0, res1], [one_tensor, two_tensor, three_tensor])


3620
@onnx_test()
Khalique's avatar
Khalique committed
3621
def imagescaler_test():
Khalique's avatar
Khalique committed
3622
3623
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 16, 16])
Khalique's avatar
Khalique committed
3624

Khalique's avatar
Khalique committed
3625
3626
3627
3628
3629
    node = onnx.helper.make_node('ImageScaler',
                                 inputs=['0'],
                                 outputs=['1'],
                                 bias=[0.01, 0.02, 0.03],
                                 scale=0.5)
Khalique's avatar
Khalique committed
3630

Khalique's avatar
Khalique committed
3631
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3632

Khalique's avatar
Khalique committed
3633

3634
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
def imagescaler_half_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1, 3, 16, 16])

    node = onnx.helper.make_node('ImageScaler',
                                 inputs=['0'],
                                 outputs=['1'],
                                 bias=[0.01, 0.02, 0.03],
                                 scale=0.5)

    return ([node], [x], [y])


3648
@onnx_test()
Khalique's avatar
Khalique committed
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
def implicit_add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
3660
3661
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
3662

3663
@onnx_test()
Khalique's avatar
Khalique committed
3664
3665
3666
def implicit_pow_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
Khalique's avatar
Khalique committed
3667
3668
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
3669
3670
3671
3672
3673
3674
3675

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
3676
3677
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
3678

3679
@onnx_test()
Khalique's avatar
Khalique committed
3680
def implicit_sub_bcast_test():
Shucai Xiao's avatar
Shucai Xiao committed
3681
3682
3683
    arg0 = helper.make_tensor_value_info('0', TensorProto.UINT64, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.UINT64, [4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.UINT64,
Khalique's avatar
Khalique committed
3684
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
3685
3686
3687
3688
3689
3690
3691

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
3692
3693
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
3694

3695
@onnx_test()
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
def initializer_not_an_input():
    values = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
    w = helper.make_tensor(name='w',
                           data_type=TensorProto.FLOAT,
                           dims=values.shape,
                           vals=values.flatten().astype(np.float))

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 4])

    node = onnx.helper.make_node(
        'Gemm',
        inputs=['x', 'w'],
        outputs=['y'],
    )

    return ([node], [x], [y], [w])


3715
@onnx_test()
kahmed10's avatar
kahmed10 committed
3716
3717
3718
3719
3720
def instance_norm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])
3721
3722
3723
3724
3725
3726
3727
3728

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


3729
@onnx_test()
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
def instance_norm_half_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT16, [1, 2, 3, 3])

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


3743
@onnx_test()
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
def instance_norm_type_mismatch_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
@onnx_test()
def instance_norm_dyn_batch_test():
    # the batch size is a dynamic dimension
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [None, 2, 3, 3])

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


@onnx_test()
def instance_norm_dyn_batch_half_test():
    # the batch size is a dynamic dimension
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16,
                                      [None, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT16,
                                      [None, 2, 3, 3])

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


3789
@onnx_test()
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
def instance_norm_invalid_type_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT32, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


3803
@onnx_test()
3804
3805
3806
3807
3808
def instance_norm_nonbroadcastable_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [4])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])
kahmed10's avatar
kahmed10 committed
3809
3810
3811
3812
3813
3814
3815
3816

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


3817
@onnx_test()
kahmed10's avatar
kahmed10 committed
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
def instance_norm_val_test():
    x = np.array([[[[0, 1, 2], [3, 4, 5], [6, 7, 8]],
                   [[0, 1, 2], [3, 4, 5], [6, 7, 8]]]])
    scale = np.array([1, 2])
    bias = np.array([0, 1])

    x_tensor = helper.make_tensor(name='x_tensor',
                                  data_type=TensorProto.FLOAT,
                                  dims=x.shape,
                                  vals=x.flatten().astype(np.float))
    scale_tensor = helper.make_tensor(name='scale_tensor',
                                      data_type=TensorProto.FLOAT,
                                      dims=scale.shape,
                                      vals=scale.flatten().astype(np.float))
    bias_tensor = helper.make_tensor(name='bias_tensor',
                                     data_type=TensorProto.FLOAT,
                                     dims=bias.shape,
                                     vals=bias.flatten().astype(np.float))

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node(
        'InstanceNormalization',
        inputs=['x_tensor', 'scale_tensor', 'bias_tensor'],
kahmed10's avatar
kahmed10 committed
3842
3843
3844
3845
3846
        outputs=['y'])

    return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor])


3847
@onnx_test()
kahmed10's avatar
kahmed10 committed
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
def instance_norm_val_3d_test():
    x = np.array([[[[[0, 1], [2, 3]], [[4, 5], [6, 7]]],
                   [[[0, 1], [2, 3]], [[4, 5], [6, 7]]]]])
    scale = np.array([1, 2])
    bias = np.array([0, 1])

    x_tensor = helper.make_tensor(name='x_tensor',
                                  data_type=TensorProto.FLOAT,
                                  dims=x.shape,
                                  vals=x.flatten().astype(np.float))
    scale_tensor = helper.make_tensor(name='scale_tensor',
                                      data_type=TensorProto.FLOAT,
                                      dims=scale.shape,
                                      vals=scale.flatten().astype(np.float))
    bias_tensor = helper.make_tensor(name='bias_tensor',
                                     data_type=TensorProto.FLOAT,
                                     dims=bias.shape,
                                     vals=bias.flatten().astype(np.float))

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 2, 2, 2])

    node = onnx.helper.make_node(
        'InstanceNormalization',
        inputs=['x_tensor', 'scale_tensor', 'bias_tensor'],
kahmed10's avatar
kahmed10 committed
3872
3873
3874
3875
3876
        outputs=['y'])

    return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor])


3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
@onnx_test()
def isinf_half_test():
    t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT16, [2, 3])
    t2 = helper.make_tensor_value_info('t2', TensorProto.BOOL, [2, 3])

    node = onnx.helper.make_node(
        'IsInf',
        inputs=['t1'],
        outputs=['t2'],
    )
    return ([node], [t1], [t2])


@onnx_test()
def isinf_neg_test():
    t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT, [2, 3])
    t2 = helper.make_tensor_value_info('t2', TensorProto.BOOL, [2, 3])

    node = onnx.helper.make_node(
        'IsInf',
        detect_negative=[1],
        detect_positive=[0],
        inputs=['t1'],
        outputs=['t2'],
    )
    return ([node], [t1], [t2])


@onnx_test()
def isinf_double_pos_test():
    t1 = helper.make_tensor_value_info('t1', TensorProto.DOUBLE, [2, 3])
    t2 = helper.make_tensor_value_info('t2', TensorProto.BOOL, [2, 3])

    node = onnx.helper.make_node(
        'IsInf',
        detect_negative=[0],
        detect_positive=[1],
        inputs=['t1'],
        outputs=['t2'],
    )
    return ([node], [t1], [t2])


@onnx_test()
def isinf_no_detect_test():
    t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT, [2, 3])
    t2 = helper.make_tensor_value_info('t2', TensorProto.BOOL, [2, 3])

    node = onnx.helper.make_node(
        'IsInf',
        detect_negative=[0],
        detect_positive=[0],
        inputs=['t1'],
        outputs=['t2'],
    )
    return ([node], [t1], [t2])


3935
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
def isnan_float_test():
    t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT, [2, 3])
    t2 = helper.make_tensor_value_info('t2', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'IsNaN',
        inputs=['t1'],
        outputs=['t2'],
    )
    return ([node], [t1], [t2])


3948
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
def isnan_half_test():
    t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT16, [2, 3])
    t2 = helper.make_tensor_value_info('t2', TensorProto.FLOAT16, [2, 3])

    node = onnx.helper.make_node(
        'IsNaN',
        inputs=['t1'],
        outputs=['t2'],
    )
    return ([node], [t1], [t2])


3961
@onnx_test()
kahmed10's avatar
kahmed10 committed
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
def layernorm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 1, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 5])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [5])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [5])
    axes = [2]
    pow_2 = np.array([[[2, 2, 2, 2, 2]]])
    epsilon = np.array([1e-12])

    pow_tensor = helper.make_tensor(name='pow',
                                    data_type=TensorProto.FLOAT,
                                    dims=pow_2.shape,
                                    vals=pow_2.flatten().astype(np.float))

    epsilon_tensor = helper.make_tensor(name='epsilon',
                                        data_type=TensorProto.FLOAT,
                                        dims=epsilon.shape,
                                        vals=epsilon.flatten().astype(
                                            np.float))

    mean = onnx.helper.make_node('ReduceMean',
                                 inputs=['0'],
                                 outputs=['mean_out'],
                                 axes=axes)

    sub_mean = onnx.helper.make_node('Sub',
                                     inputs=['0', 'mean_out'],
                                     outputs=['sub_out'])

    sub_pow = onnx.helper.make_node('Pow',
                                    inputs=['sub_out', 'pow'],
                                    outputs=['pow_out'])

    var = onnx.helper.make_node('ReduceMean',
                                inputs=['pow_out'],
                                outputs=['var_out'],
                                axes=axes)

    add = onnx.helper.make_node('Add',
                                inputs=['var_out', 'epsilon'],
                                outputs=['add_out'])

    sqrt = onnx.helper.make_node('Sqrt',
                                 inputs=['add_out'],
                                 outputs=['sqrt_out'])

    div = onnx.helper.make_node('Div',
                                inputs=['sub_out', 'sqrt_out'],
                                outputs=['div_out'])

    mul = onnx.helper.make_node('Mul',
                                inputs=['scale', 'div_out'],
                                outputs=['mul_out'])

    bias_add = onnx.helper.make_node('Add',
                                     inputs=['mul_out', 'bias'],
                                     outputs=['1'])

    return ([mean, sub_mean, sub_pow, var, add, sqrt, div, mul,
             bias_add], [x, scale, bias], [y], [pow_tensor, epsilon_tensor])


4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
def make_layer_norm(shape, axis, dtype=TensorProto.FLOAT):
    norm_axis = axis + len(shape) if axis < 0 else axis
    x = helper.make_tensor_value_info('x', dtype, shape)
    scale = helper.make_tensor_value_info('scale', dtype, shape[norm_axis:])
    bias = helper.make_tensor_value_info('bias', dtype, shape[norm_axis:])
    y = helper.make_tensor_value_info('y', dtype, shape)

    node = onnx.helper.make_node('LayerNormalization',
                                 inputs=['x', 'scale', 'bias'],
                                 outputs=['y'],
                                 axis=axis)

    return ([node], [x, scale, bias], [y])


@onnx_test()
def layer_norm_invalid_shape_error_test():
    return make_layer_norm([3], 0)


@onnx_test()
def layer_norm_2d_axis_zero_test():
    return make_layer_norm([3, 4], 0)


@onnx_test()
def layer_norm_2d_axis_one_test():
    return make_layer_norm([3, 4], 1)


@onnx_test()
def layer_norm_2d_axis_minus_one_test():
    return make_layer_norm([3, 4], -1)


@onnx_test()
def layer_norm_3d_test():
    return make_layer_norm([1, 4, 2], -1)


@onnx_test()
def layer_norm_3d_half_test():
    return make_layer_norm([1, 4, 2], -1, TensorProto.FLOAT16)


@onnx_test()
def layer_norm_4d_test():
    return make_layer_norm([3, 3, 3, 3], -1)


@onnx_test()
def layer_norm_4d_half_test():
    return make_layer_norm([3, 3, 3, 3], -1, TensorProto.FLOAT16)


@onnx_test()
def layer_norm_invalid_axis_error_test():
    return make_layer_norm([1, 4, 2], 1000)


@onnx_test()
def layer_norm_invalid_minus_axis_error_test():
    return make_layer_norm([1, 4, 2], -1000)


@onnx_test()
def layer_norm_invalid_input_count_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node('LayerNormalization',
                                 inputs=['x'],
                                 outputs=['y'])

    return ([node], [x], [y])


@onnx_test()
def layer_norm_without_bias_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node('LayerNormalization',
                                 inputs=['x', 'scale'],
                                 outputs=['y'])

    return ([node], [x, scale], [y])


@onnx_test()
def layer_norm_small_eps_half_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [1, 2])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT16, [2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [1, 2])

    node = onnx.helper.make_node('LayerNormalization',
                                 inputs=['x', 'scale'],
                                 outputs=['y'],
                                 epsilon=1e-12)

    return ([node], [x, scale], [y])


4128
@onnx_test()
Khalique's avatar
Khalique committed
4129
4130
4131
4132
def leaky_relu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
4133
4134
4135
4136
    node = onnx.helper.make_node('LeakyRelu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
4137

Khalique's avatar
Khalique committed
4138
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4139

Khalique's avatar
Khalique committed
4140

4141
@onnx_test()
Khalique's avatar
Khalique committed
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
def less_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
    x1 = helper.make_tensor("x1",
                            data_type=TensorProto.FLOAT,
                            dims=(2, 3),
                            vals=ax1.astype(np.float32))

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Less',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


4161
@onnx_test()
Khalique's avatar
Khalique committed
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
def less_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Less',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


4179
@onnx_test()
Khalique's avatar
Khalique committed
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
def lessorequal_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'LessOrEqual',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x1, x2], [y])


4195
@onnx_test()
Khalique's avatar
Khalique committed
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
def log_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Log',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4206
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4207

Khalique's avatar
Khalique committed
4208

4209
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
def logical_and_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4, 5])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('And', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


4220
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
def logical_or_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [2, 3, 4, 5])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('Or', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


4231
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
def logical_xor_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4, 1])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('Xor', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


4242
@onnx_test()
Khalique's avatar
Khalique committed
4243
4244
4245
4246
def logsoftmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

Khalique's avatar
Khalique committed
4247
4248
4249
4250
    node = onnx.helper.make_node('LogSoftmax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=1)
Khalique's avatar
Khalique committed
4251

Khalique's avatar
Khalique committed
4252
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4253

Khalique's avatar
Khalique committed
4254

4255
@onnx_test()
4256
4257
def logsoftmax_nonstd_input_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [6, 9])
4258
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 4])
4259
4260
4261
4262
4263
4264
4265
4266

    node0 = onnx.helper.make_node('Slice',
                                  inputs=['0'],
                                  axes=[0, 1],
                                  starts=[1, 0],
                                  ends=[4, 4],
                                  outputs=['1'])

Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
4267
4268
4269
4270
    node1 = onnx.helper.make_node('LogSoftmax',
                                  inputs=['1'],
                                  outputs=['2'],
                                  axis=-1)
4271

4272
    return ([node0, node1], [x], [y])
4273
4274


4275
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
def loop_default_test():
    body = helper.make_graph([
        helper.make_node("Add", ["a", "b_in"], ["my_local"]),
        helper.make_node("Sub", ["a", "b_in"], ["a_sub_b_in"]),
        helper.make_node("Greater", ["my_local", "a_sub_b_in"],
                         ["keep_going"]),
        helper.make_node("Add", ["a_sub_b_in", "a_sub_b_in"],
                         ["user_defined_vals"]),
    ], "body", [
        helper.make_tensor_value_info('iteration_num', TensorProto.INT64, []),
        helper.make_tensor_value_info('keep_going_inp', TensorProto.BOOL, []),
        helper.make_tensor_value_info('b_in', TensorProto.FLOAT, [])
    ], [
        helper.make_tensor_value_info('keep_going', TensorProto.BOOL, []),
        helper.make_tensor_value_info('a_sub_b_in', TensorProto.FLOAT, []),
        helper.make_tensor_value_info('my_local', TensorProto.FLOAT, []),
        helper.make_tensor_value_info('user_defined_vals', TensorProto.FLOAT,
                                      []),
    ])

    node = helper.make_node(
        "Loop",
        inputs=["", "", "b"],
        outputs=["b_loop", "my_local_loop", "user_defined_vals_loop"],
        body=body)

    a = helper.make_tensor_value_info('a', TensorProto.FLOAT, [])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [])

    b_loop = helper.make_tensor_value_info('b_loop', TensorProto.FLOAT, [])
    uout = helper.make_tensor_value_info('user_defined_vals_loop',
                                         TensorProto.FLOAT, [2, 1])

    return ([node], [a, b], [b_loop, uout])


4312
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
def loop_test():
    body = helper.make_graph([
        helper.make_node("Add", ["a", "b_in"], ["my_local"]),
        helper.make_node("Sub", ["a", "b_in"], ["a_sub_b_in"]),
        helper.make_node("Greater", ["my_local", "a_sub_b_in"],
                         ["keep_going"]),
        helper.make_node("Add", ["a_sub_b_in", "a_sub_b_in"],
                         ["user_defined_vals"]),
    ], "body", [
        helper.make_tensor_value_info('iteration_num', TensorProto.INT64, [1]),
        helper.make_tensor_value_info('keep_going_inp', TensorProto.BOOL, [1]),
        helper.make_tensor_value_info('b_in', TensorProto.FLOAT, [1])
    ], [
        helper.make_tensor_value_info('keep_going', TensorProto.BOOL, [1]),
        helper.make_tensor_value_info('a_sub_b_in', TensorProto.FLOAT, [1]),
        helper.make_tensor_value_info('my_local', TensorProto.FLOAT, [1]),
        helper.make_tensor_value_info('user_defined_vals', TensorProto.FLOAT,
                                      [1]),
    ])

    node = helper.make_node(
        "Loop",
        inputs=["max_trip_count", "keep_going_cond", "b"],
        outputs=["b_loop", "my_local_loop", "user_defined_vals_loop"],
        body=body)

    a = helper.make_tensor_value_info('a', TensorProto.FLOAT, [1])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [1])
    cond = helper.make_tensor_value_info('keep_going_cond', TensorProto.BOOL,
                                         [1])
    iter = helper.make_tensor_value_info('max_trip_count', TensorProto.INT64,
                                         [1])

    b_loop = helper.make_tensor_value_info('b_loop', TensorProto.FLOAT, [1])
    uout = helper.make_tensor_value_info('user_defined_vals_loop',
                                         TensorProto.FLOAT, [2, 1])

    return ([node], [iter, cond, a, b], [b_loop, uout])


4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
@onnx_test()
def loop_test_implicit_tripcnt():
    body = helper.make_graph([
        helper.make_node("Add", ["a", "b_in"], ["my_local"]),
        helper.make_node("Sub", ["a", "b_in"], ["a_sub_b_in"]),
        helper.make_node("Greater", ["my_local", "a_sub_b_in"],
                         ["keep_going"]),
        helper.make_node("Add", ["a_sub_b_in", "a_sub_b_in"],
                         ["user_defined_vals"]),
    ], "body", [
        helper.make_tensor_value_info('iteration_num', TensorProto.INT64, [1]),
        helper.make_tensor_value_info('keep_going_inp', TensorProto.BOOL, [1]),
        helper.make_tensor_value_info('b_in', TensorProto.FLOAT, [1])
    ], [
        helper.make_tensor_value_info('keep_going', TensorProto.BOOL, [1]),
        helper.make_tensor_value_info('a_sub_b_in', TensorProto.FLOAT, [1]),
        helper.make_tensor_value_info('my_local', TensorProto.FLOAT, [1]),
        helper.make_tensor_value_info('user_defined_vals', TensorProto.FLOAT,
                                      [1]),
    ])

    iter = helper.make_tensor(name='max_trip_count',
                              data_type=TensorProto.INT64,
                              dims=[1],
                              vals=[15])

    node = helper.make_node(
        "Loop",
        inputs=["max_trip_count", "keep_going_cond", "b"],
        outputs=["b_loop", "my_local_loop", "user_defined_vals_loop"],
        body=body)

    a = helper.make_tensor_value_info('a', TensorProto.FLOAT, [1])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [1])
    cond = helper.make_tensor_value_info('keep_going_cond', TensorProto.BOOL,
                                         [1])

    b_loop = helper.make_tensor_value_info('b_loop', TensorProto.FLOAT, [1])
    uout = helper.make_tensor_value_info('user_defined_vals_loop',
                                         TensorProto.FLOAT, [2, 1])

    return ([node], [cond, a, b], [b_loop, uout], [iter])


4397
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
def lpnormalization_axis_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('LpNormalization',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=2)
    return ([node], [x], [y])


4409
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
def lpnormalization_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'LpNormalization',
        inputs=['x'],
        outputs=['y'],
        axis=0,
    )
    return ([node], [x], [y])


4423
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
def lpnormalization_l1_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'LpNormalization',
        inputs=['x'],
        outputs=['y'],
        p=1,
    )
    return ([node], [x], [y])


4437
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
def lpnormalization_l2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node('LpNormalization',
                                 inputs=['x'],
                                 outputs=['y'],
                                 p=2)
    return ([node], [x], [y])


4449
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
def lpnormalization_p_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('LpNormalization',
                                 inputs=['x'],
                                 outputs=['y'],
                                 p=3)
    return ([node], [x], [y])


4461
@onnx_test()
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
def lppool_l1_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 3, 3])

    node = onnx.helper.make_node('LpPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[3],
                                 p=1)
    return ([node], [x], [y])


4474
@onnx_test()
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
def lppool_l2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 3, 3])

    node = onnx.helper.make_node('LpPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[3],
                                 p=2)
    return ([node], [x], [y])


4487
@onnx_test()
Khalique's avatar
Khalique committed
4488
4489
4490
4491
def lrn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 28, 24, 24])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 28, 24, 24])

Khalique's avatar
Khalique committed
4492
4493
4494
4495
4496
4497
4498
    node = onnx.helper.make_node('LRN',
                                 inputs=['0'],
                                 size=5,
                                 alpha=0.0001,
                                 beta=0.75,
                                 bias=1.0,
                                 outputs=['1'])
Khalique's avatar
Khalique committed
4499

Khalique's avatar
Khalique committed
4500
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4501

Khalique's avatar
Khalique committed
4502

4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
@onnx_test()
def lstm_bi_layout_cell_test():
    seq = helper.make_tensor_value_info('seq', TensorProto.FLOAT, [3, 5, 10])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [2, 80, 10])
    r = helper.make_tensor_value_info('r', TensorProto.FLOAT, [2, 80, 20])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [2, 160])
    seq_len = helper.make_tensor_value_info('seq_len', TensorProto.INT32, [3])
    h0 = helper.make_tensor_value_info('h0', TensorProto.FLOAT, [3, 2, 20])
    c0 = helper.make_tensor_value_info('c0', TensorProto.FLOAT, [3, 2, 20])
    pph = helper.make_tensor_value_info('pph', TensorProto.FLOAT, [2, 60])

    cellout = helper.make_tensor_value_info('cellout', TensorProto.FLOAT,
                                            [3, 2, 20])

    node = onnx.helper.make_node(
        'LSTM',
        inputs=['seq', 'w', 'r', 'bias', 'seq_len', 'h0', 'c0', 'pph'],
        outputs=['', '', 'cellout'],
        activations=['sigmoid', 'tanh', 'tanh'],
        clip=0,
        direction='bidirectional',
        hidden_size=20,
        input_forget=1,
        layout=1)

    return ([node], [seq, w, r, bias, seq_len, h0, c0, pph], [cellout])


@onnx_test()
def lstm_bi_layout_last_test():
    seq = helper.make_tensor_value_info('seq', TensorProto.FLOAT, [3, 5, 10])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [2, 80, 10])
    r = helper.make_tensor_value_info('r', TensorProto.FLOAT, [2, 80, 20])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [2, 160])
    seq_len = helper.make_tensor_value_info('seq_len', TensorProto.INT32, [3])
    h0 = helper.make_tensor_value_info('h0', TensorProto.FLOAT, [3, 2, 20])
    c0 = helper.make_tensor_value_info('c0', TensorProto.FLOAT, [3, 2, 20])
    pph = helper.make_tensor_value_info('pph', TensorProto.FLOAT, [2, 60])

    hs = helper.make_tensor_value_info('hs', TensorProto.FLOAT, [3, 5, 2, 20])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [3, 2, 20])

    node = onnx.helper.make_node(
        'LSTM',
        inputs=['seq', 'w', 'r', 'bias', 'seq_len', 'h0', 'c0', 'pph'],
        outputs=['hs', 'output'],
        activations=['sigmoid', 'tanh', 'tanh'],
        clip=0,
        direction='bidirectional',
        hidden_size=20,
        input_forget=1,
        layout=1)

    return ([node], [seq, w, r, bias, seq_len, h0, c0, pph], [hs, output])


@onnx_test()
def lstm_f_layout_hs_test():
    seq = helper.make_tensor_value_info('seq', TensorProto.FLOAT, [3, 5, 10])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 80, 10])
    r = helper.make_tensor_value_info('r', TensorProto.FLOAT, [1, 80, 20])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [1, 160])
    seq_len = helper.make_tensor_value_info('seq_len', TensorProto.INT32, [3])
    h0 = helper.make_tensor_value_info('h0', TensorProto.FLOAT, [3, 1, 20])
    c0 = helper.make_tensor_value_info('c0', TensorProto.FLOAT, [3, 1, 20])
    pph = helper.make_tensor_value_info('pph', TensorProto.FLOAT, [1, 60])

    hs = helper.make_tensor_value_info('hs', TensorProto.FLOAT, [3, 5, 1, 20])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [3, 1, 20])

    node = onnx.helper.make_node(
        'LSTM',
        inputs=['seq', 'w', 'r', 'bias', 'seq_len', 'h0', 'c0', 'pph'],
        outputs=['hs', 'output'],
        activations=['sigmoid', 'tanh', 'tanh'],
        clip=0,
        direction='forward',
        hidden_size=20,
        input_forget=1,
        layout=1)

    return ([node], [seq, w, r, bias, seq_len, h0, c0, pph], [hs, output])


@onnx_test()
def lstm_f_layout_cell_test():
    seq = helper.make_tensor_value_info('seq', TensorProto.FLOAT, [3, 5, 10])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 80, 10])
    r = helper.make_tensor_value_info('r', TensorProto.FLOAT, [1, 80, 20])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [1, 160])
    seq_len = helper.make_tensor_value_info('seq_len', TensorProto.INT32, [3])
    h0 = helper.make_tensor_value_info('h0', TensorProto.FLOAT, [3, 1, 20])
    c0 = helper.make_tensor_value_info('c0', TensorProto.FLOAT, [3, 1, 20])
    pph = helper.make_tensor_value_info('pph', TensorProto.FLOAT, [1, 60])

    cellout = helper.make_tensor_value_info('cellout', TensorProto.FLOAT,
                                            [3, 1, 20])

    node = onnx.helper.make_node(
        'LSTM',
        inputs=['seq', 'w', 'r', 'bias', 'seq_len', 'h0', 'c0', 'pph'],
        outputs=['', '', 'cellout'],
        activations=['sigmoid', 'tanh', 'tanh'],
        clip=0,
        direction='forward',
        hidden_size=20,
        input_forget=1,
        layout=1)

    return ([node], [seq, w, r, bias, seq_len, h0, c0, pph], [cellout])


@onnx_test()
def lstm_r_layout_test():
    seq = helper.make_tensor_value_info('seq', TensorProto.FLOAT, [3, 5, 10])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 80, 10])
    r = helper.make_tensor_value_info('r', TensorProto.FLOAT, [1, 80, 20])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [1, 160])
    seq_len = helper.make_tensor_value_info('seq_len', TensorProto.INT32, [3])
    h0 = helper.make_tensor_value_info('h0', TensorProto.FLOAT, [3, 1, 20])
    c0 = helper.make_tensor_value_info('c0', TensorProto.FLOAT, [3, 1, 20])
    pph = helper.make_tensor_value_info('pph', TensorProto.FLOAT, [1, 60])

    hs = helper.make_tensor_value_info('hs', TensorProto.FLOAT, [3, 5, 1, 20])

    node = onnx.helper.make_node(
        'LSTM',
        inputs=['seq', 'w', 'r', 'bias', 'seq_len', 'h0', 'c0', 'pph'],
        outputs=['hs'],
        activations=['sigmoid', 'tanh', 'tanh'],
        clip=0,
        direction='reverse',
        hidden_size=20,
        input_forget=1,
        layout=1)

    return ([node], [seq, w, r, bias, seq_len, h0, c0, pph], [hs])


@onnx_test()
def lstm_r_layout_hs_cell_test():
    seq = helper.make_tensor_value_info('seq', TensorProto.FLOAT, [3, 5, 10])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 80, 10])
    r = helper.make_tensor_value_info('r', TensorProto.FLOAT, [1, 80, 20])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [1, 160])
    seq_len = helper.make_tensor_value_info('seq_len', TensorProto.INT32, [3])
    h0 = helper.make_tensor_value_info('h0', TensorProto.FLOAT, [3, 1, 20])
    c0 = helper.make_tensor_value_info('c0', TensorProto.FLOAT, [3, 1, 20])
    pph = helper.make_tensor_value_info('pph', TensorProto.FLOAT, [1, 60])

    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [3, 1, 20])
    cellout = helper.make_tensor_value_info('cellout', TensorProto.FLOAT,
                                            [3, 1, 20])

    node = onnx.helper.make_node(
        'LSTM',
        inputs=['seq', 'w', 'r', 'bias', 'seq_len', 'h0', 'c0', 'pph'],
        outputs=['', 'output', 'cellout'],
        activations=['sigmoid', 'tanh', 'tanh'],
        clip=0,
        direction='reverse',
        hidden_size=20,
        input_forget=1,
        layout=1)

    return ([node], [seq, w, r, bias, seq_len, h0, c0, pph], [output, cellout])


4674
@onnx_test()
Khalique's avatar
Khalique committed
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
def matmul_bmbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 2, 1, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 2, 3, 6, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4686
4687
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
4688

4689
@onnx_test()
Khalique's avatar
Khalique committed
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
def matmul_bmv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4701
4702
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
4703

4704
@onnx_test()
Khalique's avatar
Khalique committed
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
def matmul_mv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4716
4717
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
4718

4719
@onnx_test()
Khalique's avatar
Khalique committed
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
def matmul_vbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4731
4732
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
4733

4734
@onnx_test()
Khalique's avatar
Khalique committed
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
def matmul_vm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4746
4747
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
4748

4749
@onnx_test()
Khalique's avatar
Khalique committed
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
def matmul_vv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4761
4762
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
4763

Charlie Lin's avatar
Charlie Lin committed
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
@onnx_test()
def matmul_dyn_mm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7, None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, None])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


@onnx_test()
def matmul_dyn_mv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 1])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


@onnx_test()
def matmul_dyn_vm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7, None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, None])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


@onnx_test()
def matmul_dyn_vv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


@onnx_test()
def matmul_dyn_broadcast_error():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 7, None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, None])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


4839
@onnx_test()
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
def matmulinteger_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.INT8, [3, 6, 16])
    m2 = helper.make_tensor_value_info('2', TensorProto.INT8, [3, 16, 8])
    y = helper.make_tensor_value_info('y', TensorProto.INT32, [3, 6, 8])

    node = onnx.helper.make_node(
        'MatMulInteger',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


Charlie Lin's avatar
Charlie Lin committed
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
@onnx_test()
def matmulinteger_dyn_error():
    m1 = helper.make_tensor_value_info('1', TensorProto.INT8, [None, 6, 16])
    m2 = helper.make_tensor_value_info('2', TensorProto.INT8, [None, 16, 8])
    y = helper.make_tensor_value_info('y', TensorProto.INT32, [None, 6, 8])

    node = onnx.helper.make_node(
        'MatMulInteger',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


4869
@onnx_test()
Khalique's avatar
Khalique committed
4870
4871
4872
4873
def max_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
4874
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])
Khalique's avatar
Khalique committed
4875
4876
4877
4878
4879
4880
4881

    node = onnx.helper.make_node(
        'Max',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
4882
4883
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
4884

4885
@onnx_test()
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
def maxpool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET')

    return ([node], [x], [y])


4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
@onnx_test()
def maxpool_dilate_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 4, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 4, 2])

    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2],
                                 strides=[1],
                                 pads=[1, 1],
                                 dilations=[3])

    return ([node], [x], [y])


4917
@onnx_test()
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
def maxpool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_UPPER')

    return ([node], [x], [y])


4931
@onnx_test()
turneram's avatar
turneram committed
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
def mean_broadcast_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 4])
    data_1 = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                           [1, 2, 3, 4])
    data_2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [4])
    data_3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1])
    data_4 = helper.make_tensor_value_info('4', TensorProto.FLOAT, [2, 3, 1])

    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT,
                                         [1, 2, 3, 4])

    node = onnx.helper.make_node("Mean",
                                 inputs=["0", "1", "2", "3", "4"],
                                 outputs=["mean"])

    return ([node], [data_0, data_1, data_2, data_3, data_4], [mean])


4950
@onnx_test()
turneram's avatar
turneram committed
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
def mean_fp16_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1, 2, 3])
    data_1 = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1, 2, 3])
    data_2 = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1, 2, 3])

    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT16,
                                         [1, 2, 3])

    node = onnx.helper.make_node("Mean",
                                 inputs=["0", "1", "2"],
                                 outputs=["mean"])

    return ([node], [data_0, data_1, data_2], [mean])


4966
@onnx_test()
turneram's avatar
turneram committed
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
def mean_invalid_broadcast_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3])
    data_1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2, 3])
    data_2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 2, 4])

    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [1, 2, 3])

    node = onnx.helper.make_node("Mean",
                                 inputs=["0", "1", "2"],
                                 outputs=["mean"])

    return ([node], [data_0, data_1, data_2], [mean])


4981
@onnx_test()
turneram's avatar
turneram committed
4982
4983
4984
4985
4986
4987
4988
4989
4990
def mean_single_input_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [1, 2, 3])

    node = onnx.helper.make_node("Mean", inputs=["0"], outputs=["mean"])

    return ([node], [data_0], [mean])


4991
@onnx_test()
turneram's avatar
turneram committed
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
def mean_test():
    data = [
        helper.make_tensor_value_info(str(i), TensorProto.DOUBLE, [2, 2, 2])
        for i in range(10)
    ]
    data_names = [str(i) for i in range(10)]
    mean = helper.make_tensor_value_info('mean', TensorProto.DOUBLE, [2, 2, 2])

    node = onnx.helper.make_node("Mean", inputs=data_names, outputs=["mean"])

    return ([node], data, [mean])


5005
@onnx_test()
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
def mean_integral_test():
    data = [
        helper.make_tensor_value_info(str(i), TensorProto.INT32, [2, 2, 2])
        for i in range(10)
    ]
    data_names = [str(i) for i in range(10)]
    mean = helper.make_tensor_value_info('mean', TensorProto.INT32, [2, 2, 2])

    node = onnx.helper.make_node("Mean", inputs=data_names, outputs=["mean"])

    return ([node], data, [mean])


5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
def mvn_default_axes_test_base(dims, type=TensorProto.FLOAT):
    data = helper.make_tensor_value_info("data", type, dims)
    out = helper.make_tensor_value_info("out", type, dims)
    node = helper.make_node("MeanVarianceNormalization",
                            inputs=["data"],
                            outputs=["out"])

    return ([node], [data], [out])


@onnx_test()
def mvn_default_axes_test():
    return mvn_default_axes_test_base([2, 2, 2, 2])


@onnx_test()
def mvn_default_axes_fp16_test():
    return mvn_default_axes_test_base([2, 2, 2, 2], TensorProto.FLOAT16)


@onnx_test()
def mvn_default_axes_rank_too_small_test():
    return mvn_default_axes_test_base([2, 2, 2])


@onnx_test()
def mvn_default_axes_rank_too_big_test():
    return mvn_default_axes_test_base([2, 2, 2, 2, 2])


def mvn_n_rank_test_base(axes, dims, type=TensorProto.FLOAT):
    data = helper.make_tensor_value_info("data", type, dims)
    out = helper.make_tensor_value_info("out", type, dims)
    node = helper.make_node("MeanVarianceNormalization",
                            inputs=["data"],
                            outputs=["out"],
                            axes=axes)

    return ([node], [data], [out])


@onnx_test()
def mvn_rank_2_test():
    return mvn_n_rank_test_base([1], [2, 2])


@onnx_test()
def mvn_rank_2_fp16_test():
    return mvn_n_rank_test_base([1], [2, 2], TensorProto.FLOAT16)


@onnx_test()
def mvn_rank_3_test():
    return mvn_n_rank_test_base([0, 1], [2, 2, 2])


@onnx_test()
def mvn_rank_3_fp16_test():
    return mvn_n_rank_test_base([0, 1], [2, 2, 2], TensorProto.FLOAT16)


@onnx_test()
def mvn_axes_rank_too_small_test():
    return mvn_n_rank_test_base([0, 1, 2], [2, 2, 2])


@onnx_test()
def mvn_axes_rank_too_big_test():
    return mvn_n_rank_test_base([0], [2, 2, 2])


5090
@onnx_test()
Khalique's avatar
Khalique committed
5091
5092
5093
5094
def min_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
5095
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])
Khalique's avatar
Khalique committed
5096
5097
5098
5099
5100
5101
5102

    node = onnx.helper.make_node(
        'Min',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
5103
5104
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
5105

5106
@onnx_test()
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
def mod_test():
    a = helper.make_tensor_value_info('0', TensorProto.INT32, [3, 3, 3])
    b = helper.make_tensor_value_info('1', TensorProto.INT32, [3, 3, 3])
    y = helper.make_tensor_value_info('2', TensorProto.INT32, [3, 3, 3])

    node = onnx.helper.make_node('Mod', inputs=['0', '1'], outputs=['2'])

    return ([node], [a, b], [y])


5117
@onnx_test()
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
def mod_test_half():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [3, 3, 3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [3, 3, 3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [3, 3, 3])

    node = onnx.helper.make_node('Mod', inputs=['0', '1'], outputs=['2'])

    return ([node], [a, b], [y])


5128
@onnx_test()
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
def mod_test_different_dtypes():
    a = helper.make_tensor_value_info('0', TensorProto.INT16, [3, 3, 3])
    b = helper.make_tensor_value_info('1', TensorProto.INT32, [3, 3, 3])
    y = helper.make_tensor_value_info('2', TensorProto.INT32, [3, 3, 3])

    node = onnx.helper.make_node(
        'Mod',
        inputs=['0', '1'],
        outputs=['2'],
    )

    return ([node], [a, b], [y])


5143
@onnx_test()
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
def mod_test_fmod():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 3, 3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 3, 3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 3, 3])

    node = onnx.helper.make_node(
        'Mod',
        inputs=['0', '1'],
        outputs=['2'],
        fmod=1  #fmod flag = 1
    )

    return ([node], [a, b], [y])


5159
@onnx_test()
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
def mod_test_fmod_half():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [3, 3, 3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [3, 3, 3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [3, 3, 3])

    node = onnx.helper.make_node('Mod',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 fmod=1)

    return ([node], [a, b], [y])


5173
@onnx_test()
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
def mod_test_fmod_different_dtypes():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 3, 3])
    b = helper.make_tensor_value_info('1', TensorProto.INT32, [3, 3, 3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 3, 3])

    node = onnx.helper.make_node(
        'Mod',
        inputs=['0', '1'],
        outputs=['2'],
        fmod=1  #fmod flag = 1
    )

    return ([node], [a, b], [y])


5189
@onnx_test()
turneram's avatar
turneram committed
5190
def multinomial_test():
Brian Pickrell's avatar
Brian Pickrell committed
5191
5192
5193
    sample_size = 13
    seed = 0.
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [3, 10])
turneram's avatar
turneram committed
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 seed=seed,
                                 outputs=['output'])

    return ([node], [input], [output])


Brian Pickrell's avatar
Brian Pickrell committed
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
@onnx_test()
def multinomial_dyn_test():
    sample_size = 100000
    seed = 1.3
    categories = 5
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT,
                                          [None, categories])
    output = helper.make_tensor_value_info("output", TensorProto.FLOAT,
                                           [None, categories])

    node = onnx.helper.make_node(
        'Multinomial',
        inputs=['input'],
        sample_size=sample_size,
        dtype=1,  # shape::float_type
        seed=seed,
        outputs=['output'])

    return ([node], [input], [output])


@onnx_test()
def multinomial_autoseed_dyn_test():
    # If seed attribute is not given, device should auto generate one at runtime
    sample_size = 12
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT,
                                          [None, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [None, 10])

    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 outputs=['output'])

    return ([node], [input], [output])


5244
@onnx_test()
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
def multinomial_generated_seed_test():
    sample_size = 10
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 outputs=['output'])

    return ([node], [input], [output])


5259
@onnx_test()
turneram's avatar
turneram committed
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
def multinomial_dtype_error_test():
    sample_size = 10
    dtype = 0
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT64,
                                           [1, 10])

    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 dtype=dtype,
                                 outputs=['output'])

    return ([node], [input], [output])


5276
@onnx_test()
turneram's avatar
turneram committed
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
def multinomial_int64_test():
    sample_size = 10
    dtype = 7
    seed = 1.0
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT64,
                                           [1, 10])

    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 dtype=dtype,
                                 seed=seed,
                                 outputs=['output'])

    return ([node], [input], [output])


5295
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5296
def neg_test():
Shucai Xiao's avatar
Shucai Xiao committed
5297
5298
    x = helper.make_tensor_value_info('0', TensorProto.INT64, [2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.INT64, [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
5299
5300
5301
5302
5303
5304

    node = onnx.helper.make_node('Neg', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


5305
@onnx_test()
5306
5307
5308
5309
5310
5311
5312
5313
5314
def neg_dynamic_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT64, [None, 3])
    y = helper.make_tensor_value_info('1', TensorProto.INT64, [None, 3])

    node = onnx.helper.make_node('Neg', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


5315
@onnx_test()
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
def nms_test():
    b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [1, 6, 4])
    s = helper.make_tensor_value_info('scores', TensorProto.FLOAT, [1, 1, 6])
    mo = helper.make_tensor_value_info('max_output_boxes_per_class',
                                       TensorProto.INT64, [1])
    iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
                                        [1])
    st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
                                       [1])
    out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
Charlie Lin's avatar
Charlie Lin committed
5326
                                        [None, 3])
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339

    node = onnx.helper.make_node('NonMaxSuppression',
                                 inputs=[
                                     'boxes', 'scores',
                                     'max_output_boxes_per_class',
                                     'iou_threshold', 'score_threshold'
                                 ],
                                 outputs=['selected_indices'],
                                 center_point_box=1)

    return ([node], [b, s, mo, iou, st], [out])


5340
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
def nms_use_dyn_output_false_test():
    b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [1, 6, 4])
    s = helper.make_tensor_value_info('scores', TensorProto.FLOAT, [1, 1, 6])
    mo = helper.make_tensor_value_info('max_output_boxes_per_class',
                                       TensorProto.INT64, [1])
    iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
                                        [1])
    st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
                                       [1])
    out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
                                        [None, 3])

    node = onnx.helper.make_node('NonMaxSuppression',
                                 inputs=[
                                     'boxes', 'scores',
                                     'max_output_boxes_per_class',
                                     'iou_threshold', 'score_threshold'
                                 ],
                                 outputs=['selected_indices'],
                                 use_dyn_output=0)

    return ([node], [b, s, mo, iou, st], [out])


5365
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
def nms_dynamic_batch_test():
    b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [None, 6, 4])
    s = helper.make_tensor_value_info('scores', TensorProto.FLOAT,
                                      [None, 1, 6])
    mo = helper.make_tensor_value_info('max_output_boxes_per_class',
                                       TensorProto.INT64, [1])
    iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
                                        [1])
    st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
                                       [1])
    out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
                                        [None, 3])

    node = onnx.helper.make_node('NonMaxSuppression',
                                 inputs=[
                                     'boxes', 'scores',
                                     'max_output_boxes_per_class',
                                     'iou_threshold', 'score_threshold'
                                 ],
                                 outputs=['selected_indices'],
                                 center_point_box=1,
                                 use_dyn_output=1)

    return ([node], [b, s, mo, iou, st], [out])


5392
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
def nms_dynamic_boxes_test():
    b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [1, None, 4])
    s = helper.make_tensor_value_info('scores', TensorProto.FLOAT,
                                      [1, 1, None])
    mo = helper.make_tensor_value_info('max_output_boxes_per_class',
                                       TensorProto.INT64, [1])
    iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
                                        [1])
    st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
                                       [1])
    out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
                                        [None, 3])

    node = onnx.helper.make_node('NonMaxSuppression',
                                 inputs=[
                                     'boxes', 'scores',
                                     'max_output_boxes_per_class',
                                     'iou_threshold', 'score_threshold'
                                 ],
                                 outputs=['selected_indices'])

    return ([node], [b, s, mo, iou, st], [out])


5417
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
def nms_dynamic_classes_test():
    b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [1, 6, 4])
    s = helper.make_tensor_value_info('scores', TensorProto.FLOAT,
                                      [1, None, 6])
    mo = helper.make_tensor_value_info('max_output_boxes_per_class',
                                       TensorProto.INT64, [1])
    iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
                                        [1])
    st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
                                       [1])
    out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
                                        [None, 3])

    node = onnx.helper.make_node('NonMaxSuppression',
                                 inputs=[
                                     'boxes', 'scores',
                                     'max_output_boxes_per_class',
                                     'iou_threshold', 'score_threshold'
                                 ],
                                 outputs=['selected_indices'])

    return ([node], [b, s, mo, iou, st], [out])


5442
@onnx_test()
5443
5444
5445
5446
5447
5448
5449
5450
5451
def not_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT32, [4])
    y = helper.make_tensor_value_info('1', TensorProto.INT32, [4])

    node = onnx.helper.make_node('Not', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


5452
@onnx_test()
5453
5454
5455
5456
5457
5458
5459
5460
5461
def not_bool_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [4])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4])

    node = onnx.helper.make_node('Not', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


5462
@onnx_test()
Khalique's avatar
Khalique committed
5463
5464
5465
5466
def no_pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 2])

Khalique's avatar
Khalique committed
5467
5468
5469
5470
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[0, 0, 0, 0],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
5471

Khalique's avatar
Khalique committed
5472
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5473

Khalique's avatar
Khalique committed
5474

5475
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
def nonzero_dynamic_test():
    x = helper.make_tensor_value_info('data', TensorProto.BOOL, [2, 2])
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 3])

    node = onnx.helper.make_node('NonZero',
                                 inputs=['data'],
                                 outputs=['indices'])

    return ([node], [x], [y])


5487
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
def nonzero_test():
    data1 = np.array([[1., 0.], [1., 1.]])
    data = helper.make_tensor(name='data',
                              data_type=TensorProto.FLOAT,
                              dims=data1.shape,
                              vals=data1.flatten().astype(np.float))
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 3])

    node = onnx.helper.make_node('NonZero',
                                 inputs=['data'],
                                 outputs=['indices'])

    return ([node], [], [y], [data])


5503
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
def nonzero_int_test():
    data1 = np.array([[1, 1, 0], [1, 0, 1]])
    data = helper.make_tensor(name='data',
                              data_type=TensorProto.INT16,
                              dims=data1.shape,
                              vals=data1.flatten().astype(np.int16))
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 4])

    node = onnx.helper.make_node('NonZero',
                                 inputs=['data'],
                                 outputs=['indices'])

    return ([node], [], [y], [data])


5519
@onnx_test()
kahmed10's avatar
kahmed10 committed
5520
def onehot_test():
Shucai Xiao's avatar
Shucai Xiao committed
5521
5522
5523
5524
5525
5526
    axis_value = 0
    depth = np.array([3])
    indices = helper.make_tensor_value_info("indices", TensorProto.INT32,
                                            [5, 2])
    values = helper.make_tensor_value_info("values", TensorProto.FLOAT16, [2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 5, 2])
kahmed10's avatar
kahmed10 committed
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537

    depth_tensor = helper.make_tensor(name="depth",
                                      data_type=TensorProto.INT32,
                                      dims=None,
                                      vals=depth.astype(int))

    node = onnx.helper.make_node('OneHot',
                                 inputs=['indices', 'depth', 'values'],
                                 outputs=['y'],
                                 axis=axis_value)

Shucai Xiao's avatar
Shucai Xiao committed
5538
    return ([node], [indices, values], [y], [depth_tensor])
kahmed10's avatar
kahmed10 committed
5539
5540


5541
@onnx_test()
Khalique's avatar
Khalique committed
5542
5543
5544
5545
def pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 4])

Khalique's avatar
Khalique committed
5546
5547
5548
5549
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[1, 1, 1, 1],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
5550

Khalique's avatar
Khalique committed
5551
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5552

Khalique's avatar
Khalique committed
5553

5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
@onnx_test()
def pad_asym_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 6, 4, 12])

    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[0, 1, 0, 3, 0, 2, 0, 4],
                                 outputs=['1'])

    return ([node], [x], [y])


@onnx_test()
def pad_asym_invalid_pads_error_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 6, 4, 12])

    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[0, 1, 0, 3, 0, 2],
                                 outputs=['1'])

    return ([node], [x], [y])


5580
@onnx_test()
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
def pad_3arg_test():
    values = np.array([1])
    val_tensor = helper.make_tensor(name='val',
                                    data_type=TensorProto.FLOAT,
                                    dims=values.reshape(()).shape,
                                    vals=values.astype(float))
    arg_val = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_val'],
                                    value=val_tensor)

    sizes = np.array([1, 1, 2, 2])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5, 5])

    node = onnx.helper.make_node('Pad',
                                 inputs=['0', 'arg_pad', 'arg_val'],
                                 outputs=['1'])

    return ([arg_val, arg_pad, node], [x], [y])


5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
@onnx_test()
def pad_4arg_axes_test():
    values = np.array([1])
    val_tensor = helper.make_tensor(name='val',
                                    data_type=TensorProto.FLOAT,
                                    dims=values.reshape(()).shape,
                                    vals=values.astype(float))
    arg_val = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_val'],
                                    value=val_tensor)

    sizes = np.array([1, 3, 2, 4])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    axes = np.array([1, 3])
    axes_tensor = helper.make_tensor(name='pad_axes',
                                     data_type=TensorProto.INT32,
                                     dims=axes.shape,
                                     vals=axes.astype(int))
    arg_axes = onnx.helper.make_node('Constant',
                                     inputs=[],
                                     outputs=['arg_axes'],
                                     value=axes_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 6, 4, 12])

    node = onnx.helper.make_node(
        'Pad', inputs=['0', 'arg_pad', 'arg_val', 'arg_axes'], outputs=['1'])

    return ([arg_axes, arg_val, arg_pad, node], [x], [y])


@onnx_test()
def pad_4arg_invalid_axes_error_test():
    values = np.array([1])
    val_tensor = helper.make_tensor(name='val',
                                    data_type=TensorProto.FLOAT,
                                    dims=values.reshape(()).shape,
                                    vals=values.astype(float))
    arg_val = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_val'],
                                    value=val_tensor)

    sizes = np.array([1, 3, 2, 4])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    axes = np.array([1, 2, 3])
    axes_tensor = helper.make_tensor(name='pad_axes',
                                     data_type=TensorProto.INT32,
                                     dims=axes.shape,
                                     vals=axes.astype(int))
    arg_axes = onnx.helper.make_node('Constant',
                                     inputs=[],
                                     outputs=['arg_axes'],
                                     value=axes_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 6, 4, 12])

    node = onnx.helper.make_node(
        'Pad', inputs=['0', 'arg_pad', 'arg_val', 'arg_axes'], outputs=['1'])

    return ([arg_axes, arg_val, arg_pad, node], [x], [y])


@onnx_test()
def pad_4arg_neg_axes_test():
    values = np.array([1])
    val_tensor = helper.make_tensor(name='val',
                                    data_type=TensorProto.FLOAT,
                                    dims=values.reshape(()).shape,
                                    vals=values.astype(float))
    arg_val = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_val'],
                                    value=val_tensor)

    sizes = np.array([1, 3, 2, 4])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    axes = np.array([-3, -1])
    axes_tensor = helper.make_tensor(name='pad_axes',
                                     data_type=TensorProto.INT32,
                                     dims=axes.shape,
                                     vals=axes.astype(int))
    arg_axes = onnx.helper.make_node('Constant',
                                     inputs=[],
                                     outputs=['arg_axes'],
                                     value=axes_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 6, 4, 12])

    node = onnx.helper.make_node(
        'Pad', inputs=['0', 'arg_pad', 'arg_val', 'arg_axes'], outputs=['1'])

    return ([arg_axes, arg_val, arg_pad, node], [x], [y])


5735
@onnx_test()
kahmed10's avatar
kahmed10 committed
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
def pad_reflect_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 5])

    sizes = np.array([0, 2, 0, 1])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    node = onnx.helper.make_node('Pad',
                                 mode='reflect',
                                 inputs=['0', 'arg_pad'],
                                 outputs=['1'])

    return ([arg_pad, node], [x], [y])


5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
@onnx_test()
def pad_reflect_with_axes_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 5])

    sizes = np.array([2, 1])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    axes = np.array([1])
    axes_tensor = helper.make_tensor(name='pad_axes',
                                     data_type=TensorProto.INT32,
                                     dims=axes.shape,
                                     vals=axes.astype(int))
    arg_axes = onnx.helper.make_node('Constant',
                                     inputs=[],
                                     outputs=['arg_axes'],
                                     value=axes_tensor)

    node = onnx.helper.make_node('Pad',
                                 mode='reflect',
                                 inputs=['0', 'arg_pad', 'arg_axes'],
                                 outputs=['1'])

    return ([arg_axes, arg_pad, node], [x], [y])


5791
@onnx_test()
kahmed10's avatar
kahmed10 committed
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
def pad_reflect_multiaxis_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])

    sizes = np.array([0, 2, 2, 0])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    node = onnx.helper.make_node('Pad',
                                 mode='reflect',
                                 inputs=['0', 'arg_pad'],
                                 outputs=['1'])

    return ([arg_pad, node], [x], [y])


Charlie Lin's avatar
Charlie Lin committed
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
@onnx_test()
def pad_attr_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, None])

    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[1, 1, 1, 1],
                                 outputs=['1'])

    return ([node], [x], [y])


@onnx_test()
def pad_cnst_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, None])

    sizes = np.array([0, 2, 0, 1])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    node = onnx.helper.make_node('Pad', inputs=['0', 'arg_pad'], outputs=['1'])

    return ([arg_pad, node], [x], [y])


@onnx_test()
def pad_dyn_reflect_error():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, None])

    node = onnx.helper.make_node('Pad',
                                 mode='reflect',
                                 inputs=['0'],
                                 pads=[0, 2, 0, 1],
                                 outputs=['1'])

    return ([node], [x], [y])


5861
@onnx_test()
Khalique's avatar
Khalique committed
5862
5863
5864
def pow_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
5865
5866
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
5867
5868
5869
5870
5871
5872
5873

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
5874
    return ([node], [arg0, arg1], [arg_out])
Khalique's avatar
Khalique committed
5875

kahmed10's avatar
kahmed10 committed
5876

5877
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
def pow_fp32_i64_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.INT64, [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


5893
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
def pow_i64_fp32_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT64, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT64,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


5909
@onnx_test()
turneram's avatar
turneram committed
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
def prefix_scan_sum_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 2])
    axis_val = np.array([0])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis_val.shape,
                                     vals=axis_val.astype(int))
    node = onnx.helper.make_node('CumSum',
                                 inputs=['x', 'axis'],
                                 outputs=['y'],
                                 exclusive=1,
                                 reverse=1)
    return ([node], [x], [y], [axis_tensor])


5926
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
def prelu_brcst_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'PRelu',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


Lakhinder Walia's avatar
Lakhinder Walia committed
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
@onnx_test()
def qlinearadd_test():
    a = helper.make_tensor_value_info('A', TensorProto.UINT8, [64])
    sc_a = helper.make_tensor('A_scale', TensorProto.FLOAT, [], [0.05])
    zero_pt_a = helper.make_tensor('A_zero_point', TensorProto.UINT8, [], [0])

    b = helper.make_tensor_value_info('B', TensorProto.UINT8, [64])
    sc_b = helper.make_tensor('B_scale', TensorProto.FLOAT, [], [0.05])
    zero_pt_b = helper.make_tensor('B_zero_point', TensorProto.UINT8, [],
                                   [128])

    sc_c = helper.make_tensor('C_scale', TensorProto.FLOAT, [], [0.05])
    zero_pt_c = helper.make_tensor('C_zero_point', TensorProto.UINT8, [], [64])

    c = helper.make_tensor_value_info('C', TensorProto.UINT8, [64])

    node = onnx.helper.make_node(
        'QLinearAdd',
        inputs=[
            'A', 'A_scale', 'A_zero_point', 'B', 'B_scale', 'B_zero_point',
            'C_scale', 'C_zero_point'
        ],
        outputs=['C'],
    )
    return ([node], [a, b], [c],
            [sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c])


@onnx_test()
def qlinearadd_bcast_test():
    a = helper.make_tensor_value_info('A', TensorProto.INT8, [64])
    sc_a = helper.make_tensor('A_scale', TensorProto.FLOAT, [], [0.05])
    zero_pt_a = helper.make_tensor('A_zero_point', TensorProto.INT8, [], [0])

    b = helper.make_tensor_value_info('B', TensorProto.INT8, [1, 1, 64])
    sc_b = helper.make_tensor('B_scale', TensorProto.FLOAT, [], [0.05])
    zero_pt_b = helper.make_tensor('B_zero_point', TensorProto.INT8, [], [32])

    sc_c = helper.make_tensor('C_scale', TensorProto.FLOAT, [], [0.05])
    zero_pt_c = helper.make_tensor('C_zero_point', TensorProto.INT8, [], [-64])

    c = helper.make_tensor_value_info('C', TensorProto.INT8, [1, 1, 64])

    node = onnx.helper.make_node(
        'QLinearAdd',
        inputs=[
            'A', 'A_scale', 'A_zero_point', 'B', 'B_scale', 'B_zero_point',
            'C_scale', 'C_zero_point'
        ],
        outputs=['C'],
    )
    return ([node], [a, b], [c],
            [sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c])


5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
@onnx_test()
def qlinearaveragepool_1d_test():
    x = helper.make_tensor_value_info('x', TensorProto.INT8, [1, 3, 32])
    x_scale = helper.make_tensor('x_scale', TensorProto.FLOAT, [], [0.05])
    x_zero_point = helper.make_tensor('x_zero_point', TensorProto.INT8, [],
                                      [0])

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 3, 31])
    y_scale = helper.make_tensor('y_scale', TensorProto.FLOAT, [], [0.05])
    y_zero_point = helper.make_tensor('y_zero_point', TensorProto.INT8, [],
                                      [16])

    node = onnx.helper.make_node(
        'QLinearAveragePool',
        inputs=['x', 'x_scale', 'x_zero_point', 'y_scale', 'y_zero_point'],
        outputs=['y'],
        kernel_shape=[2],
    )

    return ([node], [x], [y], [x_scale, x_zero_point, y_scale, y_zero_point])


@onnx_test()
def qlinearaveragepool_2d_test():
    x = helper.make_tensor_value_info('x', TensorProto.INT8, [1, 3, 4, 4])
    x_scale = helper.make_tensor('x_scale', TensorProto.FLOAT, [], [0.05])
    x_zero_point = helper.make_tensor('x_zero_point', TensorProto.INT8, [],
                                      [0])

    y = helper.make_tensor_value_info('y', TensorProto.INT8, [1, 3, 3, 3])
    y_scale = helper.make_tensor('y_scale', TensorProto.FLOAT, [], [0.015])
    y_zero_point = helper.make_tensor('y_zero_point', TensorProto.INT8, [],
                                      [16])

    node = onnx.helper.make_node(
        'QLinearAveragePool',
        inputs=['x', 'x_scale', 'x_zero_point', 'y_scale', 'y_zero_point'],
        outputs=['y'],
        kernel_shape=[2, 2],
    )

    return ([node], [x], [y], [x_scale, x_zero_point, y_scale, y_zero_point])


@onnx_test()
def qlinearaveragepool_2d_ceil_test():
    x = helper.make_tensor_value_info('x', TensorProto.UINT8, [1, 1, 4, 4])
    x_scale = helper.make_tensor('x_scale', TensorProto.FLOAT, [], [0.5])
    x_zero_point = helper.make_tensor('x_zero_point', TensorProto.UINT8, [],
                                      [0])

    y = helper.make_tensor_value_info('y', TensorProto.UINT8, [1, 1, 2, 2])
    y_scale = helper.make_tensor('y_scale', TensorProto.FLOAT, [], [0.05])
    y_zero_point = helper.make_tensor('y_zero_point', TensorProto.UINT8, [],
                                      [0])

    node = onnx.helper.make_node(
        'QLinearAveragePool',
        inputs=['x', 'x_scale', 'x_zero_point', 'y_scale', 'y_zero_point'],
        outputs=['y'],
        kernel_shape=[3, 3],
        strides=[2, 2],
        ceil_mode=True,
    )

    return ([node], [x], [y], [x_scale, x_zero_point, y_scale, y_zero_point])


@onnx_test()
def qlinearaveragepool_2d_dilations_test():
    x = helper.make_tensor_value_info('x', TensorProto.INT8, [1, 1, 4, 4])
    x_scale = helper.make_tensor('x_scale', TensorProto.FLOAT, [], [0.5])
    x_zero_point = helper.make_tensor('x_zero_point', TensorProto.INT8, [],
                                      [0])

    y = helper.make_tensor_value_info('y', TensorProto.INT8, [1, 1, 2, 2])
    y_scale = helper.make_tensor('y_scale', TensorProto.FLOAT, [], [0.25])
    y_zero_point = helper.make_tensor('y_zero_point', TensorProto.INT8, [],
                                      [84])

    node = onnx.helper.make_node(
        'QLinearAveragePool',
        inputs=['x', 'x_scale', 'x_zero_point', 'y_scale', 'y_zero_point'],
        outputs=['y'],
        kernel_shape=[2, 2],
        strides=[1, 1],
        dilations=[2, 2],
        ceil_mode=True,
    )

    return ([node], [x], [y], [x_scale, x_zero_point, y_scale, y_zero_point])


@onnx_test()
def qlinearaveragepool_2d_pads_count_include_pad_test():
    x = helper.make_tensor_value_info('x', TensorProto.INT8, [1, 3, 4, 4])
    x_scale = helper.make_tensor('x_scale', TensorProto.FLOAT, [], [0.05])
    x_zero_point = helper.make_tensor('x_zero_point', TensorProto.INT8, [],
                                      [0])

    y = helper.make_tensor_value_info('y', TensorProto.INT8, [1, 3, 6, 6])
    y_scale = helper.make_tensor('y_scale', TensorProto.FLOAT, [], [0.01])
    y_zero_point = helper.make_tensor('y_zero_point', TensorProto.INT8, [],
                                      [32])

    node = onnx.helper.make_node(
        'QLinearAveragePool',
        inputs=['x', 'x_scale', 'x_zero_point', 'y_scale', 'y_zero_point'],
        outputs=['y'],
        kernel_shape=[3, 3],
        pads=[2, 2, 2, 2],
        count_include_pad=1,
    )

    return ([node], [x], [y], [x_scale, x_zero_point, y_scale, y_zero_point])


@onnx_test()
def qlinearaveragepool_2d_same_lower_test():
    x = helper.make_tensor_value_info('x', TensorProto.UINT8, [1, 3, 4, 4])
    x_scale = helper.make_tensor('x_scale', TensorProto.FLOAT, [], [0.5])
    x_zero_point = helper.make_tensor('x_zero_point', TensorProto.UINT8, [],
                                      [0])

    y = helper.make_tensor_value_info('y', TensorProto.UINT8, [1, 3, 4, 4])
    y_scale = helper.make_tensor('y_scale', TensorProto.FLOAT, [], [0.5])
    y_zero_point = helper.make_tensor('y_zero_point', TensorProto.UINT8, [],
                                      [0])

    node = onnx.helper.make_node(
        'QLinearAveragePool',
        inputs=['x', 'x_scale', 'x_zero_point', 'y_scale', 'y_zero_point'],
        outputs=['y'],
        kernel_shape=[2, 2],
        auto_pad="SAME_LOWER",
    )

    return ([node], [x], [y], [x_scale, x_zero_point, y_scale, y_zero_point])


@onnx_test()
def qlinearaveragepool_2d_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.INT8, [1, 3, 4, 4])
    x_scale = helper.make_tensor('x_scale', TensorProto.FLOAT, [], [0.5])
    x_zero_point = helper.make_tensor('x_zero_point', TensorProto.INT8, [],
                                      [32])

    y = helper.make_tensor_value_info('y', TensorProto.INT8, [1, 3, 4, 4])
    y_scale = helper.make_tensor('y_scale', TensorProto.FLOAT, [], [0.25])
    y_zero_point = helper.make_tensor('y_zero_point', TensorProto.INT8, [],
                                      [0])

    node = onnx.helper.make_node(
        'QLinearAveragePool',
        inputs=['x', 'x_scale', 'x_zero_point', 'y_scale', 'y_zero_point'],
        outputs=['y'],
        kernel_shape=[2, 2],
        auto_pad="SAME_UPPER",
    )

    return ([node], [x], [y], [x_scale, x_zero_point, y_scale, y_zero_point])


@onnx_test()
def qlinearaveragepool_2d_strides_test():
    x = helper.make_tensor_value_info('x', TensorProto.INT8, [1, 3, 8, 8])
    x_scale = helper.make_tensor('x_scale', TensorProto.FLOAT, [], [0.05])
    x_zero_point = helper.make_tensor('x_zero_point', TensorProto.INT8, [],
                                      [0])

    y = helper.make_tensor_value_info('y', TensorProto.INT8, [1, 3, 2, 2])
    y_scale = helper.make_tensor('y_scale', TensorProto.FLOAT, [], [0.05])
    y_zero_point = helper.make_tensor('y_zero_point', TensorProto.INT8, [],
                                      [8])

    node = onnx.helper.make_node(
        'QLinearAveragePool',
        inputs=['x', 'x_scale', 'x_zero_point', 'y_scale', 'y_zero_point'],
        outputs=['y'],
        kernel_shape=[5, 5],
        strides=[2, 2],
    )

    return ([node], [x], [y], [x_scale, x_zero_point, y_scale, y_zero_point])


@onnx_test()
def qlinearaveragepool_3d_test():
    x = helper.make_tensor_value_info('x', TensorProto.INT8, [1, 3, 3, 3, 3])
    x_scale = helper.make_tensor('x_scale', TensorProto.FLOAT, [], [0.05])
    x_zero_point = helper.make_tensor('x_zero_point', TensorProto.INT8, [],
                                      [0])

    y = helper.make_tensor_value_info('y', TensorProto.INT8, [1, 3, 2, 2, 2])
    y_scale = helper.make_tensor('y_scale', TensorProto.FLOAT, [], [0.02])
    y_zero_point = helper.make_tensor('y_zero_point', TensorProto.INT8, [],
                                      [0])

    node = onnx.helper.make_node(
        'QLinearAveragePool',
        inputs=['x', 'x_scale', 'x_zero_point', 'y_scale', 'y_zero_point'],
        outputs=['y'],
        kernel_shape=[2, 2, 2],
    )

    return ([node], [x], [y], [x_scale, x_zero_point, y_scale, y_zero_point])


@onnx_test()
def qlinearaveragepool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.INT8, [1, 1, 5, 5])
    x_scale = helper.make_tensor('x_scale', TensorProto.FLOAT, [], [0.5])
    x_zero_point = helper.make_tensor('x_zero_point', TensorProto.INT8, [],
                                      [0])
    y = helper.make_tensor_value_info('y', TensorProto.INT8, [1, 1, 1, 1])
    y_scale = helper.make_tensor('y_scale', TensorProto.FLOAT, [], [0.5])
    y_zero_point = helper.make_tensor('y_zero_point', TensorProto.INT8, [],
                                      [10])

    node = onnx.helper.make_node(
        'QLinearAveragePool',
        inputs=['x', 'x_scale', 'x_zero_point', 'y_scale', 'y_zero_point'],
        outputs=['y'],
        kernel_shape=[6, 6],
        strides=[2, 2],
        pads=[0, 0, 1, 1],
        channels_last=0,
        auto_pad='NOTSET')

    return ([node], [x], [y], [x_scale, x_zero_point, y_scale, y_zero_point])


@onnx_test()
def qlinearaveragepool_nt_cip_test():
    x = helper.make_tensor_value_info('x', TensorProto.UINT8, [1, 1, 5, 5])
    x_scale = helper.make_tensor('x_scale', TensorProto.FLOAT, [], [0.5])
    x_zero_point = helper.make_tensor('x_zero_point', TensorProto.UINT8, [],
                                      [0])
    y = helper.make_tensor_value_info('y', TensorProto.UINT8, [1, 1, 1, 1])
    y_scale = helper.make_tensor('y_scale', TensorProto.FLOAT, [], [0.5])
    y_zero_point = helper.make_tensor('y_zero_point', TensorProto.UINT8, [],
                                      [10])

    node = onnx.helper.make_node(
        'QLinearAveragePool',
        inputs=['x', 'x_scale', 'x_zero_point', 'y_scale', 'y_zero_point'],
        outputs=['y'],
        kernel_shape=[6, 6],
        strides=[2, 2],
        pads=[0, 0, 1, 1],
        channels_last=0,
        auto_pad='NOTSET',
        count_include_pad=1)

    return ([node], [x], [y], [x_scale, x_zero_point, y_scale, y_zero_point])


Lakhinder Walia's avatar
Lakhinder Walia committed
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
@onnx_test()
def qlinearconv_test():
    # https://xadupre.github.io/draft/onnx/onnx_doc_folder/onnx__QLinearConv.html
    x = helper.make_tensor_value_info('X', TensorProto.UINT8, [1, 1, 7, 7])
    sc_x = helper.make_tensor('1', TensorProto.FLOAT, [], [0.00369204697])
    zero_pt_x = helper.make_tensor('2', TensorProto.UINT8, [], [132])

    wt = helper.make_tensor('3', TensorProto.UINT8, [1, 1, 1, 1], [0])
    sc_wt = helper.make_tensor('4', TensorProto.FLOAT, [], [0.00172794575])
    zero_pt_wt = helper.make_tensor('5', TensorProto.UINT8, [], [255])

    sc_y = helper.make_tensor('6', TensorProto.FLOAT, [], [0.00162681262])
    zero_pt_y = helper.make_tensor('7', TensorProto.UINT8, [], [123])

    out = helper.make_tensor_value_info('out', TensorProto.UINT8, [1, 1, 7, 7])

    node = onnx.helper.make_node(
        'QLinearConv',
        inputs=['X', '1', '2', '3', '4', '5', '6', '7'],
        outputs=['out'],
    )
    return ([node], [x], [out],
            [sc_x, zero_pt_x, wt, sc_wt, zero_pt_wt, sc_y, zero_pt_y])


@onnx_test()
def qlinearconv_pad_1_test():
    # https://xadupre.github.io/draft/onnx/onnx_doc_folder/onnx__Conv.html
    x = helper.make_tensor_value_info('X', TensorProto.UINT8, [1, 1, 5, 5])
    sc_x = helper.make_tensor('1', TensorProto.FLOAT, [],
                              [0.09411764705882353])
    zero_pt_x = helper.make_tensor('2', TensorProto.UINT8, [], [0])

    wt = helper.make_tensor('3', TensorProto.UINT8, [1, 1, 3, 3],
                            [1, 1, 1, 1, 1, 1, 1, 1, 1])
    sc_wt = helper.make_tensor('4', TensorProto.FLOAT, [], [1.0])
    zero_pt_wt = helper.make_tensor('5', TensorProto.UINT8, [], [0])

    sc_y = helper.make_tensor('6', TensorProto.FLOAT, [], [0.6352941176470588])
    zero_pt_y = helper.make_tensor('7', TensorProto.UINT8, [], [0])

    out = helper.make_tensor_value_info('out', TensorProto.UINT8, [1, 1, 5, 5])

    node = onnx.helper.make_node(
        'QLinearConv',
        inputs=['X', '1', '2', '3', '4', '5', '6', '7'],
        outputs=['out'],
        pads=[1, 1, 1, 1],
    )
    return ([node], [x], [out],
            [sc_x, zero_pt_x, wt, sc_wt, zero_pt_wt, sc_y, zero_pt_y])


@onnx_test()
def qlinearconv_pad_0_test():
    # https://xadupre.github.io/draft/onnx/onnx_doc_folder/onnx__Conv.html
    x = helper.make_tensor_value_info('X', TensorProto.UINT8, [1, 1, 5, 5])
    sc_x = helper.make_tensor('1', TensorProto.FLOAT, [],
                              [0.09411764705882353])
    zero_pt_x = helper.make_tensor('2', TensorProto.UINT8, [], [0])

    wt = helper.make_tensor('3', TensorProto.UINT8, [1, 1, 3, 3],
                            [1, 1, 1, 1, 1, 1, 1, 1, 1])
    sc_wt = helper.make_tensor('4', TensorProto.FLOAT, [], [1.0])
    zero_pt_wt = helper.make_tensor('5', TensorProto.UINT8, [], [0])

    sc_y = helper.make_tensor('6', TensorProto.FLOAT, [], [0.6352941176470588])
    zero_pt_y = helper.make_tensor('7', TensorProto.INT8, [], [-128])

    out = helper.make_tensor_value_info('out', TensorProto.INT8, [1, 1, 3, 3])

    node = onnx.helper.make_node(
        'QLinearConv',
        inputs=['X', '1', '2', '3', '4', '5', '6', '7'],
        outputs=['out'],
        pads=[0, 0, 0, 0],
    )
    return ([node], [x], [out],
            [sc_x, zero_pt_x, wt, sc_wt, zero_pt_wt, sc_y, zero_pt_y])


@onnx_test()
def qlinearconv_scale_1D_test():
    # https://xadupre.github.io/draft/onnx/onnx_doc_folder/onnx__Conv.html
    x = helper.make_tensor_value_info('X', TensorProto.UINT8, [1, 1, 5, 5])
    sc_x = helper.make_tensor('1', TensorProto.FLOAT, [],
                              [0.09411764705882353])
    zero_pt_x = helper.make_tensor('2', TensorProto.UINT8, [], [0])

    wt = helper.make_tensor(
        '3', TensorProto.UINT8, [2, 1, 3, 3],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2])
    sc_wt = helper.make_tensor('4', TensorProto.FLOAT, [2], [1.0, 0.5])
    zero_pt_wt = helper.make_tensor('5', TensorProto.UINT8, [2], [0, 0])

    sc_y = helper.make_tensor('6', TensorProto.FLOAT, [], [0.6352941176470588])
    zero_pt_y = helper.make_tensor('7', TensorProto.INT8, [], [-128])

    out = helper.make_tensor_value_info('out', TensorProto.INT8, [1, 2, 3, 3])

    node = onnx.helper.make_node(
        'QLinearConv',
        inputs=['X', '1', '2', '3', '4', '5', '6', '7'],
        outputs=['out'],
        pads=[0, 0, 0, 0],
    )
    return ([node], [x], [out],
            [sc_x, zero_pt_x, wt, sc_wt, zero_pt_wt, sc_y, zero_pt_y])


6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
@onnx_test()
def qlinearglobalavgpool_test():
    x = helper.make_tensor_value_info('X', TensorProto.UINT8, [1, 3, 4, 4])

    sc_x = helper.make_tensor('X_scale', TensorProto.FLOAT, [], [0.05])
    z_pt_x = helper.make_tensor('X_zero_point', TensorProto.UINT8, [], [128])

    y = helper.make_tensor_value_info('Y', TensorProto.UINT8, [1, 3, 1, 1])

    sc_y = helper.make_tensor('Y_scale', TensorProto.FLOAT, [], [0.025])
    z_pt_y = helper.make_tensor('Y_zero_point', TensorProto.UINT8, [], [64])

    n = onnx.helper.make_node(
        'QLinearGlobalAveragePool',
        inputs=['X', 'X_scale', 'X_zero_point', 'Y_scale', 'Y_zero_point'],
        outputs=['Y'],
        channels_last=0,
    )

    return ([n], [x], [y], [sc_x, z_pt_x, sc_y, z_pt_y])


6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
@onnx_test()
def qlinearleakyrelu_test():
    x = helper.make_tensor_value_info('X', TensorProto.INT8, [64])
    sc_x = helper.make_tensor('X_scale', TensorProto.FLOAT, [], [0.05])
    zero_pt_x = helper.make_tensor('X_zero_point', TensorProto.INT8, [], [0])

    sc_y = helper.make_tensor('Y_scale', TensorProto.FLOAT, [], [0.05])
    zero_pt_y = helper.make_tensor('Y_zero_point', TensorProto.INT8, [], [10])

    y = helper.make_tensor_value_info('Y', TensorProto.INT8, [64])

    node = onnx.helper.make_node(
        'QLinearLeakyRelu',
        inputs=['X', 'X_scale', 'X_zero_point', 'Y_scale', 'Y_zero_point'],
        outputs=['Y'],
        alpha=1.1,
    )
    return ([node], [x], [y], [sc_x, zero_pt_x, sc_y, zero_pt_y])


Lakhinder Walia's avatar
Lakhinder Walia committed
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
def qlinearmatmul_1D_test():
    a = helper.make_tensor_value_info('A', TensorProto.UINT8, [8])
    sc_a = helper.make_tensor('A_scale', TensorProto.FLOAT, [], [0.05])
    zero_pt_a = helper.make_tensor('A_zero_point', TensorProto.UINT8, [], [0])

    b = helper.make_tensor_value_info('B', TensorProto.UINT8, [8])
    sc_b = helper.make_tensor('B_scale', TensorProto.FLOAT, [], [0.05])
    zero_pt_b = helper.make_tensor('B_zero_point', TensorProto.UINT8, [],
                                   [128])

    sc_c = helper.make_tensor('C_scale', TensorProto.FLOAT, [], [0.05])
    zero_pt_c = helper.make_tensor('C_zero_point', TensorProto.UINT8, [], [64])

    c = helper.make_tensor_value_info('C', TensorProto.UINT8, [1])

    node = onnx.helper.make_node(
        'QLinearMatMul',
        inputs=[
            'A', 'A_scale', 'A_zero_point', 'B', 'B_scale', 'B_zero_point',
            'C_scale', 'C_zero_point'
        ],
        outputs=['C'],
    )
    return ([node], [a, b], [c],
            [sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c])


@onnx_test()
def qlinearmatmul_2D_test():
    a = helper.make_tensor_value_info('A', TensorProto.UINT8, [1, 8])
    sc_a = helper.make_tensor('A_scale', TensorProto.FLOAT, [], [0.05])
    zero_pt_a = helper.make_tensor('A_zero_point', TensorProto.UINT8, [], [0])

    b = helper.make_tensor_value_info('B', TensorProto.UINT8, [8, 1])
    sc_b = helper.make_tensor('B_scale', TensorProto.FLOAT, [], [0.05])
    zero_pt_b = helper.make_tensor('B_zero_point', TensorProto.UINT8, [],
                                   [128])

    sc_c = helper.make_tensor('C_scale', TensorProto.FLOAT, [], [0.05])
    zero_pt_c = helper.make_tensor('C_zero_point', TensorProto.UINT8, [], [64])

    c = helper.make_tensor_value_info('C', TensorProto.UINT8, [1, 1])

    node = onnx.helper.make_node(
        'QLinearMatMul',
        inputs=[
            'A', 'A_scale', 'A_zero_point', 'B', 'B_scale', 'B_zero_point',
            'C_scale', 'C_zero_point'
        ],
        outputs=['C'],
    )
    return ([node], [a, b], [c],
            [sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c])


@onnx_test()
def qlinearmatmul_3D_test():
    a = helper.make_tensor_value_info('A', TensorProto.UINT8, [2, 2, 4])
    sc_a = helper.make_tensor('A_scale', TensorProto.FLOAT, [], [0.0066])
    zero_pt_a = helper.make_tensor('A_zero_point', TensorProto.UINT8, [],
                                   [113])

    b = helper.make_tensor_value_info('B', TensorProto.UINT8, [2, 4, 3])
    sc_b = helper.make_tensor('B_scale', TensorProto.FLOAT, [], [0.00705])
    zero_pt_b = helper.make_tensor('B_zero_point', TensorProto.UINT8, [],
                                   [114])

    sc_c = helper.make_tensor('C_scale', TensorProto.FLOAT, [], [0.0107])
    zero_pt_c = helper.make_tensor('C_zero_point', TensorProto.UINT8, [],
                                   [118])

    c = helper.make_tensor_value_info('C', TensorProto.UINT8, [2, 2, 3])

    node = onnx.helper.make_node(
        'QLinearMatMul',
        inputs=[
            'A', 'A_scale', 'A_zero_point', 'B', 'B_scale', 'B_zero_point',
            'C_scale', 'C_zero_point'
        ],
        outputs=['C'],
    )
    return ([node], [a, b], [c],
            [sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c])


Zakor Gyula's avatar
Zakor Gyula committed
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
@onnx_test()
def qlinearmul_test():
    a = helper.make_tensor_value_info('A', TensorProto.UINT8, [64])
    sc_a = helper.make_tensor('A_scale', TensorProto.FLOAT, [], [0.05])
    zero_pt_a = helper.make_tensor('A_zero_point', TensorProto.UINT8, [], [0])

    b = helper.make_tensor_value_info('B', TensorProto.UINT8, [64])
    sc_b = helper.make_tensor('B_scale', TensorProto.FLOAT, [], [0.05])
    zero_pt_b = helper.make_tensor('B_zero_point', TensorProto.UINT8, [], [16])

    sc_c = helper.make_tensor('C_scale', TensorProto.FLOAT, [], [0.05])
    zero_pt_c = helper.make_tensor('C_zero_point', TensorProto.UINT8, [],
                                   [100])

    c = helper.make_tensor_value_info('C', TensorProto.UINT8, [64])

    node = onnx.helper.make_node(
        'QLinearMul',
        inputs=[
            'A', 'A_scale', 'A_zero_point', 'B', 'B_scale', 'B_zero_point',
            'C_scale', 'C_zero_point'
        ],
        outputs=['C'],
    )
    return ([node], [a, b], [c],
            [sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c])


@onnx_test()
def qlinearmul_bcast_test():
    a = helper.make_tensor_value_info('A', TensorProto.INT8, [64])
    sc_a = helper.make_tensor('A_scale', TensorProto.FLOAT, [], [0.05])
    zero_pt_a = helper.make_tensor('A_zero_point', TensorProto.INT8, [], [0])

    b = helper.make_tensor_value_info('B', TensorProto.INT8, [1, 1, 64])
    sc_b = helper.make_tensor('B_scale', TensorProto.FLOAT, [], [0.05])
    zero_pt_b = helper.make_tensor('B_zero_point', TensorProto.INT8, [], [128])

    sc_c = helper.make_tensor('C_scale', TensorProto.FLOAT, [], [0.15])
    zero_pt_c = helper.make_tensor('C_zero_point', TensorProto.INT8, [], [32])

    c = helper.make_tensor_value_info('C', TensorProto.INT8, [1, 1, 64])

    node = onnx.helper.make_node(
        'QLinearMul',
        inputs=[
            'A', 'A_scale', 'A_zero_point', 'B', 'B_scale', 'B_zero_point',
            'C_scale', 'C_zero_point'
        ],
        outputs=['C'],
    )
    return ([node], [a, b], [c],
            [sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c])


6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
@onnx_test()
def qlinearsigmoid_test():
    x = helper.make_tensor_value_info('X', TensorProto.INT8, [64])
    sc_x = helper.make_tensor('X_scale', TensorProto.FLOAT, [], [0.05])
    zero_pt_x = helper.make_tensor('X_zero_point', TensorProto.INT8, [], [0])

    sc_y = helper.make_tensor('Y_scale', TensorProto.FLOAT, [], [0.0035])
    zero_pt_y = helper.make_tensor('Y_zero_point', TensorProto.INT8, [],
                                   [-128])

    y = helper.make_tensor_value_info('Y', TensorProto.INT8, [64])

    node = onnx.helper.make_node(
        'QLinearSigmoid',
        inputs=['X', 'X_scale', 'X_zero_point', 'Y_scale', 'Y_zero_point'],
        outputs=['Y'],
    )
    return ([node], [x], [y], [sc_x, zero_pt_x, sc_y, zero_pt_y])


6566
@onnx_test()
6567
def quantizelinear_test():
turneram's avatar
turneram committed
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


6581
@onnx_test()
turneram's avatar
turneram committed
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
def quantizelinear_int32_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT32, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


6596
@onnx_test()
turneram's avatar
turneram committed
6597
def quantizelinear_zero_point_test():
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1', '2'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1, arg2], [arg_out])


def make_quantizelinear_axis_graph(axis):
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 1, 5, 1])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8,
                                            [1, 1, 5, 1])

    node = onnx.helper.make_node('QuantizeLinear',
                                 inputs=['0', '1', '2'],
                                 outputs=['out'],
                                 axis=axis)

    return ([node], [arg0, arg1, arg2], [arg_out])


6627
@onnx_test()
6628
6629
6630
6631
def quantizelinear_axis_test():
    return make_quantizelinear_axis_graph(2)


6632
@onnx_test()
6633
6634
6635
6636
def quantizelinear_neg_axis_test():
    return make_quantizelinear_axis_graph(-2)


6637
@onnx_test()
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
def randomnormal_test():
    dtype = 11
    mean = 10.0
    scale = 1.5
    seed = 0.0
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.DOUBLE,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormal',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 mean=mean,
                                 scale=scale,
                                 seed=seed,
                                 shape=shape)

    return ([node], [], [output])


6659
@onnx_test()
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
def randomnormal_dtype_error_test():
    dtype = 6
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.INT32,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormal',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 shape=shape)

    return ([node], [], [output])


6675
@onnx_test()
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
def randomnormal_generated_seed_test():
    sample_size = 10
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

    node = onnx.helper.make_node('RandomNormal',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 outputs=['output'])

    return ([node], [input], [output])


6690
@onnx_test()
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
def randomnormal_shape_error_test():
    dtype = 1
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormal',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype)

    return ([node], [], [output])


6704
@onnx_test()
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
def randomnormallike_test():
    dtype = 10
    mean = 10.0
    scale = 1.5
    seed = 0.0
    input = helper.make_tensor_value_info('input', TensorProto.FLOAT16,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT16,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormalLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 dtype=dtype,
                                 mean=mean,
                                 scale=scale,
                                 seed=seed)

    return ([node], [input], [output])


6726
@onnx_test()
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
def randomnormallike_type_error_test():
    seed = 0
    input = helper.make_tensor_value_info('input', TensorProto.INT32,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormalLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 seed=seed)

    return ([node], [input], [output])


6742
@onnx_test()
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
def randomuniform_test():
    dtype = 11
    high = 1.0
    low = 0.0
    seed = 0.0
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.DOUBLE,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniform',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 high=high,
                                 low=low,
                                 seed=seed,
                                 shape=shape)

    return ([node], [], [output])


6764
@onnx_test()
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
def randomuniform_dtype_error_test():
    dtype = 6
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.INT32,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniform',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 shape=shape)

    return ([node], [], [output])


6780
@onnx_test()
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
def randomuniform_generated_seed_test():
    sample_size = 10
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

    node = onnx.helper.make_node('RandomUniform',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 outputs=['output'])

    return ([node], [input], [output])


6795
@onnx_test()
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
def randomuniform_shape_error_test():
    dtype = 1
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniform',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype)

    return ([node], [], [output])


6809
@onnx_test()
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
def randomuniformlike_test():
    dtype = 10
    high = 10.0
    low = 1.0
    seed = 0.0
    input = helper.make_tensor_value_info('input', TensorProto.FLOAT16,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT16,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniformLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 dtype=dtype,
                                 high=high,
                                 low=low,
                                 seed=seed)

    return ([node], [input], [output])


6831
@onnx_test()
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
def randomuniformlike_type_error_test():
    seed = 0
    input = helper.make_tensor_value_info('input', TensorProto.INT32,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniformLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 seed=seed)

    return ([node], [input], [output])


6847
@onnx_test()
kahmed10's avatar
kahmed10 committed
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
def range_test():

    start_val = np.array([10])
    limit_val = np.array([6])
    delta_val = np.array([-3])

    start_tensor = helper.make_tensor(name='start_val',
                                      data_type=TensorProto.INT64,
                                      dims=start_val.reshape(()).shape,
                                      vals=start_val.astype(np.int64))
    start = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['start'],
                                  value=start_tensor)

    limit_tensor = helper.make_tensor(name='limit_val',
                                      data_type=TensorProto.INT64,
                                      dims=limit_val.reshape(()).shape,
                                      vals=limit_val.astype(np.int64))
    limit = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['limit'],
                                  value=limit_tensor)

    delta_tensor = helper.make_tensor(name='delta_val',
                                      data_type=TensorProto.INT64,
                                      dims=delta_val.reshape(()).shape,
                                      vals=delta_val.astype(np.int64))
    delta = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['delta'],
                                  value=delta_tensor)

    node = onnx.helper.make_node('Range',
                                 inputs=['start', 'limit', 'delta'],
                                 outputs=['1'])

    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    return ([start, limit, delta, node], [], [y])


6890
@onnx_test()
kahmed10's avatar
kahmed10 committed
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
def range_float_test():

    start_val = np.array([2])
    limit_val = np.array([11])
    delta_val = np.array([2])

    start_tensor = helper.make_tensor(name='start_val',
                                      data_type=TensorProto.FLOAT,
                                      dims=start_val.reshape(()).shape,
                                      vals=start_val.astype(np.float))
    start = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['start'],
                                  value=start_tensor)

    limit_tensor = helper.make_tensor(name='limit_val',
                                      data_type=TensorProto.FLOAT,
                                      dims=limit_val.reshape(()).shape,
                                      vals=limit_val.astype(np.float))
    limit = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['limit'],
                                  value=limit_tensor)

    delta_tensor = helper.make_tensor(name='delta_val',
                                      data_type=TensorProto.FLOAT,
                                      dims=delta_val.reshape(()).shape,
                                      vals=delta_val.astype(np.float))
    delta = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['delta'],
                                  value=delta_tensor)

    node = onnx.helper.make_node('Range',
                                 inputs=['start', 'limit', 'delta'],
                                 outputs=['1'])

    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    return ([start, limit, delta, node], [], [y])


6933
@onnx_test()
kahmed10's avatar
kahmed10 committed
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
def recip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Reciprocal',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


6947
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
def reducel1_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

    node = onnx.helper.make_node('ReduceL1',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


Brian Pickrell's avatar
Brian Pickrell committed
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
@onnx_test
def reducel1_dyn_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None])
    axes = [-2]

    node = onnx.helper.make_node('ReduceL1',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reducel1_dyn_noaxes_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None])

    node = onnx.helper.make_node('ReduceL1',
                                 inputs=['x'],
                                 outputs=['y'],
                                 keepdims=0)

    return ([node], [x], [y])


6990
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
def reducel2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])
    axes = [-1]

    node = onnx.helper.make_node('ReduceL2',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


7005
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
def reduce_log_sum_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 6])
    axes = [-3]

    node = onnx.helper.make_node('ReduceLogSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])


7020
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
def reduce_log_sum_exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 5, 6])
    axes = [-4]

    node = onnx.helper.make_node('ReduceLogSumExp',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])


7035
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7036
7037
def reducemax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
7038
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
Brian Pickrell's avatar
Brian Pickrell committed
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054

    axes = [2]

    node = onnx.helper.make_node('ReduceMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reducemax_dyn_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 4, 6])
Shucai Xiao's avatar
Shucai Xiao committed
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
    axes = [2]

    node = onnx.helper.make_node('ReduceMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])

Khalique's avatar
Khalique committed
7065

7066
@onnx_test()
Khalique's avatar
Khalique committed
7067
7068
7069
def reducemean_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
7070
    axes = [2, 3]
Khalique's avatar
Khalique committed
7071

Khalique's avatar
Khalique committed
7072
7073
7074
7075
7076
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
7077

Khalique's avatar
Khalique committed
7078
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
7079

kahmed10's avatar
kahmed10 committed
7080

7081
@onnx_test()
Khalique's avatar
Khalique committed
7082
7083
7084
def reducemean_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
7085
    axes = [2]
Khalique's avatar
Khalique committed
7086

Khalique's avatar
Khalique committed
7087
7088
7089
7090
7091
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
7092

Khalique's avatar
Khalique committed
7093
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
7094

kahmed10's avatar
kahmed10 committed
7095

7096
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
def reducemin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 1])
    axes = [1, 3]

    node = onnx.helper.make_node('ReduceMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
7109

kahmed10's avatar
kahmed10 committed
7110

7111
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7112
def reduceprod_test():
Khalique's avatar
Khalique committed
7113
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
7114
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
7115
    axes = [2]
Khalique's avatar
Khalique committed
7116

Shucai Xiao's avatar
Shucai Xiao committed
7117
    node = onnx.helper.make_node('ReduceProd',
Khalique's avatar
Khalique committed
7118
7119
7120
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
Shucai Xiao's avatar
Shucai Xiao committed
7121
                                 keepdims=1)
Khalique's avatar
Khalique committed
7122

Khalique's avatar
Khalique committed
7123
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
7124

Khalique's avatar
Khalique committed
7125

7126
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7127
def reducesum_test():
Khalique's avatar
Khalique committed
7128
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
7129
7130
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = [2]
Khalique's avatar
Khalique committed
7131

Khalique's avatar
Khalique committed
7132
7133
7134
7135
7136
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
7137

Khalique's avatar
Khalique committed
7138
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
7139

Khalique's avatar
Khalique committed
7140

7141
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
def reducesum_empty_axes_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = np.array([], dtype=np.int64)
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))

    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x', 'axes'],
                                 outputs=['y'],
                                 keepdims=0,
                                 noop_with_empty_axes=False)

    return ([node], [x], [y], [axes_tensor])


7160
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
def reducesum_noop_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = np.array([], dtype=np.int64)
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))

    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x', 'axes'],
                                 outputs=['y'],
                                 keepdims=0,
                                 noop_with_empty_axes=True)

    return ([node], [x], [y], [axes_tensor])


7179
@onnx_test()
Khalique's avatar
Khalique committed
7180
7181
7182
def reducesum_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
Khalique's avatar
Khalique committed
7183
    axes = [2, 3]
Khalique's avatar
Khalique committed
7184

Khalique's avatar
Khalique committed
7185
7186
7187
7188
7189
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
7190

Khalique's avatar
Khalique committed
7191
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
7192

Khalique's avatar
Khalique committed
7193

7194
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
def reducesum_multiaxis_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
    axes = [2, 3]

    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


7209
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
def reducesum_square_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

    node = onnx.helper.make_node('ReduceSumSquare',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


7224
@onnx_test()
Khalique's avatar
Khalique committed
7225
7226
7227
def reshape_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [4, 2, 3])
    x_shape = helper.make_tensor_value_info('1', TensorProto.INT64, [2])
Khalique's avatar
Khalique committed
7228
    x_shape_list = [3, 8]
Khalique's avatar
Khalique committed
7229
7230
7231
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 8])
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3, 8])

Khalique's avatar
Khalique committed
7232
    node = onnx.helper.make_node('Reshape', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
7233

Khalique's avatar
Khalique committed
7234
7235
7236
7237
7238
7239
7240
    node2 = onnx.helper.make_node('Reshape',
                                  inputs=['0'],
                                  shape=x_shape_list,
                                  outputs=['3'])

    return ([node, node2], [x, x_shape], [y, y2],
            [helper.make_tensor('1', TensorProto.INT64, [2], [3, 8])])
Khalique's avatar
Khalique committed
7241
7242


7243
@onnx_test()
Khalique's avatar
Khalique committed
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
def reshape_non_standard_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 3, 2])

    trans = helper.make_node(
        'Transpose',
        inputs=['x'],
        outputs=['trans_x'],
        perm=[0, 2, 1],
    )

Khalique's avatar
Khalique committed
7255
7256
7257
7258
7259
7260
    res = onnx.helper.make_node('Reshape',
                                inputs=['trans_x'],
                                outputs=['y'],
                                shape=[4, 3, 2])

    return ([trans, res], [x], [y])
Khalique's avatar
Khalique committed
7261
7262


7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
@onnx_test()
def reshape_variable_input_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [4, 2, 3])
    x_shape = helper.make_tensor_value_info('1', TensorProto.INT64, [2])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 8])
    node = onnx.helper.make_node('Reshape', inputs=['0', '1'], outputs=['2'])
    return ([node], [x, x_shape], [y])


@onnx_test()
def reshape_variable_input_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 2, 3])
    x_shape = helper.make_tensor_value_info('1', TensorProto.INT64, [2])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [None, 6])
    node = onnx.helper.make_node('Reshape', inputs=['0', '1'], outputs=['2'])
    return ([node], [x, x_shape], [y])


7281
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7282
7283
7284
7285
7286
7287
7288
7289
def resize_downsample_f_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
7290
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])
Shucai Xiao's avatar
Shucai Xiao committed
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        coordinate_transformation_mode='align_corners',
        mode='nearest',
        nearest_mode='floor')

    return ([node], [X], [Y], [scale_tensor])


7303
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
def resize_downsample_c_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 1, 2])

    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 coordinate_transformation_mode='asymmetric',
                                 mode='nearest',
                                 nearest_mode='ceil')

    return ([node], [X], [Y], [scale_tensor])


7324
@onnx_test()
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
def resize_downsample_linear_test():
    scales = np.array([1.0, 1.0, 0.6, 0.5], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='linear')

    return ([node], [X], [Y], [scale_tensor])


7343
@onnx_test()
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
def resize_nonstd_input_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 4, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 1, 2])

    trn = onnx.helper.make_node('Transpose',
                                inputs=['X'],
                                outputs=['TX'],
                                perm=[0, 1, 3, 2])

    node = onnx.helper.make_node('Resize',
                                 inputs=['TX', '', 'scales'],
                                 outputs=['Y'],
                                 coordinate_transformation_mode='asymmetric',
                                 mode='nearest',
                                 nearest_mode='ceil')

    return ([trn, node], [X], [Y], [scale_tensor])


7369
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
def resize_outsize_test():
    out_lens = np.array([1, 1, 4, 6], dtype=np.int64)
    out_lens_tensor = helper.make_tensor(name='out_lens',
                                         data_type=TensorProto.INT64,
                                         dims=out_lens.shape,
                                         vals=out_lens.flatten().astype(
                                             np.int64))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', '', 'out_lens'],
        outputs=['Y'],
        coordinate_transformation_mode='tf_half_pixel_for_nn',
        mode='nearest',
        nearest_mode='round_prefer_floor')

    return ([node], [X], [Y], [out_lens_tensor])


7392
@onnx_test()
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
def resize_upsample_linear_ac_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
    scales_tensor = helper.make_tensor(name='scales',
                                       data_type=TensorProto.FLOAT,
                                       dims=scales.shape,
                                       vals=scales.flatten().astype(
                                           np.float32))
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        mode='linear',
        coordinate_transformation_mode='align_corners')

    return ([node], [X], [Y], [scales_tensor])


7413
@onnx_test()
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
def resize_upsample_linear_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
    scales_tensor = helper.make_tensor(name='scales',
                                       data_type=TensorProto.FLOAT,
                                       dims=scales.shape,
                                       vals=scales.flatten().astype(
                                           np.float32))
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='linear')

    return ([node], [X], [Y], [scales_tensor])


7432
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
def resize_upsample_pf_test():
    scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='nearest')

    return ([node], [X], [Y], [scale_tensor])


7451
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
def resize_upsample_pc_test():
    scales = np.array([1.0, 1.0, 2.0, 1.5], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        coordinate_transformation_mode='pytorch_half_pixel',
        mode='nearest',
        exclude_outside=0,
        nearest_mode='round_prefer_ceil')

    return ([node], [X], [Y], [scale_tensor])


7474
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
def reversesequence_4D_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 2, 2])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        time_axis=0,
        batch_axis=1,
        sequence_lens=[2, 1],
    )
    return ([node], [x], [y])


7490
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
def reversesequence_batch_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4])
    seq_lens = np.array([1, 2, 3, 4])
    seq_lens_tensor = helper.make_tensor(
        name="sequence_lens",
        data_type=TensorProto.INT64,
        dims=seq_lens.shape,
        vals=seq_lens.astype(np.int64),
    )
    arg_seq_lens = helper.make_node(
        "Constant",
        inputs=[],
        outputs=['arg_seq_lens'],
        value=seq_lens_tensor,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x', 'arg_seq_lens'],
        outputs=['y'],
        time_axis=1,
        batch_axis=0,
    )
    return ([arg_seq_lens, node], [x], [y])


7518
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
def reversesequence_batch_axis_err_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4, 2])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        time_axis=0,
        batch_axis=2,
        sequence_lens=[4, 3, 2, 1],
    )
    return ([node], [x], [y])


7534
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
def reversesequence_rank_err_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        sequence_lens=[4, 3, 2, 1],
    )
    return ([node], [x], [y])


7548
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
def reversesequence_sequence_lens_shape_err_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        sequence_lens=[4, 3, 2],
    )
    return ([node], [x], [y])


7562
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
def reversesequence_same_axis_err_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        time_axis=1,
        batch_axis=1,
        sequence_lens=[4, 3, 2, 1],
    )
    return ([node], [x], [y])


7578
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
def reversesequence_time_axis_err_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4, 2, 3])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        time_axis=3,
        batch_axis=0,
        sequence_lens=[4, 3, 2, 1],
    )
    return ([node], [x], [y])


7594
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
def reversesequence_time_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        time_axis=0,
        batch_axis=1,
        sequence_lens=[4, 3, 2, 1],
    )
    return ([node], [x], [y])


7610
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
def roialign_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 4, 7, 8])
    roi = helper.make_tensor_value_info('rois', TensorProto.FLOAT, [8, 4])
    bi = helper.make_tensor_value_info('batch_ind', TensorProto.INT64, [8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8, 4, 1, 1])

    node = onnx.helper.make_node('RoiAlign',
                                 inputs=['x', 'rois', 'batch_ind'],
                                 outputs=['y'])

    return ([node], [x, roi, bi], [y])


7624
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
def roialign_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 5, 4, 7])
    roi = helper.make_tensor_value_info('rois', TensorProto.FLOAT, [8, 4])
    bi = helper.make_tensor_value_info('batch_ind', TensorProto.INT64, [8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8, 4, 5, 5])

    node = onnx.helper.make_node(
        'RoiAlign',
        inputs=['x', 'rois', 'batch_ind'],
        outputs=['y'],
        spatial_scale=2.0,
        output_height=5,
        output_width=5,
        sampling_ratio=3,
        mode="avg",
        coordinate_transformation_mode="output_half_pixel")

    return ([node], [x, roi, bi], [y])


7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
@onnx_test()
def round_half_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [4, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [4, 4])

    node = onnx.helper.make_node('Round', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


7655
@onnx_test()
7656
def scatter_add_test():
Shucai Xiao's avatar
Shucai Xiao committed
7657
7658
7659
7660
7661
7662
7663
7664
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
    u = helper.make_tensor_value_info('update', TensorProto.FLOAT,
                                      [2, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

    node = onnx.helper.make_node(
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
        'ScatterElements',
        reduction='add',
        inputs=['data', 'indices', 'update'],
        outputs=['y'],
        axis=-2,
    )

    return ([node], [x, i, u], [y])


7675
@onnx_test()
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
def scatter_mul_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
    u = helper.make_tensor_value_info('update', TensorProto.FLOAT,
                                      [2, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

    node = onnx.helper.make_node(
        'ScatterElements',
        reduction='mul',
        inputs=['data', 'indices', 'update'],
        outputs=['y'],
        axis=-2,
    )

    return ([node], [x, i, u], [y])


7695
@onnx_test()
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
def scatter_none_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
    u = helper.make_tensor_value_info('update', TensorProto.FLOAT,
                                      [2, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

    node = onnx.helper.make_node(
        'ScatterElements',
        reduction='none',
Shucai Xiao's avatar
Shucai Xiao committed
7707
7708
7709
7710
7711
7712
7713
7714
        inputs=['data', 'indices', 'update'],
        outputs=['y'],
        axis=-2,
    )

    return ([node], [x, i, u], [y])


7715
@onnx_test()
turneram's avatar
turneram committed
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
def scatternd_add_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [2, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [2, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 2, 2])

    node = onnx.helper.make_node('ScatterND',
                                 inputs=['data', 'indices', 'updates'],
                                 outputs=['output'],
                                 reduction="add")

    return ([node], [data, indices, updates], [output])


7733
@onnx_test()
turneram's avatar
turneram committed
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
def scatternd_mul_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [2, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [2, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 2, 2])

    node = onnx.helper.make_node('ScatterND',
                                 inputs=['data', 'indices', 'updates'],
                                 outputs=['output'],
                                 reduction="mul")

    return ([node], [data, indices, updates], [output])


7751
@onnx_test()
turneram's avatar
turneram committed
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
def scatternd_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [2, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [2, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 2, 2])

    node = onnx.helper.make_node('ScatterND',
                                 inputs=['data', 'indices', 'updates'],
                                 outputs=['output'])

    return ([node], [data, indices, updates], [output])


7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
@onnx_test()
def scatternd_dyn_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT,
                                         [None, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [None, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [None, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [None, 2, 2])

    node = onnx.helper.make_node('ScatterND',
                                 inputs=['data', 'indices', 'updates'],
                                 outputs=['output'])

    return ([node], [data, indices, updates], [output])


7786
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
def selu_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [2, 3])

    node = onnx.helper.make_node('Selu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.3,
                                 gamma=0.5)

    return ([node], [x], [y])


7800
@onnx_test()
Khalique's avatar
Khalique committed
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
def shape_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [4])

    node = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
7811
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
7812

Khalique's avatar
Khalique committed
7813

7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
@onnx_test()
def shape_dyn_test0():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT,
                                      [None, 4, None, None])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [4])

    node = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


@onnx_test()
def shape_dyn_test1():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT,
                                      [None, 4, None, None])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])

    node = onnx.helper.make_node('Shape', inputs=['x'], outputs=['y'], start=2)

    return ([node], [x], [y])


@onnx_test()
def shape_dyn_test2():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT,
                                      [None, 4, None, None])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])

    node = onnx.helper.make_node('Shape',
                                 inputs=['x'],
                                 outputs=['y'],
                                 start=-2)

    return ([node], [x], [y])


@onnx_test()
def shape_dyn_test3():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT,
                                      [None, 4, None, None])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])

    node = onnx.helper.make_node('Shape',
                                 inputs=['x'],
                                 outputs=['y'],
                                 start=1,
                                 end=2)

    return ([node], [x], [y])


@onnx_test()
def shape_end_oob_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT,
                                      [None, 4, None, None])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])

    node = onnx.helper.make_node('Shape', inputs=['x'], outputs=['y'], end=5)

    return ([node], [x], [y])


@onnx_test()
def shape_start_oob_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT,
                                      [None, 4, None, None])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])

    node = onnx.helper.make_node('Shape',
                                 inputs=['x'],
                                 outputs=['y'],
                                 start=-6)

    return ([node], [x], [y])


@onnx_test()
def shape_end_less_start_error():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT,
                                      [None, 4, None, None])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])

    node = onnx.helper.make_node('Shape',
                                 inputs=['x'],
                                 outputs=['y'],
                                 start=3,
                                 end=1)

    return ([node], [x], [y])


7909
@onnx_test()
Khalique's avatar
Khalique committed
7910
7911
def shape_gather_test():
    values = np.array([1])
kahmed10's avatar
kahmed10 committed
7912
    # value = helper.make_tensor_value_info('value', TensorProto.INT32, [1])
Khalique's avatar
Khalique committed
7913
7914
7915
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [7, 3, 10])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [1])

Khalique's avatar
Khalique committed
7916
7917
7918
7919
    value_tensor = helper.make_tensor(name='const_tensor',
                                      data_type=TensorProto.INT32,
                                      dims=values.shape,
                                      vals=values.flatten().astype(int))
Khalique's avatar
Khalique committed
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940

    node_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['value'],
        value=value_tensor,
    )

    node_shape = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

    node_gather = helper.make_node(
        'Gather',
        inputs=['y', 'value'],
        outputs=['z'],
        axis=0,
    )

Khalique's avatar
Khalique committed
7941
7942
    return ([node_const, node_shape, node_gather], [x], [z])

Khalique's avatar
Khalique committed
7943

7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
@onnx_test()
def shrink_hard_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node(
        "Shrink",
        inputs=["x"],
        outputs=["y"],
        lambd=1.5,
    )

    return ([node], [x], [y])


@onnx_test()
def shrink_soft_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node(
        "Shrink",
        inputs=["x"],
        outputs=["y"],
        lambd=1.5,
        bias=1.5,
    )

    return ([node], [x], [y])


@onnx_test()
def shrink_verify_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [5])

    node = onnx.helper.make_node(
        "Shrink",
        inputs=["x"],
        outputs=["y"],
        lambd=-5.0,
        bias=1.0,
    )

    return ([node], [x], [y])


@onnx_test()
def shrink_verify2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [5])

    node = onnx.helper.make_node(
        "Shrink",
        inputs=["x"],
        outputs=["y"],
        lambd=-6.0,
        bias=5.0,
    )

    return ([node], [x], [y])


@onnx_test()
def shrink_int8_test():
    x = helper.make_tensor_value_info('x', TensorProto.INT8, [3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.INT8, [3, 3])

    node = onnx.helper.make_node(
        "Shrink",
        inputs=["x"],
        outputs=["y"],
        lambd=1.5,
        bias=1.5,
    )

    return ([node], [x], [y])


@onnx_test()
def shrink_uint8_test():
    x = helper.make_tensor_value_info('x', TensorProto.UINT8, [3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.UINT8, [3, 3])

    node = onnx.helper.make_node(
        "Shrink",
        inputs=["x"],
        outputs=["y"],
        lambd=5.0,
        bias=-4.5,
    )

    return ([node], [x], [y])


8039
@onnx_test()
Khalique's avatar
Khalique committed
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
def sign_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [10, 5])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [10, 5])

    node = onnx.helper.make_node(
        'Sign',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
8050
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
8051

Khalique's avatar
Khalique committed
8052

8053
@onnx_test()
Khalique's avatar
Khalique committed
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
def sin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
8064
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
8065

Khalique's avatar
Khalique committed
8066

8067
@onnx_test()
Khalique's avatar
Khalique committed
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
def sinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sinh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
8078
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
8079

Khalique's avatar
Khalique committed
8080

8081
@onnx_test()
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
def sinh_dynamic_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None])

    node = onnx.helper.make_node(
        'Sinh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


8095
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
def size_float_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


8107
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
def size_half_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 1])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


8119
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
def size_int_test():
    x = helper.make_tensor_value_info('x', TensorProto.INT32, [8, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


8131
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
def size_verify_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5, 3])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


8143
@onnx_test()
kahmed10's avatar
kahmed10 committed
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
def slice_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0, 1],
                                 starts=[1, 0],
                                 ends=[2, 2],
                                 outputs=['1'])

    return ([node], [x], [y])


8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
@onnx_test()
def slice_constant_test():
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2])

    x_tensor = helper.make_tensor(name='x_tensor',
                                  data_type=TensorProto.FLOAT,
                                  dims=[3, 2],
                                  vals=[0, 1, 2, 3, 4, 5])

    x = onnx.helper.make_node('Constant',
                              inputs=[],
                              outputs=['x'],
                              value=x_tensor)

    node = onnx.helper.make_node('Slice',
                                 inputs=['x'],
                                 axes=[0, 1],
                                 starts=[1, 0],
                                 ends=[2, 2],
                                 outputs=['1'])

    return ([x, node], [], [y])


Brian Pickrell's avatar
Brian Pickrell committed
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
@onnx_test()
def slice_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, None, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, None, 2])

    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0],
                                 starts=[1],
                                 ends=[2],
                                 outputs=['1'])

    return ([node], [x], [y])


@onnx_test
def slice_step_dyn_test():
    # A slice command with non - default steps will have a "Step"
    # instruction added in parsing.
    step = np.array([2, 1])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    axis = np.array([-1, -2])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)

    end = np.array([-1, -1])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    start = np.array([-5, -3])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


@onnx_test
def slice_reverse_dyn_test():
    # A slice command with negative step on any axis will have
    # a "Reverse" instruction added in parsing.

    step = np.array([-1, 1])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    axis = np.array([-1, -2])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)

    end = np.array([-1, -1])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    start = np.array([-5, -3])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


8308
@onnx_test()
kahmed10's avatar
kahmed10 committed
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
def slice_3arg_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 5])
    start = np.array([0, 0])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))

    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    end = np.array([2, 5])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    node = onnx.helper.make_node('Slice',
                                 inputs=['0', 'arg_start', 'arg_end'],
                                 outputs=['1'])

    return ([arg_start, arg_end, node], [x], [y])


8340
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
8341
8342
8343
8344
8345
8346
def slice_5arg_test():
    step = np.array([1, 1])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    axis = np.array([-1, -2])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)

    end = np.array([-1, -1])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    start = np.array([-5, -3])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


8393
@onnx_test()
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
8394
8395
8396
8397
8398
8399
def slice_5arg_reverse_test():
    step = np.array([-1, 1])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
Shucai Xiao's avatar
Shucai Xiao committed
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    axis = np.array([-1, -2])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)

8415
    end = np.array([-5, -1])
Shucai Xiao's avatar
Shucai Xiao committed
8416
8417
8418
8419
8420
8421
8422
8423
8424
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
    start = np.array([-1, -3])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


8446
@onnx_test()
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
def slice_5arg_step_test():
    step = np.array([-2, 2])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    axis = np.array([-1, -2])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)

    end = np.array([-5, -1])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    start = np.array([-1, -3])
Shucai Xiao's avatar
Shucai Xiao committed
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


8499
@onnx_test()
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
def slice_max_end_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [10, 20])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [9, 17])

    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0, 1],
                                 starts=[1, 2],
                                 ends=[3000000000, -1],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
8510

Khalique's avatar
Khalique committed
8511
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
8512

Khalique's avatar
Khalique committed
8513

Charlie Lin's avatar
Charlie Lin committed
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
@onnx_test()
def slice_var_input_static0():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 2])
    starts = helper.make_tensor_value_info('starts', TensorProto.INT32, [2])
    ends = helper.make_tensor_value_info('ends', TensorProto.INT32, [2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node('Slice',
                                 inputs=['data', 'starts', 'ends'],
                                 axes=[0, 1],
                                 outputs=['output'])

    return ([node], [data, starts, ends], [output])


@onnx_test()
def slice_var_input_static1():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 2])
    starts = helper.make_tensor_value_info('starts', TensorProto.INT64, [2])
    ends = helper.make_tensor_value_info('ends', TensorProto.INT64, [2])
    axes = helper.make_tensor_value_info('axes', TensorProto.INT64, [2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node('Slice',
                                 inputs=['data', 'starts', 'ends', 'axes'],
                                 outputs=['output'])

    return ([node], [data, starts, ends, axes], [output])


@onnx_test()
def slice_var_input_dyn0():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [None, 2])
    starts = helper.make_tensor_value_info('starts', TensorProto.INT32, [2])
    ends = helper.make_tensor_value_info('ends', TensorProto.INT32, [2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node('Slice',
                                 inputs=['data', 'starts', 'ends'],
                                 axes=[0, 1],
                                 outputs=['output'])

    return ([node], [data, starts, ends], [output])


@onnx_test()
def slice_var_input_dyn1():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [None, 2])
    starts = helper.make_tensor_value_info('starts', TensorProto.INT32, [2])
    ends = helper.make_tensor_value_info('ends', TensorProto.INT32, [2])
    axes = helper.make_tensor_value_info('axes', TensorProto.INT32, [2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node('Slice',
                                 inputs=['data', 'starts', 'ends', 'axes'],
                                 outputs=['output'])

    return ([node], [data, starts, ends, axes], [output])


8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
@onnx_test()
def slice_var_input_default_steps():
    step = np.array([1, 1])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT64,
                                     dims=step.shape,
                                     vals=step.astype(int))
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [None, 2])
    starts = helper.make_tensor_value_info('starts', TensorProto.INT64, [2])
    ends = helper.make_tensor_value_info('ends', TensorProto.INT64, [2])
    axes = helper.make_tensor_value_info('axes', TensorProto.INT64, [2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['data', 'starts', 'ends', 'axes', 'arg_step'],
        outputs=['output'])

    return ([arg_step, node], [data, starts, ends, axes], [output])


Charlie Lin's avatar
Charlie Lin committed
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
@onnx_test()
def slice_var_input_steps_error():
    step = np.array([2, 1])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 2])
8613
8614
8615
    starts = helper.make_tensor_value_info('starts', TensorProto.INT64, [2])
    ends = helper.make_tensor_value_info('ends', TensorProto.INT64, [2])
    axes = helper.make_tensor_value_info('axes', TensorProto.INT64, [2])
Charlie Lin's avatar
Charlie Lin committed
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['data', 'starts', 'ends', 'axes', 'arg_step'],
        outputs=['output'])

    return ([arg_step, node], [data, starts, ends, axes], [output])


8626
@onnx_test()
Khalique's avatar
Khalique committed
8627
8628
8629
8630
def softmax_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3])

Khalique's avatar
Khalique committed
8631
    node = onnx.helper.make_node('Softmax', inputs=['0'], outputs=['1'])
Khalique's avatar
Khalique committed
8632

Khalique's avatar
Khalique committed
8633
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
8634

Khalique's avatar
Khalique committed
8635

8636
@onnx_test()
8637
8638
def softmax_nonstd_input_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [6, 8])
8639
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 4])
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649

    node0 = onnx.helper.make_node('Slice',
                                  inputs=['0'],
                                  axes=[0, 1],
                                  starts=[1, 0],
                                  ends=[4, 4],
                                  outputs=['1'])

    node1 = onnx.helper.make_node('Softmax', inputs=['1'], outputs=['2'])

8650
    return ([node0, node1], [x], [y])
8651
8652


8653
@onnx_test()
8654
8655
8656
8657
8658
8659
8660
8661
8662
def softmax_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 3, 4, 4])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 3, 4, 4])

    node = onnx.helper.make_node('Softmax', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


8663
@onnx_test()
turneram's avatar
turneram committed
8664
8665
8666
8667
8668
8669
8670
8671
8672
def softsign_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node('Softsign', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


turneram's avatar
turneram committed
8673
8674
8675
8676
8677
8678
8679
8680
8681
def softplus_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node('Softplus', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


8682
@onnx_test()
turneram's avatar
turneram committed
8683
8684
8685
8686
8687
8688
8689
8690
8691
def softsign_nd_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 4, 5])

    node = onnx.helper.make_node('Softsign', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


turneram's avatar
turneram committed
8692
8693
8694
8695
8696
8697
8698
8699
8700
def softplus_nd_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 4, 5])

    node = onnx.helper.make_node('Softplus', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


8701
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
def split_minus_axis_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 5])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 5])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 5])

    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2', 'y3'],
        axis=-1,
    )

    return ([node], [x], [y1, y2, y3])


8718
@onnx_test()
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
def split_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 7])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 4])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 4])

    node = onnx.helper.make_node('Split',
                                 inputs=['x'],
                                 outputs=['y1', 'y2', 'y3'],
                                 axis=1,
                                 split=[7, 4, 4])

    return ([node], [x], [y1, y2, y3])


8734
@onnx_test()
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
def split_test_default():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [5, 15])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [5, 15])

    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2'],
    )

    return ([node], [x], [y1, y2])


8749
@onnx_test()
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
def split_test_no_attribute():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [300, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [75, 15])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [75, 15])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [75, 15])
    y4 = helper.make_tensor_value_info('y4', TensorProto.FLOAT, [75, 15])

    split = np.ones(4) * 75
    split_tensor = helper.make_tensor(name="split",
                                      data_type=TensorProto.INT64,
                                      dims=split.shape,
                                      vals=split.astype(np.int64))
    const_node = helper.make_node("Constant",
                                  inputs=[],
                                  outputs=['split'],
                                  value=split_tensor)

    node = onnx.helper.make_node(
        'Split',
        inputs=['x', 'split'],
        outputs=['y1', 'y2', 'y3', 'y4'],
    )

    return ([const_node, node], [x], [y1, y2, y3, y4])


8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
@onnx_test()
def split_test_uneven():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [12, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [3, 15])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [3, 15])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [3, 15])
    y4 = helper.make_tensor_value_info('y4', TensorProto.FLOAT, [3, 15])
    y5 = helper.make_tensor_value_info('y5', TensorProto.FLOAT, [0, 15])

    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2', 'y3', 'y4', 'y5'],
    )

    return ([node], [x], [y1, y2, y3, y4, y5])


@onnx_test()
def split_test_uneven_num_outputs():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [11, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [3, 15])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [3, 15])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [3, 15])
    y4 = helper.make_tensor_value_info('y4', TensorProto.FLOAT, [2, 15])

    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2', 'y3', 'y4'],
        num_outputs=4,
    )

    return ([node], [x], [y1, y2, y3, y4])


8812
@onnx_test()
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
def split_test_no_attribute_invalid_split():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [300, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [75, 15])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [75, 15])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [75, 15])
    y4 = helper.make_tensor_value_info('y4', TensorProto.FLOAT, [75, 15])

    split = np.ones(4)
    split_tensor = helper.make_tensor(name="split",
                                      data_type=TensorProto.INT64,
                                      dims=split.shape,
                                      vals=split.astype(np.int64))
    const_node = helper.make_node("Constant",
                                  inputs=[],
                                  outputs=['split'],
                                  value=split_tensor)

    node = onnx.helper.make_node(
        'Split',
        inputs=['x', 'split'],
        outputs=['y1', 'y2', 'y3', 'y4'],
    )

    return ([const_node, node], [x], [y1, y2, y3, y4])


8839
@onnx_test()
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
def split_test_invalid_split():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 7])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 4])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 4])

    node = onnx.helper.make_node('Split',
                                 inputs=['x'],
                                 outputs=['y1', 'y2', 'y3'],
                                 axis=1,
                                 split=[1, 1, 1])

    return ([node], [x], [y1, y2, y3])


8855
@onnx_test()
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
def split_test_no_attribute_invalid_input_split():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 7])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 4])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 4])

    node = onnx.helper.make_node('Split',
                                 inputs=['x'],
                                 outputs=['y1', 'y2', 'y3'],
                                 axis=1,
                                 split=[])

    return ([node], [x], [y1, y2, y3])


8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
@onnx_test()
def split_test_invalid_num_outputs():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [11, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [3, 15])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [3, 15])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [3, 15])
    y4 = helper.make_tensor_value_info('y4', TensorProto.FLOAT, [2, 15])

    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2', 'y3', 'y4'],
        num_outputs=5,
    )

    return ([node], [x], [y1, y2, y3, y4])


8889
@onnx_test()
Khalique's avatar
Khalique committed
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
def sqrt_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Sqrt',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
8900
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
8901

Khalique's avatar
Khalique committed
8902

8903
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
def squeeze_axes_input_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 5, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 5])
    axes = np.array([1, 3], dtype=np.int64)
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))

    node = onnx.helper.make_node('Squeeze',
                                 inputs=['x', 'axes'],
                                 outputs=['y'])

    return ([node], [x], [y], [axes_tensor])


8920
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
def squeeze_empty_axes_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 5, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 5])
    axes = np.array([], dtype=np.int64)
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))

    node = onnx.helper.make_node('Squeeze',
                                 inputs=['x', 'axes'],
                                 outputs=['y'])

    return ([node], [x], [y], [axes_tensor])


8937
@onnx_test()
Khalique's avatar
Khalique committed
8938
def squeeze_unsqueeze_test():
Khalique's avatar
Khalique committed
8939
8940
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, 1, 1, 2, 1])
8941
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT,
Khalique's avatar
Khalique committed
8942
                                      [1, 1, 3, 1, 2, 1])
Khalique's avatar
Khalique committed
8943

Khalique's avatar
Khalique committed
8944
8945
8946
8947
    node = onnx.helper.make_node('Squeeze',
                                 inputs=['0'],
                                 axes=[0, 2, 3, 5],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
8948

Khalique's avatar
Khalique committed
8949
8950
8951
8952
8953
    node2 = onnx.helper.make_node('Unsqueeze',
                                  inputs=['1'],
                                  axes=[0, 1, 3, 5],
                                  outputs=['2'])

8954
    return ([node, node2], [x], [y])
Khalique's avatar
Khalique committed
8955
8956


8957
@onnx_test()
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
def squeeze_unsqueeze_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, None, 1, 1, None, 1])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                      [1, 1, None, 1, None, 1])

    node = onnx.helper.make_node('Squeeze',
                                 inputs=['0'],
                                 axes=[0, 2, 3, 5],
                                 outputs=['1'])

    node2 = onnx.helper.make_node('Unsqueeze',
                                  inputs=['1'],
                                  axes=[0, 1, 3, 5],
                                  outputs=['2'])

    return ([node, node2], [x], [y])


8977
@onnx_test()
Khalique's avatar
Khalique committed
8978
8979
8980
def sub_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
8981
8982
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
8983
8984
8985
8986
8987

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
Khalique's avatar
Khalique committed
8988
8989
        broadcast=1,
        axis=1,
Khalique's avatar
Khalique committed
8990
8991
    )

Khalique's avatar
Khalique committed
8992
8993
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
8994

8995
@onnx_test()
Khalique's avatar
Khalique committed
8996
8997
def sub_scalar_test():
    values = np.array([1])
Khalique's avatar
Khalique committed
8998
8999
9000
9001
9002
9003
9004
    arg_node = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                             [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    values_tensor = helper.make_tensor(name='const',
                                       data_type=TensorProto.FLOAT,
9005
                                       dims=values.reshape(()).shape,
Khalique's avatar
Khalique committed
9006
                                       vals=values.flatten().astype(float))
Khalique's avatar
Khalique committed
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020

    arg_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['arg_const'],
        value=values_tensor,
    )

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', 'arg_const'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
9021
9022
    return ([arg_const, node], [arg_node], [arg_out])

Khalique's avatar
Khalique committed
9023

9024
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
def sum_int_test():
    a = helper.make_tensor_value_info('0', TensorProto.INT16, [3])
    b = helper.make_tensor_value_info('1', TensorProto.UINT16, [3])
    c = helper.make_tensor_value_info('2', TensorProto.UINT32, [3])
    y = helper.make_tensor_value_info('3', TensorProto.UINT32, [3])

    cnode1 = onnx.helper.make_node('Cast', inputs=['0'], outputs=['c0'], to=12)

    cnode2 = onnx.helper.make_node('Cast', inputs=['1'], outputs=['c1'], to=12)

    node = onnx.helper.make_node(
        'Sum',
        inputs=['c0', 'c1', '2'],
        outputs=['3'],
    )

    return ([cnode1, cnode2, node], [a, b, c], [y])


9044
@onnx_test()
Khalique's avatar
Khalique committed
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
def sum_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Sum',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
9057
9058
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
9059

9060
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
9061
9062
9063
9064
9065
def sum_type_test():
    valb = np.array([1, 0])
    t_bool = helper.make_tensor(name="bool",
                                data_type=TensorProto.BOOL,
                                dims=valb.shape,
9066
                                vals=valb.astype(bool))
Shucai Xiao's avatar
Shucai Xiao committed
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153

    val = np.array([1, 1])
    t_int8 = helper.make_tensor(name="int8",
                                data_type=TensorProto.INT8,
                                dims=val.shape,
                                vals=val.astype(np.int8))

    t_uint8 = helper.make_tensor(name="uint8",
                                 data_type=TensorProto.UINT8,
                                 dims=val.shape,
                                 vals=val.astype(np.uint8))

    t_uint16 = helper.make_tensor(name="uint16",
                                  data_type=TensorProto.UINT16,
                                  dims=val.shape,
                                  vals=val.astype(np.uint16))

    t_uint32 = helper.make_tensor(name="uint32",
                                  data_type=TensorProto.UINT32,
                                  dims=val.shape,
                                  vals=val.astype(np.uint32))

    t_uint64 = helper.make_tensor(name="uint64",
                                  data_type=TensorProto.UINT64,
                                  dims=val.shape,
                                  vals=val.astype(np.uint64))

    t_double = helper.make_tensor(name="double",
                                  data_type=TensorProto.DOUBLE,
                                  dims=val.shape,
                                  vals=val.astype(np.float64))

    valr = np.array([1.5, 2.0])
    t_raw = helper.make_tensor(name="raw",
                               data_type=TensorProto.DOUBLE,
                               dims=valr.shape,
                               vals=valr.tobytes(),
                               raw=True)

    n_bool = onnx.helper.make_node('Cast',
                                   inputs=['bool'],
                                   outputs=['o_bool'],
                                   to=11)

    n_int8 = onnx.helper.make_node('Cast',
                                   inputs=['int8'],
                                   outputs=['o_int8'],
                                   to=11)

    n_uint8 = onnx.helper.make_node('Cast',
                                    inputs=['uint8'],
                                    outputs=['o_uint8'],
                                    to=11)

    n_uint16 = onnx.helper.make_node('Cast',
                                     inputs=['uint16'],
                                     outputs=['o_uint16'],
                                     to=11)

    n_uint32 = onnx.helper.make_node('Cast',
                                     inputs=['uint32'],
                                     outputs=['o_uint32'],
                                     to=11)

    n_uint64 = onnx.helper.make_node('Cast',
                                     inputs=['uint64'],
                                     outputs=['o_uint64'],
                                     to=11)

    node = onnx.helper.make_node(
        'Sum',
        inputs=[
            'o_bool', 'o_int8', 'o_uint8', 'o_uint16', 'o_uint32', 'o_uint64',
            'double', 'raw'
        ],
        outputs=['out'],
    )

    y = helper.make_tensor_value_info('out', TensorProto.DOUBLE, [2])

    return ([n_bool, n_int8, n_uint8, n_uint16, n_uint32, n_uint64,
             node], [], [y], [
                 t_bool, t_int8, t_uint8, t_uint16, t_uint32, t_uint64,
                 t_double, t_raw
             ])


9154
@onnx_test()
Khalique's avatar
Khalique committed
9155
9156
9157
9158
9159
def tan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
9160
9161
9162
9163
        'Tan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
9164

Khalique's avatar
Khalique committed
9165
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
9166

Khalique's avatar
Khalique committed
9167

9168
@onnx_test()
Khalique's avatar
Khalique committed
9169
9170
9171
9172
9173
def tanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
9174
9175
9176
9177
        'Tanh',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
9178

Khalique's avatar
Khalique committed
9179
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
9180

Khalique's avatar
Khalique committed
9181

9182
@onnx_test()
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
def thresholdedrelu_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3])

    node = onnx.helper.make_node('ThresholdedRelu',
                                 inputs=['x'],
                                 outputs=['y'])

    return ([node], [x], [y])


9194
@onnx_test()
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
def thresholdedrelu_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3])
    alpha = 3.0

    node = onnx.helper.make_node('ThresholdedRelu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=alpha)

    return ([node], [x], [y])


9208
@onnx_test()
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
def thresholdedrelu_int_test():
    x = helper.make_tensor_value_info('x', TensorProto.INT32, [2, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.INT32, [2, 2, 3])
    alpha = 3.0

    node = onnx.helper.make_node('ThresholdedRelu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=alpha)

    return ([node], [x], [y])


9222
@onnx_test()
kahmed10's avatar
kahmed10 committed
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
def tile_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [2, 4])

    node = onnx.helper.make_node('Tile', inputs=['x', 'y'], outputs=['z'])

    return ([node], [x, y], [z],
            [helper.make_tensor('y', TensorProto.INT64, [2], [1, 2])])


9234
@onnx_test()
kahmed10's avatar
kahmed10 committed
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
def tile_test_3x2():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [6, 4])

    node = onnx.helper.make_node('Tile', inputs=['x', 'y'], outputs=['z'])

    return ([node], [x, y], [z],
            [helper.make_tensor('y', TensorProto.INT64, [2], [3, 2])])


9246
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
def topk_attrk_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 5, 3, 2])
    val = helper.make_tensor_value_info('val', TensorProto.FLOAT, [2, 2, 3, 2])
    ind = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                        [2, 2, 3, 2])

    node = onnx.helper.make_node('TopK',
                                 inputs=['data'],
                                 outputs=['val', 'indices'],
                                 k=2)
    return ([node], [x], [val, ind])


9260
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
def topk_neg_axis_test():
    k = np.array([3])
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    val = helper.make_tensor_value_info('val', TensorProto.FLOAT, [3, 3, 5, 6])
    ind = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                        [3, 3, 5, 6])

    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node('TopK',
                                 inputs=['data', 'k'],
                                 outputs=['val', 'indices'],
                                 axis=-2,
                                 sorted=0)
    return ([node], [x], [val, ind], [k_tensor])


9281
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
def topk_test():
    k = np.array([4])
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 5, 3, 2])
    val = helper.make_tensor_value_info('val', TensorProto.FLOAT, [2, 4, 3, 2])
    ind = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                        [2, 4, 3, 2])

    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node('TopK',
                                 inputs=['data', 'k'],
                                 outputs=['val', 'indices'],
                                 largest=0,
                                 axis=1)
    return ([node], [x], [val, ind], [k_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
def transpose_default_perm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 5, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 2, 5, 1])

    node = onnx.helper.make_node(
        'Transpose',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


9315
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
def transpose_invalid_perm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 4, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 2, 1],
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


9330
@onnx_test()
Khalique's avatar
Khalique committed
9331
9332
9333
9334
9335
9336
9337
9338
def transpose_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 3, 1, 2],
        inputs=['0'],
Charlie Lin's avatar
Charlie Lin committed
9339
9340
9341
9342
9343
9344
        outputs=['1'],
    )

    return ([node], [x], [y])


9345
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
9346
9347
9348
9349
9350
9351
9352
9353
def transpose_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 2, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 3, 1, 2],
        inputs=['0'],
Khalique's avatar
Khalique committed
9354
9355
9356
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
9357
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
9358

Khalique's avatar
Khalique committed
9359

Khalique's avatar
Khalique committed
9360
9361
9362
@onnx_test
def transpose_gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 5, 4, 6])
Khalique's avatar
Khalique committed
9363
9364
9365
9366
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 4, 3, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT,
                                      [3, 2, 3, 4, 5, 4, 5, 6])
Khalique's avatar
Khalique committed
9367
9368
9369
9370
9371
9372
9373
9374

    td = onnx.helper.make_node(
        'Transpose',
        inputs=['data'],
        outputs=['tdata'],
        perm=[0, 2, 1, 3],
    )

Khalique's avatar
Khalique committed
9375
9376
9377
9378
    ti = onnx.helper.make_node('Transpose',
                               inputs=['indices'],
                               outputs=['tindices'],
                               perm=[0, 2, 1, 3])
Khalique's avatar
Khalique committed
9379
9380
9381
9382
9383
9384
9385
9386

    node = onnx.helper.make_node(
        'Gather',
        inputs=['tdata', 'tindices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
9387
    return ([td, ti, node], [x, i], [y])
Khalique's avatar
Khalique committed
9388

Khalique's avatar
Khalique committed
9389

kahmed10's avatar
kahmed10 committed
9390
@onnx_test()
9391
def triu_test():
kahmed10's avatar
kahmed10 committed
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'Trilu',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


@onnx_test()
9404
def triu_batch_diff_k_test():
kahmed10's avatar
kahmed10 committed
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 3])
    k = np.array([2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3])
    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node(
        'Trilu',
        inputs=['x', 'k'],
        outputs=['y'],
    )
    return ([node], [x], [y], [k_tensor])


@onnx_test()
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
def tril_batch_diff_k_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 3])
    k = np.array([2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3])
    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node('Trilu',
                                 inputs=['x', 'k'],
                                 outputs=['y'],
                                 upper=0)
    return ([node], [x], [y], [k_tensor])


@onnx_test()
def tril_test():
kahmed10's avatar
kahmed10 committed
9440
9441
9442
9443
9444
9445
9446
9447
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node('Trilu', inputs=['x'], outputs=['y'], upper=0)
    return ([node], [x], [y])


@onnx_test()
9448
def triu_neg_k_test():
kahmed10's avatar
kahmed10 committed
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    k = np.array([-1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node('Trilu', inputs=['x', 'k'], outputs=['y'])
    return ([node], [x], [y], [k_tensor])


@onnx_test()
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
def tril_neg_k_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    k = np.array([-1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))
    node = onnx.helper.make_node('Trilu',
                                 inputs=['x', 'k'],
                                 outputs=['y'],
                                 upper=0)
    return ([node], [x], [y], [k_tensor])


@onnx_test()
def triu_out_k_test():
kahmed10's avatar
kahmed10 committed
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    k = np.array([5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node('Trilu', inputs=['x', 'k'], outputs=['y'])
    return ([node], [x], [y], [k_tensor])


@onnx_test()
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
def tril_out_k_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    k = np.array([5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))
    node = onnx.helper.make_node('Trilu',
                                 inputs=['x', 'k'],
                                 outputs=['y'],
                                 upper=0)
    return ([node], [x], [y], [k_tensor])


@onnx_test()
def triu_row_one_test():
kahmed10's avatar
kahmed10 committed
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 4])
    k = np.array([1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 4])
    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node(
        'Trilu',
        inputs=['x', 'k'],
        outputs=['y'],
    )
    return ([node], [x], [y], [k_tensor])


9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
@onnx_test()
def tril_row_one_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 4])
    k = np.array([1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 4])
    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node('Trilu',
                                 inputs=['x', 'k'],
                                 outputs=['y'],
                                 upper=0)
    return ([node], [x], [y], [k_tensor])


9542
@onnx_test()
9543
9544
9545
9546
9547
9548
9549
9550
9551
def undefined_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node('Identity', inputs=[''], outputs=['1'])

    return ([node], [x], [y])


9552
@onnx_test()
Khalique's avatar
Khalique committed
9553
9554
9555
def unknown_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
9556
9557
9558

    helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
9559
9560
    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
9561
    node = onnx.helper.make_node('Unknown', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
9562

Khalique's avatar
Khalique committed
9563
    node2 = onnx.helper.make_node('Unknown', inputs=['2'], outputs=['3'])
Khalique's avatar
Khalique committed
9564

Khalique's avatar
Khalique committed
9565
    return ([node, node2], [x, y], [a])
9566
9567


9568
@onnx_test()
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
def unknown_aten_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])

    helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node('ATen',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 operator='unknown')

    return ([node], [x, y], [a])


9585
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
def upsample_linear_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
    scales_tensor = helper.make_tensor(name='scales',
                                       data_type=TensorProto.FLOAT,
                                       dims=scales.shape,
                                       vals=scales.flatten().astype(
                                           np.float32))
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('Upsample',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='linear')

    return ([node], [X], [Y], [scales_tensor])


9604
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
def upsample_test():
    scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Upsample',
        inputs=['X', 'scales'],
        outputs=['Y'],
        mode='nearest',
    )

    return ([node], [X], [Y], [scale_tensor])


9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
@onnx_test()
def upsample_ver7_test():
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node('Upsample',
                                 inputs=['X'],
                                 outputs=['Y'],
                                 mode='nearest',
                                 scales=[1.0, 1.0, 2.0, 3.0])

    return ([node], [X], [Y])


9639
@onnx_test()
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
def variable_batch_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [None, 3, 16, 16])

    node = onnx.helper.make_node('Identity', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


9651
@onnx_test()
9652
9653
9654
9655
9656
9657
9658
9659
def variable_batch_leq_zero_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [0, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [-1, 3, 16, 16])

    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [-1, 3, 16, 16])
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])
Shucai Xiao's avatar
Shucai Xiao committed
9660
9661


9662
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
def where_test():
    c = helper.make_tensor_value_info('c', TensorProto.BOOL, [2])
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 1, 2, 2])

    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [2, 2, 2, 2])
    node = onnx.helper.make_node('Where',
                                 inputs=['c', 'x', 'y'],
                                 outputs=['z'])

    return ([node], [c, x, y], [z])
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702


@onnx_test()
def where_dyn_test():
    c = helper.make_tensor_value_info('c', TensorProto.BOOL, [None, 2, 2])
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 2, 2])

    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [None, 2, 2])
    node = onnx.helper.make_node('Where',
                                 inputs=['c', 'x', 'y'],
                                 outputs=['z'])

    return ([node], [c, x, y], [z])


@onnx_test()
def where_mixed_test():
    # mixture of static and dynamic input shapes is not supported
    c = helper.make_tensor_value_info('c', TensorProto.BOOL, [None, 2, 2])
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 2, 2])

    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [None, 2, 2])
    node = onnx.helper.make_node('Where',
                                 inputs=['c', 'x', 'y'],
                                 outputs=['z'])

    return ([node], [c, x, y], [z])