gen_onnx.py 50.8 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
import numpy as np
import onnx
from onnx import helper
from onnx import numpy_helper
from onnx import AttributeProto, TensorProto, GraphProto

Khalique's avatar
Khalique committed
7

Khalique's avatar
Khalique committed
8
9
def onnx_test(op_test):
    def run_test():
Khalique's avatar
Khalique committed
10
11
        op_info = op_test()
        if len(op_info) > 3:
Khalique's avatar
Khalique committed
12
13
14
15
16
            graph_def = helper.make_graph(op_info[0],
                                          op_test.__name__,
                                          op_info[1],
                                          op_info[2],
                                          initializer=op_info[3])
Khalique's avatar
Khalique committed
17
        else:
Khalique's avatar
Khalique committed
18
19
20
21
            graph_def = helper.make_graph(op_info[0], op_test.__name__,
                                          op_info[1], op_info[2])
        model_def = helper.make_model(graph_def,
                                      producer_name=op_test.__name__)
Khalique's avatar
Khalique committed
22
        onnx.save(model_def, '{}.onnx'.format(op_test.__name__))
Khalique's avatar
Khalique committed
23

Khalique's avatar
Khalique committed
24
25
    return run_test

Khalique's avatar
Khalique committed
26

Khalique's avatar
Khalique committed
27
@onnx_test
Khalique's avatar
Khalique committed
28
29
30
31
32
33
34
35
36
37
def acos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
38
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
39

Khalique's avatar
Khalique committed
40

Khalique's avatar
Khalique committed
41
@onnx_test
Khalique's avatar
Khalique committed
42
43
44
def add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
45
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
46

Khalique's avatar
Khalique committed
47
48
49
50
51
52
53
    node = onnx.helper.make_node('Add',
                                 inputs=['0', '1'],
                                 broadcast=1,
                                 axis=1,
                                 outputs=['2'])

    return ([node], [x, y], [z])
Khalique's avatar
Khalique committed
54
55


Khalique's avatar
Khalique committed
56
@onnx_test
Khalique's avatar
Khalique committed
57
58
59
60
61
62
63
64
65
66
67
def add_fp16_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
68
    return (
Khalique's avatar
Khalique committed
69
        [node],
Khalique's avatar
Khalique committed
70
        [x, y],
Khalique's avatar
Khalique committed
71
72
        [z],
        # '0' -> 1.5, '1' -> 2.5
Khalique's avatar
Khalique committed
73
74
75
76
        [
            onnx.helper.make_tensor('0', TensorProto.FLOAT16, [1], [15872]),
            onnx.helper.make_tensor('1', TensorProto.FLOAT16, [1], [16640])
        ])
Khalique's avatar
Khalique committed
77
78


Khalique's avatar
Khalique committed
79
@onnx_test
Khalique's avatar
Khalique committed
80
81
82
def add_scalar_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [])
Khalique's avatar
Khalique committed
83
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
84

Khalique's avatar
Khalique committed
85
86
87
88
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z],
            [helper.make_tensor('1', TensorProto.FLOAT, [], [1])])
Khalique's avatar
Khalique committed
89
90


Khalique's avatar
Khalique committed
91
@onnx_test
Khalique's avatar
Khalique committed
92
93
94
95
def argmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])

Khalique's avatar
Khalique committed
96
97
98
99
100
    node = onnx.helper.make_node('ArgMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=2,
                                 keepdims=0)
Khalique's avatar
Khalique committed
101

Khalique's avatar
Khalique committed
102
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
103

Khalique's avatar
Khalique committed
104

Khalique's avatar
Khalique committed
105
@onnx_test
Khalique's avatar
Khalique committed
106
107
108
109
def argmin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])

Khalique's avatar
Khalique committed
110
111
112
113
114
    node = onnx.helper.make_node('ArgMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=3,
                                 keepdims=0)
Khalique's avatar
Khalique committed
115

Khalique's avatar
Khalique committed
116
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
117

Khalique's avatar
Khalique committed
118

Khalique's avatar
Khalique committed
119
@onnx_test
Khalique's avatar
Khalique committed
120
121
122
123
124
125
126
127
128
129
def asin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
130
131
    return ([node], [x], [y])

Khalique's avatar
Khalique committed
132

Khalique's avatar
Khalique committed
133
@onnx_test
Khalique's avatar
Khalique committed
134
135
136
137
138
139
140
141
142
def atan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
143

Khalique's avatar
Khalique committed
144
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
145

Khalique's avatar
Khalique committed
146

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
@onnx_test
def averagepool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET')

    return ([node], [x], [y])


@onnx_test
def averagepool_same_lower_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_LOWER')

    return ([node], [x], [y])


@onnx_test
def averagepool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_UPPER')

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
191
@onnx_test
Khalique's avatar
Khalique committed
192
193
194
195
def cast_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

Khalique's avatar
Khalique committed
196
197
    node = onnx.helper.make_node('Cast', inputs=['x'], outputs=['y'], to=1)

Khalique's avatar
Khalique committed
198
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
199

kahmed10's avatar
kahmed10 committed
200

Shucai Xiao's avatar
Shucai Xiao committed
201
202
203
204
205
206
207
208
209
210
211
212
@onnx_test
def ceil_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Ceil',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
213

kahmed10's avatar
kahmed10 committed
214

Khalique's avatar
Khalique committed
215
@onnx_test
Khalique's avatar
Khalique committed
216
217
218
219
def clip_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
220
221
222
223
224
    node = onnx.helper.make_node('Clip',
                                 inputs=['0'],
                                 outputs=['1'],
                                 max=6.0,
                                 min=0.0)
Khalique's avatar
Khalique committed
225

Khalique's avatar
Khalique committed
226
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
227

Khalique's avatar
Khalique committed
228

Khalique's avatar
Khalique committed
229
@onnx_test
Khalique's avatar
Khalique committed
230
231
232
233
234
235
236
237
238
239
240
241
def concat_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 4, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7, 4, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [9, 4, 3])

    node = onnx.helper.make_node(
        'Concat',
        inputs=['0', '1'],
        axis=0,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
242
243
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
244

Khalique's avatar
Khalique committed
245
@onnx_test
Khalique's avatar
Khalique committed
246
247
248
def constant_test():
    x = np.array([0, 1, 2])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
Khalique's avatar
Khalique committed
249

Khalique's avatar
Khalique committed
250
251
252
253
254
255
256
257
258
259
260
261
    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.FLOAT,
            dims=x.shape,
            vals=x.flatten().astype(float),
        ),
    )

Khalique's avatar
Khalique committed
262
    return ([node], [], [y])
Khalique's avatar
Khalique committed
263

Khalique's avatar
Khalique committed
264

Khalique's avatar
Khalique committed
265
@onnx_test
Khalique's avatar
Khalique committed
266
def constant_fill_test():
Khalique's avatar
Khalique committed
267
268
269
270
271
272
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=[],
        outputs=['value'],
Khalique's avatar
Khalique committed
273
274
275
276
        dtype=1,
        value=1.0,
        shape=[2, 3],
        input_as_shape=0,
Khalique's avatar
Khalique committed
277
278
    )

Khalique's avatar
Khalique committed
279
    return ([node], [], [value])
Khalique's avatar
Khalique committed
280

Khalique's avatar
Khalique committed
281

Khalique's avatar
Khalique committed
282
@onnx_test
Khalique's avatar
Khalique committed
283
def constant_fill_input_as_shape_test():
Khalique's avatar
Khalique committed
284
    np_shape = np.array([2, 3])
Khalique's avatar
Khalique committed
285
286
287
    shape = helper.make_tensor_value_info('shape', TensorProto.INT32, [2])
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

Khalique's avatar
Khalique committed
288
289
290
291
    ts_shape = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=np_shape.shape,
                                  vals=np_shape.flatten().astype(int))
Khalique's avatar
Khalique committed
292
293
294
295
296
297
298
299
300
301
302
303

    const_shape_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=ts_shape,
    )

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=['shape'],
        outputs=['value'],
Khalique's avatar
Khalique committed
304
305
306
        dtype=1,
        value=1.0,
        input_as_shape=1,
Khalique's avatar
Khalique committed
307
308
    )

Khalique's avatar
Khalique committed
309
    return ([const_shape_node, node], [], [value])
Khalique's avatar
Khalique committed
310

Khalique's avatar
Khalique committed
311

Khalique's avatar
Khalique committed
312
@onnx_test
Khalique's avatar
Khalique committed
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
def constant_scalar_test():
    x = np.array([1])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.INT32,
            dims=x.shape,
            vals=x.flatten().astype(int),
        ),
    )

Khalique's avatar
Khalique committed
329
    return ([node], [], [y])
Khalique's avatar
Khalique committed
330

Khalique's avatar
Khalique committed
331

Khalique's avatar
Khalique committed
332
@onnx_test
Khalique's avatar
Khalique committed
333
def const_of_shape_empty_input_test():
Khalique's avatar
Khalique committed
334
335
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
336
337
    shape_val = np.array([2, 3, 4]).astype(np.int64)
    empty_val = np.array([]).astype(np.int64)
Khalique's avatar
Khalique committed
338
339
340
341
    empty_ts = helper.make_tensor(name='empty_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=empty_val.shape,
                                  vals=empty_val.flatten().astype(int))
Khalique's avatar
Khalique committed
342
343
344
345
346
347
348
349
350
351
352
353
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=empty_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
Khalique's avatar
Khalique committed
354
        value=tensor_val,
Khalique's avatar
Khalique committed
355
356
    )

Khalique's avatar
Khalique committed
357
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
358

Khalique's avatar
Khalique committed
359

Khalique's avatar
Khalique committed
360
@onnx_test
Khalique's avatar
Khalique committed
361
def const_of_shape_float_test():
Khalique's avatar
Khalique committed
362
363
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.FLOAT, [1],
                                         [10])
Khalique's avatar
Khalique committed
364
365

    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
366
367
368
369
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
370
371
372
373
374
375
376
377
378

    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

Khalique's avatar
Khalique committed
379
380
381
382
    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
383

Khalique's avatar
Khalique committed
384
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
385

Khalique's avatar
Khalique committed
386

Khalique's avatar
Khalique committed
387
@onnx_test
Khalique's avatar
Khalique committed
388
def const_of_shape_int64_test():
Khalique's avatar
Khalique committed
389
390
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
391
    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
392
393
394
395
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
396
    shape_const = helper.make_node(
Khalique's avatar
Khalique committed
397
398
399
400
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
Khalique's avatar
Khalique committed
401
402
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
403
404
405
406
407

    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
408

Khalique's avatar
Khalique committed
409
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
410

Khalique's avatar
Khalique committed
411

Khalique's avatar
Khalique committed
412
@onnx_test
Khalique's avatar
Khalique committed
413
414
def const_of_shape_no_value_attr_test():
    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
415
416
417
418
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
419
420
421
422
423
424
425
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
426

Khalique's avatar
Khalique committed
427
428
429
430
431
432
    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
433
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
434

Khalique's avatar
Khalique committed
435

Khalique's avatar
Khalique committed
436
@onnx_test
Khalique's avatar
Khalique committed
437
438
439
440
441
def conv_autopad_fail_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 34, 34])

Khalique's avatar
Khalique committed
442
443
444
445
446
447
448
449
450
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 dilations=[1, 1],
                                 strides=[1, 1],
                                 auto_pad='SAME',
                                 pads=[0, 0, 1, 1, 0, 0, 1, 1])

    return ([node], [x, y], [out])
Khalique's avatar
Khalique committed
451
452


Khalique's avatar
Khalique committed
453
@onnx_test
Khalique's avatar
Khalique committed
454
455
456
457
458
459
def conv_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 28, 28])

Khalique's avatar
Khalique committed
460
461
462
463
464
465
466
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])

    return ([node], [x, y, z], [out])
Khalique's avatar
Khalique committed
467
468


Khalique's avatar
Khalique committed
469
@onnx_test
Khalique's avatar
Khalique committed
470
471
472
473
474
475
476
477
def conv_bn_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    k = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1])
    l = helper.make_tensor_value_info('6', TensorProto.FLOAT, [1])
Khalique's avatar
Khalique committed
478
479
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT,
                                        [1, 1, 14, 14])
Khalique's avatar
Khalique committed
480

Khalique's avatar
Khalique committed
481
482
483
484
485
486
    node0 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['7'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
487

Khalique's avatar
Khalique committed
488
489
490
491
492
    node1 = onnx.helper.make_node('BatchNormalization',
                                  inputs=['7', '3', '4', '5', '6'],
                                  outputs=['8'],
                                  epsilon=9.99999974737875e-06,
                                  momentum=0.899999976158142)
Khalique's avatar
Khalique committed
493

Khalique's avatar
Khalique committed
494
495
496
497
498
499
500
501
502
    node2 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node0, node1, node2, node3], [x, y, z, m, n, k, l], [out])
Khalique's avatar
Khalique committed
503
504


Khalique's avatar
Khalique committed
505
@onnx_test
Khalique's avatar
Khalique committed
506
507
508
509
510
511
def conv_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1, 1, 14, 14])

Khalique's avatar
Khalique committed
512
513
514
515
516
517
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['3'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
518

Khalique's avatar
Khalique committed
519
    node2 = onnx.helper.make_node('Relu', inputs=['3'], outputs=['4'])
Khalique's avatar
Khalique committed
520

Khalique's avatar
Khalique committed
521
522
523
524
525
526
527
528
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['4'],
                                  outputs=['5'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node1, node2, node3], [x, y, z], [out])
Khalique's avatar
Khalique committed
529
530


Khalique's avatar
Khalique committed
531
@onnx_test
Khalique's avatar
Khalique committed
532
533
534
535
536
537
538
539
def conv_relu_maxpool_x2_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 5, 5, 5])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT, [1, 1, 5, 5])

Khalique's avatar
Khalique committed
540
541
542
543
544
545
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['5'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
546

Khalique's avatar
Khalique committed
547
    node2 = onnx.helper.make_node('Relu', inputs=['5'], outputs=['6'])
Khalique's avatar
Khalique committed
548

Khalique's avatar
Khalique committed
549
550
551
552
553
554
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['6'],
                                  outputs=['7'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])
Khalique's avatar
Khalique committed
555

Khalique's avatar
Khalique committed
556
557
558
559
560
561
    node4 = onnx.helper.make_node('Conv',
                                  inputs=['7', '3', '4'],
                                  outputs=['8'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
562

Khalique's avatar
Khalique committed
563
    node5 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
Khalique's avatar
Khalique committed
564

Khalique's avatar
Khalique committed
565
566
567
568
569
570
571
572
    node6 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node1, node2, node3, node4, node5, node6], [x, y, z, m, n], [out])
Khalique's avatar
Khalique committed
573
574


Khalique's avatar
Khalique committed
575
@onnx_test
Khalique's avatar
Khalique committed
576
577
578
579
580
581
582
583
584
585
def cos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Cos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
586
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
587

Khalique's avatar
Khalique committed
588

Khalique's avatar
Khalique committed
589
@onnx_test
Khalique's avatar
Khalique committed
590
591
592
593
594
595
596
597
598
599
def cosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Cosh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
600
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
601

Khalique's avatar
Khalique committed
602

Khalique's avatar
Khalique committed
603
@onnx_test
Khalique's avatar
Khalique committed
604
def dropout_test():
Khalique's avatar
Khalique committed
605
606
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])
Khalique's avatar
Khalique committed
607

Khalique's avatar
Khalique committed
608
609
610
611
612
613
614
    node = onnx.helper.make_node(
        'Dropout',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
615
616


Khalique's avatar
Khalique committed
617
@onnx_test
Khalique's avatar
Khalique committed
618
619
620
621
def elu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
622
623
624
625
    node = onnx.helper.make_node('Elu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
626

Khalique's avatar
Khalique committed
627
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
628

Khalique's avatar
Khalique committed
629

Khalique's avatar
Khalique committed
630
@onnx_test
Khalique's avatar
Khalique committed
631
632
633
634
635
636
637
638
639
640
def erf_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Erf',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
641
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
642

Khalique's avatar
Khalique committed
643

Khalique's avatar
Khalique committed
644
@onnx_test
Khalique's avatar
Khalique committed
645
646
647
648
649
650
651
652
653
654
def exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Exp',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
655
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
656

Khalique's avatar
Khalique committed
657

Khalique's avatar
Khalique committed
658
@onnx_test
Khalique's avatar
Khalique committed
659
660
def expand_test():
    shape_val = np.array([2, 3, 4, 5]).astype(np.int64)
Khalique's avatar
Khalique committed
661
662
663
664
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
665
666
667
668
669
670
671
672
673
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
674
675
676
677
678
679
    node = onnx.helper.make_node('Expand',
                                 inputs=['x', 'shape'],
                                 outputs=['y'])

    return ([shape_const, node], [x], [y])

Khalique's avatar
Khalique committed
680

Khalique's avatar
Khalique committed
681
@onnx_test
Khalique's avatar
Khalique committed
682
683
def flatten_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
684
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [6, 20])
Khalique's avatar
Khalique committed
685
686
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 60])

Khalique's avatar
Khalique committed
687
688
689
690
    node = onnx.helper.make_node('Flatten',
                                 inputs=['0'],
                                 axis=2,
                                 outputs=['2'])
Khalique's avatar
Khalique committed
691

Khalique's avatar
Khalique committed
692
693
694
    node2 = onnx.helper.make_node('Flatten', inputs=['0'], outputs=['3'])

    return ([node, node2], [x], [y, y2])
Khalique's avatar
Khalique committed
695

kahmed10's avatar
kahmed10 committed
696

Shucai Xiao's avatar
Shucai Xiao committed
697
698
699
700
701
702
703
704
705
706
707
708
@onnx_test
def floor_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Floor',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
709

kahmed10's avatar
kahmed10 committed
710

Khalique's avatar
Khalique committed
711
@onnx_test
Khalique's avatar
Khalique committed
712
713
def gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
Khalique's avatar
Khalique committed
714
715
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
Khalique's avatar
Khalique committed
716
717
718
719
720
721
722
723
724
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Gather',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
725
726
    return ([node], [x, i], [y])

Khalique's avatar
Khalique committed
727

Khalique's avatar
Khalique committed
728
@onnx_test
Khalique's avatar
Khalique committed
729
730
731
732
733
734
def gemm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 7])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [11, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [])
    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [7, 11])

Khalique's avatar
Khalique committed
735
736
737
738
739
740
741
742
743
    node = onnx.helper.make_node('Gemm',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 alpha=2.0,
                                 beta=2.0,
                                 transA=1,
                                 transB=1)

    return ([node], [x, y, z], [a])
Khalique's avatar
Khalique committed
744
745


Khalique's avatar
Khalique committed
746
@onnx_test
Khalique's avatar
Khalique committed
747
748
749
750
751
752
def gemm_ex_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 5, 6])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 7])
    m3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 1, 6, 7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 6, 7])

Khalique's avatar
Khalique committed
753
754
755
756
757
758
759
760
    node = onnx.helper.make_node('Gemm',
                                 inputs=['1', '2', '3'],
                                 outputs=['y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

    return ([node], [m1, m2, m3], [y])
Khalique's avatar
Khalique committed
761
762


Khalique's avatar
Khalique committed
763
@onnx_test
Khalique's avatar
Khalique committed
764
765
766
767
768
769
def gemm_ex_brcst_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 5, 6])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 7])
    m3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 1, 6, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 6, 7])

Khalique's avatar
Khalique committed
770
771
772
773
774
775
776
777
    node = onnx.helper.make_node('Gemm',
                                 inputs=['1', '2', '3'],
                                 outputs=['y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

    return ([node], [m1, m2, m3], [y])
Khalique's avatar
Khalique committed
778
779


Khalique's avatar
Khalique committed
780
@onnx_test
Khalique's avatar
Khalique committed
781
def globalavgpool_test():
Khalique's avatar
Khalique committed
782
783
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
784
785
786
787
788
789
790

    node = onnx.helper.make_node(
        'GlobalAveragePool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
791
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
792

Khalique's avatar
Khalique committed
793

Khalique's avatar
Khalique committed
794
@onnx_test
Khalique's avatar
Khalique committed
795
def globalmaxpool_test():
Khalique's avatar
Khalique committed
796
797
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
798
799
800
801
802
803
804

    node = onnx.helper.make_node(
        'GlobalMaxPool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
805
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
806

Khalique's avatar
Khalique committed
807

Khalique's avatar
Khalique committed
808
@onnx_test
Khalique's avatar
Khalique committed
809
810
811
812
813
814
815
816
817
818
819
820
def group_conv_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 4, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 1, 3, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 4, 14, 14])

    node = onnx.helper.make_node(
        'Conv',
        inputs=['0', '1'],
        group=4,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
821
822
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
823

Khalique's avatar
Khalique committed
824
@onnx_test
Khalique's avatar
Khalique committed
825
def imagescaler_test():
Khalique's avatar
Khalique committed
826
827
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 16, 16])
Khalique's avatar
Khalique committed
828

Khalique's avatar
Khalique committed
829
830
831
832
833
    node = onnx.helper.make_node('ImageScaler',
                                 inputs=['0'],
                                 outputs=['1'],
                                 bias=[0.01, 0.02, 0.03],
                                 scale=0.5)
Khalique's avatar
Khalique committed
834

Khalique's avatar
Khalique committed
835
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
836

Khalique's avatar
Khalique committed
837

Khalique's avatar
Khalique committed
838
@onnx_test
Khalique's avatar
Khalique committed
839
840
841
842
843
844
845
846
847
848
849
def implicit_add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
850
851
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
852

Khalique's avatar
Khalique committed
853
@onnx_test
Khalique's avatar
Khalique committed
854
855
856
def implicit_pow_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
Khalique's avatar
Khalique committed
857
858
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
859
860
861
862
863
864
865

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
866
867
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
868

Khalique's avatar
Khalique committed
869
@onnx_test
Khalique's avatar
Khalique committed
870
871
872
def implicit_sub_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])
Khalique's avatar
Khalique committed
873
874
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
875
876
877
878
879
880
881

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
882
883
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
884

885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
@onnx_test
def initializer_not_an_input():
    values = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
    w = helper.make_tensor(name='w',
                           data_type=TensorProto.FLOAT,
                           dims=values.shape,
                           vals=values.flatten().astype(np.float))

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 4])

    node = onnx.helper.make_node(
        'Gemm',
        inputs=['x', 'w'],
        outputs=['y'],
    )

    return ([node], [x], [y], [w])


Khalique's avatar
Khalique committed
905
@onnx_test
Khalique's avatar
Khalique committed
906
907
908
909
def leaky_relu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
910
911
912
913
    node = onnx.helper.make_node('LeakyRelu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
914

Khalique's avatar
Khalique committed
915
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
916

Khalique's avatar
Khalique committed
917

Khalique's avatar
Khalique committed
918
@onnx_test
Khalique's avatar
Khalique committed
919
920
921
922
923
924
925
926
927
928
def log_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Log',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
929
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
930

Khalique's avatar
Khalique committed
931

Khalique's avatar
Khalique committed
932
@onnx_test
Khalique's avatar
Khalique committed
933
934
935
936
def logsoftmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

Khalique's avatar
Khalique committed
937
938
939
940
    node = onnx.helper.make_node('LogSoftmax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=1)
Khalique's avatar
Khalique committed
941

Khalique's avatar
Khalique committed
942
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
943

Khalique's avatar
Khalique committed
944

Khalique's avatar
Khalique committed
945
@onnx_test
Khalique's avatar
Khalique committed
946
947
948
949
def lrn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 28, 24, 24])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 28, 24, 24])

Khalique's avatar
Khalique committed
950
951
952
953
954
955
956
    node = onnx.helper.make_node('LRN',
                                 inputs=['0'],
                                 size=5,
                                 alpha=0.0001,
                                 beta=0.75,
                                 bias=1.0,
                                 outputs=['1'])
Khalique's avatar
Khalique committed
957

Khalique's avatar
Khalique committed
958
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
959

Khalique's avatar
Khalique committed
960

Khalique's avatar
Khalique committed
961
@onnx_test
Khalique's avatar
Khalique committed
962
963
964
965
966
967
968
969
970
971
972
def matmul_bmbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 2, 1, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 2, 3, 6, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
973
974
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
975

Khalique's avatar
Khalique committed
976
@onnx_test
Khalique's avatar
Khalique committed
977
978
979
980
981
982
983
984
985
986
987
def matmul_bmv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
988
989
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
990

Khalique's avatar
Khalique committed
991
@onnx_test
Khalique's avatar
Khalique committed
992
993
994
995
996
997
998
999
1000
1001
1002
def matmul_mv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1003
1004
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
1005

Khalique's avatar
Khalique committed
1006
@onnx_test
Khalique's avatar
Khalique committed
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
def matmul_vbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1018
1019
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
1020

Khalique's avatar
Khalique committed
1021
@onnx_test
Khalique's avatar
Khalique committed
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
def matmul_vm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1033
1034
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
1035

Khalique's avatar
Khalique committed
1036
@onnx_test
Khalique's avatar
Khalique committed
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
def matmul_vv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1048
1049
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
1050

Khalique's avatar
Khalique committed
1051
@onnx_test
Khalique's avatar
Khalique committed
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
def max_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Max',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
1064
1065
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
1066

1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
@onnx_test
def maxpool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET')

    return ([node], [x], [y])


@onnx_test
def maxpool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_UPPER')

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
1097
@onnx_test
Khalique's avatar
Khalique committed
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
def min_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Min',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
1110
1111
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
1112

Khalique's avatar
Khalique committed
1113
@onnx_test
Khalique's avatar
Khalique committed
1114
1115
1116
1117
def no_pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 2])

Khalique's avatar
Khalique committed
1118
1119
1120
1121
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[0, 0, 0, 0],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
1122

Khalique's avatar
Khalique committed
1123
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1124

Khalique's avatar
Khalique committed
1125

Khalique's avatar
Khalique committed
1126
@onnx_test
Khalique's avatar
Khalique committed
1127
1128
1129
1130
def pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 4])

Khalique's avatar
Khalique committed
1131
1132
1133
1134
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[1, 1, 1, 1],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
1135

Khalique's avatar
Khalique committed
1136
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1137

Khalique's avatar
Khalique committed
1138

Khalique's avatar
Khalique committed
1139
@onnx_test
Khalique's avatar
Khalique committed
1140
1141
1142
def pow_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1143
1144
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1145
1146
1147
1148
1149
1150
1151

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
1152
    return ([node], [arg0, arg1], [arg_out])
Khalique's avatar
Khalique committed
1153

kahmed10's avatar
kahmed10 committed
1154

Shucai Xiao's avatar
Shucai Xiao committed
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
@onnx_test
def reducel1_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

    node = onnx.helper.make_node('ReduceL1',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reducel2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])
    axes = [-1]

    node = onnx.helper.make_node('ReduceL2',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reduce_log_sum_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 6])
    axes = [-3]

    node = onnx.helper.make_node('ReduceLogSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])


@onnx_test
def reduce_log_sum_exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 5, 6])
    axes = [-4]

    node = onnx.helper.make_node('ReduceLogSumExp',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
1215
1216
1217
@onnx_test
def reducemax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
1218
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
Shucai Xiao's avatar
Shucai Xiao committed
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
    axes = [2]

    node = onnx.helper.make_node('ReduceMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])

Khalique's avatar
Khalique committed
1229

Khalique's avatar
Khalique committed
1230
@onnx_test
Khalique's avatar
Khalique committed
1231
1232
1233
def reducemean_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
1234
    axes = [2, 3]
Khalique's avatar
Khalique committed
1235

Khalique's avatar
Khalique committed
1236
1237
1238
1239
1240
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
1241

Khalique's avatar
Khalique committed
1242
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1243

kahmed10's avatar
kahmed10 committed
1244

Khalique's avatar
Khalique committed
1245
@onnx_test
Khalique's avatar
Khalique committed
1246
1247
1248
def reducemean_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
1249
    axes = [2]
Khalique's avatar
Khalique committed
1250

Khalique's avatar
Khalique committed
1251
1252
1253
1254
1255
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
1256

Khalique's avatar
Khalique committed
1257
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1258

kahmed10's avatar
kahmed10 committed
1259

Shucai Xiao's avatar
Shucai Xiao committed
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
@onnx_test
def reducemin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 1])
    axes = [1, 3]

    node = onnx.helper.make_node('ReduceMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1273

kahmed10's avatar
kahmed10 committed
1274

Khalique's avatar
Khalique committed
1275
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
1276
def reduceprod_test():
Khalique's avatar
Khalique committed
1277
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
1278
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
1279
    axes = [2]
Khalique's avatar
Khalique committed
1280

Shucai Xiao's avatar
Shucai Xiao committed
1281
    node = onnx.helper.make_node('ReduceProd',
Khalique's avatar
Khalique committed
1282
1283
1284
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
Shucai Xiao's avatar
Shucai Xiao committed
1285
                                 keepdims=1)
Khalique's avatar
Khalique committed
1286

Khalique's avatar
Khalique committed
1287
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1288

Khalique's avatar
Khalique committed
1289

Khalique's avatar
Khalique committed
1290
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
1291
def reducesum_test():
Khalique's avatar
Khalique committed
1292
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
1293
1294
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = [2]
Khalique's avatar
Khalique committed
1295

Khalique's avatar
Khalique committed
1296
1297
1298
1299
1300
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
1301

Khalique's avatar
Khalique committed
1302
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1303

Khalique's avatar
Khalique committed
1304

Khalique's avatar
Khalique committed
1305
@onnx_test
Khalique's avatar
Khalique committed
1306
1307
1308
def reducesum_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
Khalique's avatar
Khalique committed
1309
    axes = [2, 3]
Khalique's avatar
Khalique committed
1310

Khalique's avatar
Khalique committed
1311
1312
1313
1314
1315
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
1316

Khalique's avatar
Khalique committed
1317
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1318

Khalique's avatar
Khalique committed
1319

Shucai Xiao's avatar
Shucai Xiao committed
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
@onnx_test
def reducesum_multiaxis_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
    axes = [2, 3]

    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reducesum_square_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

    node = onnx.helper.make_node('ReduceSumSquare',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
1350
@onnx_test
Khalique's avatar
Khalique committed
1351
1352
1353
def reshape_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [4, 2, 3])
    x_shape = helper.make_tensor_value_info('1', TensorProto.INT64, [2])
Khalique's avatar
Khalique committed
1354
    x_shape_list = [3, 8]
Khalique's avatar
Khalique committed
1355
1356
1357
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 8])
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3, 8])

Khalique's avatar
Khalique committed
1358
    node = onnx.helper.make_node('Reshape', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
1359

Khalique's avatar
Khalique committed
1360
1361
1362
1363
1364
1365
1366
    node2 = onnx.helper.make_node('Reshape',
                                  inputs=['0'],
                                  shape=x_shape_list,
                                  outputs=['3'])

    return ([node, node2], [x, x_shape], [y, y2],
            [helper.make_tensor('1', TensorProto.INT64, [2], [3, 8])])
Khalique's avatar
Khalique committed
1367
1368


Khalique's avatar
Khalique committed
1369
@onnx_test
Khalique's avatar
Khalique committed
1370
1371
def reshape_non_standard_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
1372
1373
    trans_x = helper.make_tensor_value_info('trans_x', TensorProto.FLOAT,
                                            [2, 4, 3])
Khalique's avatar
Khalique committed
1374
1375
1376
1377
1378
1379
1380
1381
1382
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 3, 2])

    trans = helper.make_node(
        'Transpose',
        inputs=['x'],
        outputs=['trans_x'],
        perm=[0, 2, 1],
    )

Khalique's avatar
Khalique committed
1383
1384
1385
1386
1387
1388
    res = onnx.helper.make_node('Reshape',
                                inputs=['trans_x'],
                                outputs=['y'],
                                shape=[4, 3, 2])

    return ([trans, res], [x], [y])
Khalique's avatar
Khalique committed
1389
1390


Khalique's avatar
Khalique committed
1391
@onnx_test
Khalique's avatar
Khalique committed
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
def shape_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [4])

    node = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1402
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1403

Khalique's avatar
Khalique committed
1404

Khalique's avatar
Khalique committed
1405
@onnx_test
Khalique's avatar
Khalique committed
1406
1407
1408
1409
1410
1411
1412
def shape_gather_test():
    values = np.array([1])
    value = helper.make_tensor_value_info('value', TensorProto.INT32, [1])
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [7, 3, 10])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [3])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [1])

Khalique's avatar
Khalique committed
1413
1414
1415
1416
    value_tensor = helper.make_tensor(name='const_tensor',
                                      data_type=TensorProto.INT32,
                                      dims=values.shape,
                                      vals=values.flatten().astype(int))
Khalique's avatar
Khalique committed
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437

    node_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['value'],
        value=value_tensor,
    )

    node_shape = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

    node_gather = helper.make_node(
        'Gather',
        inputs=['y', 'value'],
        outputs=['z'],
        axis=0,
    )

Khalique's avatar
Khalique committed
1438
1439
    return ([node_const, node_shape, node_gather], [x], [z])

Khalique's avatar
Khalique committed
1440

Khalique's avatar
Khalique committed
1441
@onnx_test
Khalique's avatar
Khalique committed
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
def sign_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [10, 5])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [10, 5])

    node = onnx.helper.make_node(
        'Sign',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1452
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1453

Khalique's avatar
Khalique committed
1454

Khalique's avatar
Khalique committed
1455
@onnx_test
Khalique's avatar
Khalique committed
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
def sin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1466
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1467

Khalique's avatar
Khalique committed
1468

Khalique's avatar
Khalique committed
1469
@onnx_test
Khalique's avatar
Khalique committed
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
def sinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sinh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1480
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1481

Khalique's avatar
Khalique committed
1482

Khalique's avatar
Khalique committed
1483
@onnx_test
Khalique's avatar
Khalique committed
1484
1485
1486
1487
def slice_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2])

Khalique's avatar
Khalique committed
1488
1489
1490
1491
1492
1493
    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0, 1],
                                 starts=[1, 0],
                                 ends=[2, 2],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
1494

Khalique's avatar
Khalique committed
1495
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1496

Khalique's avatar
Khalique committed
1497

Khalique's avatar
Khalique committed
1498
@onnx_test
Khalique's avatar
Khalique committed
1499
1500
1501
1502
def softmax_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3])

Khalique's avatar
Khalique committed
1503
    node = onnx.helper.make_node('Softmax', inputs=['0'], outputs=['1'])
Khalique's avatar
Khalique committed
1504

Khalique's avatar
Khalique committed
1505
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1506

Khalique's avatar
Khalique committed
1507

Khalique's avatar
Khalique committed
1508
@onnx_test
Khalique's avatar
Khalique committed
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
def sqrt_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Sqrt',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1519
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1520

Khalique's avatar
Khalique committed
1521

Khalique's avatar
Khalique committed
1522
@onnx_test
Khalique's avatar
Khalique committed
1523
def squeeze_unsqueeze_test():
Khalique's avatar
Khalique committed
1524
1525
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, 1, 1, 2, 1])
Khalique's avatar
Khalique committed
1526
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 2])
Khalique's avatar
Khalique committed
1527
1528
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                      [1, 1, 3, 1, 2, 1])
Khalique's avatar
Khalique committed
1529

Khalique's avatar
Khalique committed
1530
1531
1532
1533
    node = onnx.helper.make_node('Squeeze',
                                 inputs=['0'],
                                 axes=[0, 2, 3, 5],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
1534

Khalique's avatar
Khalique committed
1535
1536
1537
1538
1539
1540
    node2 = onnx.helper.make_node('Unsqueeze',
                                  inputs=['1'],
                                  axes=[0, 1, 3, 5],
                                  outputs=['2'])

    return ([node, node2], [x], [z])
Khalique's avatar
Khalique committed
1541
1542


Khalique's avatar
Khalique committed
1543
@onnx_test
Khalique's avatar
Khalique committed
1544
1545
1546
def sub_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
1547
1548
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1549
1550
1551
1552
1553

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
Khalique's avatar
Khalique committed
1554
1555
        broadcast=1,
        axis=1,
Khalique's avatar
Khalique committed
1556
1557
    )

Khalique's avatar
Khalique committed
1558
1559
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
1560

Khalique's avatar
Khalique committed
1561
@onnx_test
Khalique's avatar
Khalique committed
1562
1563
def sub_scalar_test():
    values = np.array([1])
Khalique's avatar
Khalique committed
1564
1565
1566
1567
1568
1569
1570
1571
1572
    arg_node = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                             [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    values_tensor = helper.make_tensor(name='const',
                                       data_type=TensorProto.FLOAT,
                                       dims=values.shape,
                                       vals=values.flatten().astype(float))
Khalique's avatar
Khalique committed
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586

    arg_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['arg_const'],
        value=values_tensor,
    )

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', 'arg_const'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
1587
1588
    return ([arg_const, node], [arg_node], [arg_out])

Khalique's avatar
Khalique committed
1589

Khalique's avatar
Khalique committed
1590
@onnx_test
Khalique's avatar
Khalique committed
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
def sum_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Sum',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
1603
1604
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
1605

Khalique's avatar
Khalique committed
1606
@onnx_test
Khalique's avatar
Khalique committed
1607
1608
1609
1610
1611
def tan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
1612
1613
1614
1615
        'Tan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
1616

Khalique's avatar
Khalique committed
1617
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1618

Khalique's avatar
Khalique committed
1619

Khalique's avatar
Khalique committed
1620
@onnx_test
Khalique's avatar
Khalique committed
1621
1622
1623
1624
1625
def tanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
1626
1627
1628
1629
        'Tanh',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
1630

Khalique's avatar
Khalique committed
1631
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1632

Khalique's avatar
Khalique committed
1633

Khalique's avatar
Khalique committed
1634
@onnx_test
Khalique's avatar
Khalique committed
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
def transpose_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 3, 1, 2],
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
1646
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1647

Khalique's avatar
Khalique committed
1648

Khalique's avatar
Khalique committed
1649
1650
1651
@onnx_test
def transpose_gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 5, 4, 6])
Khalique's avatar
Khalique committed
1652
1653
1654
1655
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 4, 3, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT,
                                      [3, 2, 3, 4, 5, 4, 5, 6])
Khalique's avatar
Khalique committed
1656
1657
1658
1659
1660
1661
1662
1663

    td = onnx.helper.make_node(
        'Transpose',
        inputs=['data'],
        outputs=['tdata'],
        perm=[0, 2, 1, 3],
    )

Khalique's avatar
Khalique committed
1664
1665
1666
1667
    ti = onnx.helper.make_node('Transpose',
                               inputs=['indices'],
                               outputs=['tindices'],
                               perm=[0, 2, 1, 3])
Khalique's avatar
Khalique committed
1668
1669
1670
1671
1672
1673
1674
1675

    node = onnx.helper.make_node(
        'Gather',
        inputs=['tdata', 'tindices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
1676
    return ([td, ti, node], [x, i], [y])
Khalique's avatar
Khalique committed
1677

Khalique's avatar
Khalique committed
1678

Khalique's avatar
Khalique committed
1679
@onnx_test
Khalique's avatar
Khalique committed
1680
1681
1682
def unknown_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
1683
1684
1685

    helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
1686
1687
    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
1688
    node = onnx.helper.make_node('Unknown', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
1689

Khalique's avatar
Khalique committed
1690
    node2 = onnx.helper.make_node('Unknown', inputs=['2'], outputs=['3'])
Khalique's avatar
Khalique committed
1691

Khalique's avatar
Khalique committed
1692
    return ([node, node2], [x, y], [a])
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715


@onnx_test
def variable_batch_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [None, 3, 16, 16])

    node = onnx.helper.make_node('Identity', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


@onnx_test
def variable_batch_leq_zero_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [0, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [-1, 3, 16, 16])

    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [-1, 3, 16, 16])
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])