Unverified Commit d71a7b6a authored by Charlie Lin's avatar Charlie Lin Committed by GitHub
Browse files

Size ONNX op (#1122)

* Implement size ONNX operator and tests
parent a0ae2f79
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/make_op.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
struct parse_size : op_parser<parse_size>
{
std::vector<op_desc> operators() const { return {{"Size"}}; }
instruction_ref parse(const op_desc&,
const onnx_parser&,
const onnx_parser::node_info& info,
std::vector<instruction_ref> args) const
{
return info.add_literal(migraphx::literal{migraphx::shape{migraphx::shape::int64_type},
{args[0]->get_shape().elements()}});
}
};
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -4434,6 +4434,54 @@ def sinh_test():
return ([node], [x], [y])
@onnx_test
def size_float_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
node = onnx.helper.make_node(
'Size',
inputs=['x'],
outputs=['y'],
)
return ([node], [x], [y])
@onnx_test
def size_half_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 1])
y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
node = onnx.helper.make_node(
'Size',
inputs=['x'],
outputs=['y'],
)
return ([node], [x], [y])
@onnx_test
def size_int_test():
x = helper.make_tensor_value_info('x', TensorProto.INT32, [8, 2, 3])
y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
node = onnx.helper.make_node(
'Size',
inputs=['x'],
outputs=['y'],
)
return ([node], [x], [y])
@onnx_test
def size_verify_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5, 3])
y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
node = onnx.helper.make_node(
'Size',
inputs=['x'],
outputs=['y'],
)
return ([node], [x], [y])
@onnx_test
def slice_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 2])
......
......@@ -4298,6 +4298,40 @@ TEST_CASE(sinh_test)
EXPECT(p == prog);
}
TEST_CASE(size_float_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto s = migraphx::shape{migraphx::shape::float_type, {2, 3, 4}};
mm->add_parameter("x", s);
mm->add_literal(migraphx::literal{migraphx::shape::int64_type, {s.elements()}});
auto prog = optimize_onnx("size_float_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(size_half_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto s = migraphx::shape{migraphx::shape::half_type, {3, 1}};
mm->add_parameter("x", s);
mm->add_literal(migraphx::literal{migraphx::shape::int64_type, {s.elements()}});
auto prog = optimize_onnx("size_half_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(size_int_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto s = migraphx::shape{migraphx::shape::int32_type, {8, 2, 3}};
mm->add_parameter("x", s);
mm->add_literal(migraphx::literal{migraphx::shape::int64_type, {s.elements()}});
auto prog = optimize_onnx("size_int_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(slice_test)
{
migraphx::program p;
......
size_float_test:I
xy"Sizesize_float_testZ
x



b
y

B
\ No newline at end of file
size_half_test:D
xy"Sizesize_half_testZ
x



b
y

B
\ No newline at end of file
 size_int_test:G
xy"Size size_int_testZ
x



b
y

B
\ No newline at end of file
size_verify_test:J
xy"Sizesize_verify_testZ
x



b
y

B
\ No newline at end of file
......@@ -640,6 +640,21 @@ TEST_CASE(selu_test)
EXPECT(migraphx::verify_range(result_vector, gold));
}
TEST_CASE(size_verify_test)
{
migraphx::program p = migraphx::parse_onnx("size_verify_test.onnx");
p.compile(migraphx::ref::target{});
migraphx::shape s{migraphx::shape::float_type, {2, 5, 3}};
std::vector<float> data(30, 1.);
migraphx::parameter_map pp;
pp["x"] = migraphx::argument(s, data.data());
auto result = p.eval(pp).back();
auto size_result = result.at<int64_t>();
EXPECT(size_result == int64_t{30});
}
TEST_CASE(slice_test)
{
migraphx::program p = migraphx::parse_onnx("slice_test.onnx");
......
......@@ -274,8 +274,6 @@ def create_backend_test(testname=None, target_device=None):
backend_test.exclude(r'test_negative_log_likelihood_loss_*')
# all reduce ops have dynamic axes inputs
backend_test.exclude(r'test_size_cpu')
backend_test.exclude(r'test_size_example_cpu')
backend_test.exclude(r'test_softmax_cross_entropy_*')
backend_test.exclude(r'test_Embedding_cpu')
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment