gen_onnx.py 60.7 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
import numpy as np
import onnx
from onnx import helper
from onnx import numpy_helper
from onnx import AttributeProto, TensorProto, GraphProto

Khalique's avatar
Khalique committed
7

Khalique's avatar
Khalique committed
8
9
def onnx_test(op_test):
    def run_test():
Khalique's avatar
Khalique committed
10
11
        op_info = op_test()
        if len(op_info) > 3:
Khalique's avatar
Khalique committed
12
13
14
15
16
            graph_def = helper.make_graph(op_info[0],
                                          op_test.__name__,
                                          op_info[1],
                                          op_info[2],
                                          initializer=op_info[3])
Khalique's avatar
Khalique committed
17
        else:
Khalique's avatar
Khalique committed
18
19
20
21
            graph_def = helper.make_graph(op_info[0], op_test.__name__,
                                          op_info[1], op_info[2])
        model_def = helper.make_model(graph_def,
                                      producer_name=op_test.__name__)
Khalique's avatar
Khalique committed
22
        onnx.save(model_def, '{}.onnx'.format(op_test.__name__))
Khalique's avatar
Khalique committed
23

Khalique's avatar
Khalique committed
24
25
    return run_test

Khalique's avatar
Khalique committed
26

Khalique's avatar
Khalique committed
27
@onnx_test
Khalique's avatar
Khalique committed
28
29
30
31
32
33
34
35
36
37
def acos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
38
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
39

Khalique's avatar
Khalique committed
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
@onnx_test
def acosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acosh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
55
@onnx_test
Khalique's avatar
Khalique committed
56
57
58
def add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
59
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
60

Khalique's avatar
Khalique committed
61
62
63
64
65
66
67
    node = onnx.helper.make_node('Add',
                                 inputs=['0', '1'],
                                 broadcast=1,
                                 axis=1,
                                 outputs=['2'])

    return ([node], [x, y], [z])
Khalique's avatar
Khalique committed
68
69


Khalique's avatar
Khalique committed
70
@onnx_test
Khalique's avatar
Khalique committed
71
72
73
74
75
76
77
78
79
80
81
def add_fp16_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
82
    return (
Khalique's avatar
Khalique committed
83
        [node],
Khalique's avatar
Khalique committed
84
        [x, y],
Khalique's avatar
Khalique committed
85
86
        [z],
        # '0' -> 1.5, '1' -> 2.5
Khalique's avatar
Khalique committed
87
88
89
90
        [
            onnx.helper.make_tensor('0', TensorProto.FLOAT16, [1], [15872]),
            onnx.helper.make_tensor('1', TensorProto.FLOAT16, [1], [16640])
        ])
Khalique's avatar
Khalique committed
91
92


Khalique's avatar
Khalique committed
93
@onnx_test
Khalique's avatar
Khalique committed
94
95
96
def add_scalar_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [])
Khalique's avatar
Khalique committed
97
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
98

Khalique's avatar
Khalique committed
99
100
101
102
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z],
            [helper.make_tensor('1', TensorProto.FLOAT, [], [1])])
Khalique's avatar
Khalique committed
103
104


Khalique's avatar
Khalique committed
105
@onnx_test
Khalique's avatar
Khalique committed
106
107
108
109
def argmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])

Khalique's avatar
Khalique committed
110
111
112
113
114
    node = onnx.helper.make_node('ArgMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=2,
                                 keepdims=0)
Khalique's avatar
Khalique committed
115

Khalique's avatar
Khalique committed
116
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
117

Khalique's avatar
Khalique committed
118

Khalique's avatar
Khalique committed
119
@onnx_test
Khalique's avatar
Khalique committed
120
121
122
123
def argmin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])

Khalique's avatar
Khalique committed
124
125
126
127
128
    node = onnx.helper.make_node('ArgMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=3,
                                 keepdims=0)
Khalique's avatar
Khalique committed
129

Khalique's avatar
Khalique committed
130
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
131

Khalique's avatar
Khalique committed
132

Khalique's avatar
Khalique committed
133
@onnx_test
Khalique's avatar
Khalique committed
134
135
136
137
138
139
140
141
142
143
def asin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
144
145
    return ([node], [x], [y])

Khalique's avatar
Khalique committed
146

147
148
149
150
151
152
153
154
155
156
157
158
159
160
@onnx_test
def asinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asinh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
161
@onnx_test
Khalique's avatar
Khalique committed
162
163
164
165
166
167
168
169
170
def atan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
171

Khalique's avatar
Khalique committed
172
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
173

Khalique's avatar
Khalique committed
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
@onnx_test
def atanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atanh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
@onnx_test
def averagepool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET')

    return ([node], [x], [y])


@onnx_test
def averagepool_same_lower_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_LOWER')

    return ([node], [x], [y])


@onnx_test
def averagepool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_UPPER')

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
233
@onnx_test
Khalique's avatar
Khalique committed
234
235
236
237
def cast_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

Khalique's avatar
Khalique committed
238
239
    node = onnx.helper.make_node('Cast', inputs=['x'], outputs=['y'], to=1)

Khalique's avatar
Khalique committed
240
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
241

kahmed10's avatar
kahmed10 committed
242

Shucai Xiao's avatar
Shucai Xiao committed
243
244
245
246
247
248
249
250
251
252
253
254
@onnx_test
def ceil_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Ceil',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
255

kahmed10's avatar
kahmed10 committed
256

Khalique's avatar
Khalique committed
257
@onnx_test
Khalique's avatar
Khalique committed
258
259
260
261
def clip_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
262
263
264
265
266
    node = onnx.helper.make_node('Clip',
                                 inputs=['0'],
                                 outputs=['1'],
                                 max=6.0,
                                 min=0.0)
Khalique's avatar
Khalique committed
267

Khalique's avatar
Khalique committed
268
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
269

Khalique's avatar
Khalique committed
270

Khalique's avatar
Khalique committed
271
@onnx_test
Khalique's avatar
Khalique committed
272
273
274
275
276
277
278
279
280
281
282
283
def concat_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 4, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7, 4, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [9, 4, 3])

    node = onnx.helper.make_node(
        'Concat',
        inputs=['0', '1'],
        axis=0,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
284
285
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
286

Khalique's avatar
Khalique committed
287
@onnx_test
Khalique's avatar
Khalique committed
288
289
290
def constant_test():
    x = np.array([0, 1, 2])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
Khalique's avatar
Khalique committed
291

Khalique's avatar
Khalique committed
292
293
294
295
296
297
298
299
300
301
302
303
    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.FLOAT,
            dims=x.shape,
            vals=x.flatten().astype(float),
        ),
    )

Khalique's avatar
Khalique committed
304
    return ([node], [], [y])
Khalique's avatar
Khalique committed
305

Khalique's avatar
Khalique committed
306

Khalique's avatar
Khalique committed
307
@onnx_test
Khalique's avatar
Khalique committed
308
def constant_fill_test():
Khalique's avatar
Khalique committed
309
310
311
312
313
314
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=[],
        outputs=['value'],
Khalique's avatar
Khalique committed
315
316
317
318
        dtype=1,
        value=1.0,
        shape=[2, 3],
        input_as_shape=0,
Khalique's avatar
Khalique committed
319
320
    )

Khalique's avatar
Khalique committed
321
    return ([node], [], [value])
Khalique's avatar
Khalique committed
322

Khalique's avatar
Khalique committed
323

Khalique's avatar
Khalique committed
324
@onnx_test
Khalique's avatar
Khalique committed
325
def constant_fill_input_as_shape_test():
Khalique's avatar
Khalique committed
326
    np_shape = np.array([2, 3])
Khalique's avatar
Khalique committed
327
328
329
    shape = helper.make_tensor_value_info('shape', TensorProto.INT32, [2])
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

Khalique's avatar
Khalique committed
330
331
332
333
    ts_shape = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=np_shape.shape,
                                  vals=np_shape.flatten().astype(int))
Khalique's avatar
Khalique committed
334
335
336
337
338
339
340
341
342
343
344
345

    const_shape_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=ts_shape,
    )

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=['shape'],
        outputs=['value'],
Khalique's avatar
Khalique committed
346
347
348
        dtype=1,
        value=1.0,
        input_as_shape=1,
Khalique's avatar
Khalique committed
349
350
    )

Khalique's avatar
Khalique committed
351
    return ([const_shape_node, node], [], [value])
Khalique's avatar
Khalique committed
352

Khalique's avatar
Khalique committed
353

Khalique's avatar
Khalique committed
354
@onnx_test
Khalique's avatar
Khalique committed
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
def constant_scalar_test():
    x = np.array([1])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.INT32,
            dims=x.shape,
            vals=x.flatten().astype(int),
        ),
    )

Khalique's avatar
Khalique committed
371
    return ([node], [], [y])
Khalique's avatar
Khalique committed
372

Khalique's avatar
Khalique committed
373

Khalique's avatar
Khalique committed
374
@onnx_test
Khalique's avatar
Khalique committed
375
def const_of_shape_empty_input_test():
Khalique's avatar
Khalique committed
376
377
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
378
379
    shape_val = np.array([2, 3, 4]).astype(np.int64)
    empty_val = np.array([]).astype(np.int64)
Khalique's avatar
Khalique committed
380
381
382
383
    empty_ts = helper.make_tensor(name='empty_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=empty_val.shape,
                                  vals=empty_val.flatten().astype(int))
Khalique's avatar
Khalique committed
384
385
386
387
388
389
390
391
392
393
394
395
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=empty_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
Khalique's avatar
Khalique committed
396
        value=tensor_val,
Khalique's avatar
Khalique committed
397
398
    )

Khalique's avatar
Khalique committed
399
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
400

Khalique's avatar
Khalique committed
401

Khalique's avatar
Khalique committed
402
@onnx_test
Khalique's avatar
Khalique committed
403
def const_of_shape_float_test():
Khalique's avatar
Khalique committed
404
405
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.FLOAT, [1],
                                         [10])
Khalique's avatar
Khalique committed
406
407

    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
408
409
410
411
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
412
413
414
415
416
417
418
419
420

    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

Khalique's avatar
Khalique committed
421
422
423
424
    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
425

Khalique's avatar
Khalique committed
426
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
427

Khalique's avatar
Khalique committed
428

Khalique's avatar
Khalique committed
429
@onnx_test
Khalique's avatar
Khalique committed
430
def const_of_shape_int64_test():
Khalique's avatar
Khalique committed
431
432
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
433
    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
434
435
436
437
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
438
    shape_const = helper.make_node(
Khalique's avatar
Khalique committed
439
440
441
442
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
Khalique's avatar
Khalique committed
443
444
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
445
446
447
448
449

    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
450

Khalique's avatar
Khalique committed
451
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
452

Khalique's avatar
Khalique committed
453

Khalique's avatar
Khalique committed
454
@onnx_test
Khalique's avatar
Khalique committed
455
456
def const_of_shape_no_value_attr_test():
    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
457
458
459
460
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
461
462
463
464
465
466
467
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
468

Khalique's avatar
Khalique committed
469
470
471
472
473
474
    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
475
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
476

Khalique's avatar
Khalique committed
477

Khalique's avatar
Khalique committed
478
@onnx_test
Khalique's avatar
Khalique committed
479
480
481
482
483
def conv_autopad_fail_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 34, 34])

Khalique's avatar
Khalique committed
484
485
486
487
488
489
490
491
492
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 dilations=[1, 1],
                                 strides=[1, 1],
                                 auto_pad='SAME',
                                 pads=[0, 0, 1, 1, 0, 0, 1, 1])

    return ([node], [x, y], [out])
Khalique's avatar
Khalique committed
493
494


495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
@onnx_test
def conv_autopad_same_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 32, 32])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 dilations=[1, 1],
                                 strides=[1, 1],
                                 auto_pad='SAME')

    return ([node], [x, y], [out])


Khalique's avatar
Khalique committed
511
@onnx_test
Khalique's avatar
Khalique committed
512
513
514
515
516
517
def conv_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 28, 28])

Khalique's avatar
Khalique committed
518
519
520
521
522
523
524
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])

    return ([node], [x, y, z], [out])
Khalique's avatar
Khalique committed
525
526


Khalique's avatar
Khalique committed
527
@onnx_test
Khalique's avatar
Khalique committed
528
529
530
531
532
533
534
535
def conv_bn_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    k = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1])
    l = helper.make_tensor_value_info('6', TensorProto.FLOAT, [1])
Khalique's avatar
Khalique committed
536
537
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT,
                                        [1, 1, 14, 14])
Khalique's avatar
Khalique committed
538

Khalique's avatar
Khalique committed
539
540
541
542
543
544
    node0 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['7'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
545

Khalique's avatar
Khalique committed
546
547
548
549
550
    node1 = onnx.helper.make_node('BatchNormalization',
                                  inputs=['7', '3', '4', '5', '6'],
                                  outputs=['8'],
                                  epsilon=9.99999974737875e-06,
                                  momentum=0.899999976158142)
Khalique's avatar
Khalique committed
551

Khalique's avatar
Khalique committed
552
553
554
555
556
557
558
559
560
    node2 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node0, node1, node2, node3], [x, y, z, m, n, k, l], [out])
Khalique's avatar
Khalique committed
561
562


Khalique's avatar
Khalique committed
563
@onnx_test
Khalique's avatar
Khalique committed
564
565
566
567
568
569
def conv_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1, 1, 14, 14])

Khalique's avatar
Khalique committed
570
571
572
573
574
575
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['3'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
576

Khalique's avatar
Khalique committed
577
    node2 = onnx.helper.make_node('Relu', inputs=['3'], outputs=['4'])
Khalique's avatar
Khalique committed
578

Khalique's avatar
Khalique committed
579
580
581
582
583
584
585
586
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['4'],
                                  outputs=['5'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node1, node2, node3], [x, y, z], [out])
Khalique's avatar
Khalique committed
587
588


Khalique's avatar
Khalique committed
589
@onnx_test
Khalique's avatar
Khalique committed
590
591
592
593
594
595
596
597
def conv_relu_maxpool_x2_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 5, 5, 5])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT, [1, 1, 5, 5])

Khalique's avatar
Khalique committed
598
599
600
601
602
603
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['5'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
604

Khalique's avatar
Khalique committed
605
    node2 = onnx.helper.make_node('Relu', inputs=['5'], outputs=['6'])
Khalique's avatar
Khalique committed
606

Khalique's avatar
Khalique committed
607
608
609
610
611
612
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['6'],
                                  outputs=['7'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])
Khalique's avatar
Khalique committed
613

Khalique's avatar
Khalique committed
614
615
616
617
618
619
    node4 = onnx.helper.make_node('Conv',
                                  inputs=['7', '3', '4'],
                                  outputs=['8'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
620

Khalique's avatar
Khalique committed
621
    node5 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
Khalique's avatar
Khalique committed
622

Khalique's avatar
Khalique committed
623
624
625
626
627
628
629
630
    node6 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node1, node2, node3, node4, node5, node6], [x, y, z, m, n], [out])
Khalique's avatar
Khalique committed
631
632


633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
@onnx_test
def convinteger_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT8, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.INT8, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.INT32, [1])
    out = helper.make_tensor_value_info('3', TensorProto.INT32, [1, 2, 28, 28])

    node = onnx.helper.make_node('ConvInteger',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])

    return ([node], [x, y, z], [out])


Khalique's avatar
Khalique committed
649
@onnx_test
Khalique's avatar
Khalique committed
650
651
652
653
654
655
656
657
658
659
def cos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Cos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
660
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
661

Khalique's avatar
Khalique committed
662

Khalique's avatar
Khalique committed
663
@onnx_test
Khalique's avatar
Khalique committed
664
665
666
667
668
669
670
671
672
673
def cosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Cosh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
674
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
675

Khalique's avatar
Khalique committed
676

kahmed10's avatar
kahmed10 committed
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
@onnx_test
def deconv_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w'],
                                 outputs=['y'])

    return ([node], [x, w], [y])


@onnx_test
def deconv_bias_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w', 'b'],
                                 outputs=['y'])

    return ([node], [x, w, b], [y])


@onnx_test
def deconv_input_pads_strides_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 7, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[1, 1, 1, 1])

    return ([node], [x, w], [y])


@onnx_test
def deconv_input_pads_asymm_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 8, 6])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[0, 0, 1, 1])

    return ([node], [x, w], [y])


@onnx_test
def deconv_output_shape_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 output_shape=[10, 8])

    return ([node], [x, w], [y])


@onnx_test
def deconv_output_padding_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 output_padding=[1, 1])

    return ([node], [x, w], [y])


@onnx_test
def deconv_stride_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 7, 3])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2])

    return ([node], [x, w], [y])


Khalique's avatar
Khalique committed
780
@onnx_test
Khalique's avatar
Khalique committed
781
def dropout_test():
Khalique's avatar
Khalique committed
782
783
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])
Khalique's avatar
Khalique committed
784

Khalique's avatar
Khalique committed
785
786
787
788
789
790
791
    node = onnx.helper.make_node(
        'Dropout',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
792
793


Khalique's avatar
Khalique committed
794
@onnx_test
Khalique's avatar
Khalique committed
795
796
797
798
def elu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
799
800
801
802
    node = onnx.helper.make_node('Elu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
803

Khalique's avatar
Khalique committed
804
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
805

Khalique's avatar
Khalique committed
806

Khalique's avatar
Khalique committed
807
@onnx_test
Khalique's avatar
Khalique committed
808
809
810
811
812
813
814
815
816
817
def erf_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Erf',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
818
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
819

Khalique's avatar
Khalique committed
820

Khalique's avatar
Khalique committed
821
@onnx_test
Khalique's avatar
Khalique committed
822
823
824
825
826
827
828
829
830
831
def exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Exp',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
832
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
833

Khalique's avatar
Khalique committed
834

Khalique's avatar
Khalique committed
835
@onnx_test
Khalique's avatar
Khalique committed
836
837
def expand_test():
    shape_val = np.array([2, 3, 4, 5]).astype(np.int64)
Khalique's avatar
Khalique committed
838
839
840
841
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
842
843
844
845
846
847
848
849
850
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
851
852
853
854
855
856
    node = onnx.helper.make_node('Expand',
                                 inputs=['x', 'shape'],
                                 outputs=['y'])

    return ([shape_const, node], [x], [y])

Khalique's avatar
Khalique committed
857

Khalique's avatar
Khalique committed
858
@onnx_test
Khalique's avatar
Khalique committed
859
860
def flatten_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
861
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [6, 20])
Khalique's avatar
Khalique committed
862
863
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 60])

Khalique's avatar
Khalique committed
864
865
866
867
    node = onnx.helper.make_node('Flatten',
                                 inputs=['0'],
                                 axis=2,
                                 outputs=['2'])
Khalique's avatar
Khalique committed
868

Khalique's avatar
Khalique committed
869
870
871
    node2 = onnx.helper.make_node('Flatten', inputs=['0'], outputs=['3'])

    return ([node, node2], [x], [y, y2])
Khalique's avatar
Khalique committed
872

kahmed10's avatar
kahmed10 committed
873

Shucai Xiao's avatar
Shucai Xiao committed
874
875
876
877
878
879
880
881
882
883
884
885
@onnx_test
def floor_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Floor',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
886

kahmed10's avatar
kahmed10 committed
887

Khalique's avatar
Khalique committed
888
@onnx_test
Khalique's avatar
Khalique committed
889
890
def gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
Khalique's avatar
Khalique committed
891
892
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
Khalique's avatar
Khalique committed
893
894
895
896
897
898
899
900
901
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Gather',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
902
903
    return ([node], [x, i], [y])

Khalique's avatar
Khalique committed
904

Khalique's avatar
Khalique committed
905
@onnx_test
Khalique's avatar
Khalique committed
906
907
908
909
910
911
def gemm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 7])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [11, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [])
    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [7, 11])

Khalique's avatar
Khalique committed
912
913
914
915
916
917
918
919
920
    node = onnx.helper.make_node('Gemm',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 alpha=2.0,
                                 beta=2.0,
                                 transA=1,
                                 transB=1)

    return ([node], [x, y, z], [a])
Khalique's avatar
Khalique committed
921
922


Khalique's avatar
Khalique committed
923
@onnx_test
Khalique's avatar
Khalique committed
924
925
926
927
928
929
def gemm_ex_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 5, 6])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 7])
    m3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 1, 6, 7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 6, 7])

Khalique's avatar
Khalique committed
930
931
932
933
934
935
936
937
    node = onnx.helper.make_node('Gemm',
                                 inputs=['1', '2', '3'],
                                 outputs=['y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

    return ([node], [m1, m2, m3], [y])
Khalique's avatar
Khalique committed
938
939


Khalique's avatar
Khalique committed
940
@onnx_test
Khalique's avatar
Khalique committed
941
942
943
944
945
946
def gemm_ex_brcst_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 5, 6])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 7])
    m3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 1, 6, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 6, 7])

Khalique's avatar
Khalique committed
947
948
949
950
951
952
953
954
    node = onnx.helper.make_node('Gemm',
                                 inputs=['1', '2', '3'],
                                 outputs=['y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

    return ([node], [m1, m2, m3], [y])
Khalique's avatar
Khalique committed
955
956


Khalique's avatar
Khalique committed
957
@onnx_test
Khalique's avatar
Khalique committed
958
def globalavgpool_test():
Khalique's avatar
Khalique committed
959
960
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
961
962
963
964
965
966
967

    node = onnx.helper.make_node(
        'GlobalAveragePool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
968
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
969

Khalique's avatar
Khalique committed
970

Khalique's avatar
Khalique committed
971
@onnx_test
Khalique's avatar
Khalique committed
972
def globalmaxpool_test():
Khalique's avatar
Khalique committed
973
974
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
975
976
977
978
979
980
981

    node = onnx.helper.make_node(
        'GlobalMaxPool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
982
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
983

Khalique's avatar
Khalique committed
984

Khalique's avatar
Khalique committed
985
@onnx_test
Khalique's avatar
Khalique committed
986
987
988
989
990
991
992
993
994
995
996
997
def group_conv_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 4, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 1, 3, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 4, 14, 14])

    node = onnx.helper.make_node(
        'Conv',
        inputs=['0', '1'],
        group=4,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
998
999
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
1000

Khalique's avatar
Khalique committed
1001
@onnx_test
Khalique's avatar
Khalique committed
1002
def imagescaler_test():
Khalique's avatar
Khalique committed
1003
1004
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 16, 16])
Khalique's avatar
Khalique committed
1005

Khalique's avatar
Khalique committed
1006
1007
1008
1009
1010
    node = onnx.helper.make_node('ImageScaler',
                                 inputs=['0'],
                                 outputs=['1'],
                                 bias=[0.01, 0.02, 0.03],
                                 scale=0.5)
Khalique's avatar
Khalique committed
1011

Khalique's avatar
Khalique committed
1012
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1013

Khalique's avatar
Khalique committed
1014

Shucai Xiao's avatar
Shucai Xiao committed
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
@onnx_test
def imagescaler_half_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1, 3, 16, 16])

    node = onnx.helper.make_node('ImageScaler',
                                 inputs=['0'],
                                 outputs=['1'],
                                 bias=[0.01, 0.02, 0.03],
                                 scale=0.5)

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
1029
@onnx_test
Khalique's avatar
Khalique committed
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
def implicit_add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
1041
1042
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
1043

Khalique's avatar
Khalique committed
1044
@onnx_test
Khalique's avatar
Khalique committed
1045
1046
1047
def implicit_pow_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
Khalique's avatar
Khalique committed
1048
1049
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1050
1051
1052
1053
1054
1055
1056

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
1057
1058
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
1059

Khalique's avatar
Khalique committed
1060
@onnx_test
Khalique's avatar
Khalique committed
1061
1062
1063
def implicit_sub_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])
Khalique's avatar
Khalique committed
1064
1065
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1066
1067
1068
1069
1070
1071
1072

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
1073
1074
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
1075

1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
@onnx_test
def initializer_not_an_input():
    values = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
    w = helper.make_tensor(name='w',
                           data_type=TensorProto.FLOAT,
                           dims=values.shape,
                           vals=values.flatten().astype(np.float))

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 4])

    node = onnx.helper.make_node(
        'Gemm',
        inputs=['x', 'w'],
        outputs=['y'],
    )

    return ([node], [x], [y], [w])


kahmed10's avatar
kahmed10 committed
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
@onnx_test
def instance_norm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


@onnx_test
def instance_norm_val_test():
    x = np.array([[[[0, 1, 2], [3, 4, 5], [6, 7, 8]],
                   [[0, 1, 2], [3, 4, 5], [6, 7, 8]]]])
    scale = np.array([1, 2])
    bias = np.array([0, 1])

    x_tensor = helper.make_tensor(name='x_tensor',
                                  data_type=TensorProto.FLOAT,
                                  dims=x.shape,
                                  vals=x.flatten().astype(np.float))
    scale_tensor = helper.make_tensor(name='scale_tensor',
                                      data_type=TensorProto.FLOAT,
                                      dims=scale.shape,
                                      vals=scale.flatten().astype(np.float))
    bias_tensor = helper.make_tensor(name='bias_tensor',
                                     data_type=TensorProto.FLOAT,
                                     dims=bias.shape,
                                     vals=bias.flatten().astype(np.float))

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node(
        'InstanceNormalization',
        inputs=['x_tensor', 'scale_tensor', 'bias_tensor'],
        outputs=['y'])

    return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor])


Khalique's avatar
Khalique committed
1140
@onnx_test
Khalique's avatar
Khalique committed
1141
1142
1143
1144
def leaky_relu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
1145
1146
1147
1148
    node = onnx.helper.make_node('LeakyRelu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
1149

Khalique's avatar
Khalique committed
1150
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1151

Khalique's avatar
Khalique committed
1152

Khalique's avatar
Khalique committed
1153
@onnx_test
Khalique's avatar
Khalique committed
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
def log_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Log',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1164
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1165

Khalique's avatar
Khalique committed
1166

Khalique's avatar
Khalique committed
1167
@onnx_test
Khalique's avatar
Khalique committed
1168
1169
1170
1171
def logsoftmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

Khalique's avatar
Khalique committed
1172
1173
1174
1175
    node = onnx.helper.make_node('LogSoftmax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=1)
Khalique's avatar
Khalique committed
1176

Khalique's avatar
Khalique committed
1177
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1178

Khalique's avatar
Khalique committed
1179

Khalique's avatar
Khalique committed
1180
@onnx_test
Khalique's avatar
Khalique committed
1181
1182
1183
1184
def lrn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 28, 24, 24])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 28, 24, 24])

Khalique's avatar
Khalique committed
1185
1186
1187
1188
1189
1190
1191
    node = onnx.helper.make_node('LRN',
                                 inputs=['0'],
                                 size=5,
                                 alpha=0.0001,
                                 beta=0.75,
                                 bias=1.0,
                                 outputs=['1'])
Khalique's avatar
Khalique committed
1192

Khalique's avatar
Khalique committed
1193
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1194

Khalique's avatar
Khalique committed
1195

Khalique's avatar
Khalique committed
1196
@onnx_test
Khalique's avatar
Khalique committed
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
def matmul_bmbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 2, 1, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 2, 3, 6, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1208
1209
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
1210

Khalique's avatar
Khalique committed
1211
@onnx_test
Khalique's avatar
Khalique committed
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
def matmul_bmv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1223
1224
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
1225

Khalique's avatar
Khalique committed
1226
@onnx_test
Khalique's avatar
Khalique committed
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
def matmul_mv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1238
1239
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
1240

Khalique's avatar
Khalique committed
1241
@onnx_test
Khalique's avatar
Khalique committed
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
def matmul_vbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1253
1254
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
1255

Khalique's avatar
Khalique committed
1256
@onnx_test
Khalique's avatar
Khalique committed
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
def matmul_vm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1268
1269
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
1270

Khalique's avatar
Khalique committed
1271
@onnx_test
Khalique's avatar
Khalique committed
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
def matmul_vv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1283
1284
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
1285

1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
@onnx_test
def matmulinteger_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.INT8, [3, 6, 16])
    m2 = helper.make_tensor_value_info('2', TensorProto.INT8, [3, 16, 8])
    y = helper.make_tensor_value_info('y', TensorProto.INT32, [3, 6, 8])

    node = onnx.helper.make_node(
        'MatMulInteger',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


Khalique's avatar
Khalique committed
1301
@onnx_test
Khalique's avatar
Khalique committed
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
def max_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Max',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
1314
1315
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
1316

1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
@onnx_test
def maxpool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET')

    return ([node], [x], [y])


@onnx_test
def maxpool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_UPPER')

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
1347
@onnx_test
Khalique's avatar
Khalique committed
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
def min_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Min',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
1360
1361
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
1362

Khalique's avatar
Khalique committed
1363
@onnx_test
Khalique's avatar
Khalique committed
1364
1365
1366
1367
def no_pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 2])

Khalique's avatar
Khalique committed
1368
1369
1370
1371
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[0, 0, 0, 0],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
1372

Khalique's avatar
Khalique committed
1373
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1374

Khalique's avatar
Khalique committed
1375

Khalique's avatar
Khalique committed
1376
@onnx_test
Khalique's avatar
Khalique committed
1377
1378
1379
1380
def pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 4])

Khalique's avatar
Khalique committed
1381
1382
1383
1384
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[1, 1, 1, 1],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
1385

Khalique's avatar
Khalique committed
1386
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1387

Khalique's avatar
Khalique committed
1388

Khalique's avatar
Khalique committed
1389
@onnx_test
Khalique's avatar
Khalique committed
1390
1391
1392
def pow_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1393
1394
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1395
1396
1397
1398
1399
1400
1401

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
1402
    return ([node], [arg0, arg1], [arg_out])
Khalique's avatar
Khalique committed
1403

kahmed10's avatar
kahmed10 committed
1404

Shucai Xiao's avatar
Shucai Xiao committed
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
@onnx_test
def prelu_brcst_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'PRelu',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


Shucai Xiao's avatar
Shucai Xiao committed
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
@onnx_test
def reducel1_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

    node = onnx.helper.make_node('ReduceL1',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reducel2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])
    axes = [-1]

    node = onnx.helper.make_node('ReduceL2',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reduce_log_sum_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 6])
    axes = [-3]

    node = onnx.helper.make_node('ReduceLogSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])


@onnx_test
def reduce_log_sum_exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 5, 6])
    axes = [-4]

    node = onnx.helper.make_node('ReduceLogSumExp',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
1481
1482
1483
@onnx_test
def reducemax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
1484
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
Shucai Xiao's avatar
Shucai Xiao committed
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
    axes = [2]

    node = onnx.helper.make_node('ReduceMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])

Khalique's avatar
Khalique committed
1495

Khalique's avatar
Khalique committed
1496
@onnx_test
Khalique's avatar
Khalique committed
1497
1498
1499
def reducemean_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
1500
    axes = [2, 3]
Khalique's avatar
Khalique committed
1501

Khalique's avatar
Khalique committed
1502
1503
1504
1505
1506
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
1507

Khalique's avatar
Khalique committed
1508
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1509

kahmed10's avatar
kahmed10 committed
1510

Khalique's avatar
Khalique committed
1511
@onnx_test
Khalique's avatar
Khalique committed
1512
1513
1514
def reducemean_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
1515
    axes = [2]
Khalique's avatar
Khalique committed
1516

Khalique's avatar
Khalique committed
1517
1518
1519
1520
1521
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
1522

Khalique's avatar
Khalique committed
1523
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1524

kahmed10's avatar
kahmed10 committed
1525

Shucai Xiao's avatar
Shucai Xiao committed
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
@onnx_test
def reducemin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 1])
    axes = [1, 3]

    node = onnx.helper.make_node('ReduceMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1539

kahmed10's avatar
kahmed10 committed
1540

Khalique's avatar
Khalique committed
1541
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
1542
def reduceprod_test():
Khalique's avatar
Khalique committed
1543
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
1544
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
1545
    axes = [2]
Khalique's avatar
Khalique committed
1546

Shucai Xiao's avatar
Shucai Xiao committed
1547
    node = onnx.helper.make_node('ReduceProd',
Khalique's avatar
Khalique committed
1548
1549
1550
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
Shucai Xiao's avatar
Shucai Xiao committed
1551
                                 keepdims=1)
Khalique's avatar
Khalique committed
1552

Khalique's avatar
Khalique committed
1553
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1554

Khalique's avatar
Khalique committed
1555

Khalique's avatar
Khalique committed
1556
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
1557
def reducesum_test():
Khalique's avatar
Khalique committed
1558
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
1559
1560
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = [2]
Khalique's avatar
Khalique committed
1561

Khalique's avatar
Khalique committed
1562
1563
1564
1565
1566
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
1567

Khalique's avatar
Khalique committed
1568
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1569

Khalique's avatar
Khalique committed
1570

Khalique's avatar
Khalique committed
1571
@onnx_test
Khalique's avatar
Khalique committed
1572
1573
1574
def reducesum_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
Khalique's avatar
Khalique committed
1575
    axes = [2, 3]
Khalique's avatar
Khalique committed
1576

Khalique's avatar
Khalique committed
1577
1578
1579
1580
1581
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
1582

Khalique's avatar
Khalique committed
1583
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1584

Khalique's avatar
Khalique committed
1585

Shucai Xiao's avatar
Shucai Xiao committed
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
@onnx_test
def reducesum_multiaxis_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
    axes = [2, 3]

    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reducesum_square_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

    node = onnx.helper.make_node('ReduceSumSquare',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
1616
@onnx_test
Khalique's avatar
Khalique committed
1617
1618
1619
def reshape_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [4, 2, 3])
    x_shape = helper.make_tensor_value_info('1', TensorProto.INT64, [2])
Khalique's avatar
Khalique committed
1620
    x_shape_list = [3, 8]
Khalique's avatar
Khalique committed
1621
1622
1623
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 8])
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3, 8])

Khalique's avatar
Khalique committed
1624
    node = onnx.helper.make_node('Reshape', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
1625

Khalique's avatar
Khalique committed
1626
1627
1628
1629
1630
1631
1632
    node2 = onnx.helper.make_node('Reshape',
                                  inputs=['0'],
                                  shape=x_shape_list,
                                  outputs=['3'])

    return ([node, node2], [x, x_shape], [y, y2],
            [helper.make_tensor('1', TensorProto.INT64, [2], [3, 8])])
Khalique's avatar
Khalique committed
1633
1634


Khalique's avatar
Khalique committed
1635
@onnx_test
Khalique's avatar
Khalique committed
1636
1637
def reshape_non_standard_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
1638
1639
    trans_x = helper.make_tensor_value_info('trans_x', TensorProto.FLOAT,
                                            [2, 4, 3])
Khalique's avatar
Khalique committed
1640
1641
1642
1643
1644
1645
1646
1647
1648
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 3, 2])

    trans = helper.make_node(
        'Transpose',
        inputs=['x'],
        outputs=['trans_x'],
        perm=[0, 2, 1],
    )

Khalique's avatar
Khalique committed
1649
1650
1651
1652
1653
1654
    res = onnx.helper.make_node('Reshape',
                                inputs=['trans_x'],
                                outputs=['y'],
                                shape=[4, 3, 2])

    return ([trans, res], [x], [y])
Khalique's avatar
Khalique committed
1655
1656


Khalique's avatar
Khalique committed
1657
@onnx_test
Khalique's avatar
Khalique committed
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
def shape_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [4])

    node = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1668
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1669

Khalique's avatar
Khalique committed
1670

Khalique's avatar
Khalique committed
1671
@onnx_test
Khalique's avatar
Khalique committed
1672
1673
def shape_gather_test():
    values = np.array([1])
kahmed10's avatar
kahmed10 committed
1674
    # value = helper.make_tensor_value_info('value', TensorProto.INT32, [1])
Khalique's avatar
Khalique committed
1675
1676
1677
1678
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [7, 3, 10])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [3])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [1])

Khalique's avatar
Khalique committed
1679
1680
1681
1682
    value_tensor = helper.make_tensor(name='const_tensor',
                                      data_type=TensorProto.INT32,
                                      dims=values.shape,
                                      vals=values.flatten().astype(int))
Khalique's avatar
Khalique committed
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703

    node_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['value'],
        value=value_tensor,
    )

    node_shape = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

    node_gather = helper.make_node(
        'Gather',
        inputs=['y', 'value'],
        outputs=['z'],
        axis=0,
    )

Khalique's avatar
Khalique committed
1704
1705
    return ([node_const, node_shape, node_gather], [x], [z])

Khalique's avatar
Khalique committed
1706

Khalique's avatar
Khalique committed
1707
@onnx_test
Khalique's avatar
Khalique committed
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
def sign_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [10, 5])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [10, 5])

    node = onnx.helper.make_node(
        'Sign',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1718
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1719

Khalique's avatar
Khalique committed
1720

Khalique's avatar
Khalique committed
1721
@onnx_test
Khalique's avatar
Khalique committed
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
def sin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1732
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1733

Khalique's avatar
Khalique committed
1734

Khalique's avatar
Khalique committed
1735
@onnx_test
Khalique's avatar
Khalique committed
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
def sinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sinh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1746
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1747

Khalique's avatar
Khalique committed
1748

Khalique's avatar
Khalique committed
1749
@onnx_test
Khalique's avatar
Khalique committed
1750
1751
1752
1753
def slice_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2])

Khalique's avatar
Khalique committed
1754
1755
1756
1757
1758
1759
    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0, 1],
                                 starts=[1, 0],
                                 ends=[2, 2],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
1760

Khalique's avatar
Khalique committed
1761
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1762

Khalique's avatar
Khalique committed
1763

Khalique's avatar
Khalique committed
1764
@onnx_test
Khalique's avatar
Khalique committed
1765
1766
1767
1768
def softmax_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3])

Khalique's avatar
Khalique committed
1769
    node = onnx.helper.make_node('Softmax', inputs=['0'], outputs=['1'])
Khalique's avatar
Khalique committed
1770

Khalique's avatar
Khalique committed
1771
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1772

Khalique's avatar
Khalique committed
1773

1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
@onnx_test
def split_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 7])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 4])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 4])

    node = onnx.helper.make_node('Split',
                                 inputs=['x'],
                                 outputs=['y1', 'y2', 'y3'],
                                 axis=1,
                                 split=[7, 4, 4])

    return ([node], [x], [y1, y2, y3])


@onnx_test
def split_test_default():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [5, 15])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [5, 15])

    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2'],
    )

    return ([node], [x], [y1, y2])


Khalique's avatar
Khalique committed
1805
@onnx_test
Khalique's avatar
Khalique committed
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
def sqrt_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Sqrt',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1816
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1817

Khalique's avatar
Khalique committed
1818

Khalique's avatar
Khalique committed
1819
@onnx_test
Khalique's avatar
Khalique committed
1820
def squeeze_unsqueeze_test():
Khalique's avatar
Khalique committed
1821
1822
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, 1, 1, 2, 1])
Khalique's avatar
Khalique committed
1823
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 2])
Khalique's avatar
Khalique committed
1824
1825
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                      [1, 1, 3, 1, 2, 1])
Khalique's avatar
Khalique committed
1826

Khalique's avatar
Khalique committed
1827
1828
1829
1830
    node = onnx.helper.make_node('Squeeze',
                                 inputs=['0'],
                                 axes=[0, 2, 3, 5],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
1831

Khalique's avatar
Khalique committed
1832
1833
1834
1835
1836
1837
    node2 = onnx.helper.make_node('Unsqueeze',
                                  inputs=['1'],
                                  axes=[0, 1, 3, 5],
                                  outputs=['2'])

    return ([node, node2], [x], [z])
Khalique's avatar
Khalique committed
1838
1839


Khalique's avatar
Khalique committed
1840
@onnx_test
Khalique's avatar
Khalique committed
1841
1842
1843
def sub_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
1844
1845
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1846
1847
1848
1849
1850

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
Khalique's avatar
Khalique committed
1851
1852
        broadcast=1,
        axis=1,
Khalique's avatar
Khalique committed
1853
1854
    )

Khalique's avatar
Khalique committed
1855
1856
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
1857

Khalique's avatar
Khalique committed
1858
@onnx_test
Khalique's avatar
Khalique committed
1859
1860
def sub_scalar_test():
    values = np.array([1])
Khalique's avatar
Khalique committed
1861
1862
1863
1864
1865
1866
1867
1868
1869
    arg_node = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                             [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    values_tensor = helper.make_tensor(name='const',
                                       data_type=TensorProto.FLOAT,
                                       dims=values.shape,
                                       vals=values.flatten().astype(float))
Khalique's avatar
Khalique committed
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883

    arg_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['arg_const'],
        value=values_tensor,
    )

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', 'arg_const'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
1884
1885
    return ([arg_const, node], [arg_node], [arg_out])

Khalique's avatar
Khalique committed
1886

Khalique's avatar
Khalique committed
1887
@onnx_test
Khalique's avatar
Khalique committed
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
def sum_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Sum',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
1900
1901
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
1902

Khalique's avatar
Khalique committed
1903
@onnx_test
Khalique's avatar
Khalique committed
1904
1905
1906
1907
1908
def tan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
1909
1910
1911
1912
        'Tan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
1913

Khalique's avatar
Khalique committed
1914
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1915

Khalique's avatar
Khalique committed
1916

Khalique's avatar
Khalique committed
1917
@onnx_test
Khalique's avatar
Khalique committed
1918
1919
1920
1921
1922
def tanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
1923
1924
1925
1926
        'Tanh',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
1927

Khalique's avatar
Khalique committed
1928
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1929

Khalique's avatar
Khalique committed
1930

Khalique's avatar
Khalique committed
1931
@onnx_test
Khalique's avatar
Khalique committed
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
def transpose_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 3, 1, 2],
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
1943
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1944

Khalique's avatar
Khalique committed
1945

Khalique's avatar
Khalique committed
1946
1947
1948
@onnx_test
def transpose_gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 5, 4, 6])
Khalique's avatar
Khalique committed
1949
1950
1951
1952
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 4, 3, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT,
                                      [3, 2, 3, 4, 5, 4, 5, 6])
Khalique's avatar
Khalique committed
1953
1954
1955
1956
1957
1958
1959
1960

    td = onnx.helper.make_node(
        'Transpose',
        inputs=['data'],
        outputs=['tdata'],
        perm=[0, 2, 1, 3],
    )

Khalique's avatar
Khalique committed
1961
1962
1963
1964
    ti = onnx.helper.make_node('Transpose',
                               inputs=['indices'],
                               outputs=['tindices'],
                               perm=[0, 2, 1, 3])
Khalique's avatar
Khalique committed
1965
1966
1967
1968
1969
1970
1971
1972

    node = onnx.helper.make_node(
        'Gather',
        inputs=['tdata', 'tindices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
1973
    return ([td, ti, node], [x, i], [y])
Khalique's avatar
Khalique committed
1974

Khalique's avatar
Khalique committed
1975

Khalique's avatar
Khalique committed
1976
@onnx_test
Khalique's avatar
Khalique committed
1977
1978
1979
def unknown_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
1980
1981
1982

    helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
1983
1984
    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
1985
    node = onnx.helper.make_node('Unknown', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
1986

Khalique's avatar
Khalique committed
1987
    node2 = onnx.helper.make_node('Unknown', inputs=['2'], outputs=['3'])
Khalique's avatar
Khalique committed
1988

Khalique's avatar
Khalique committed
1989
    return ([node, node2], [x, y], [a])
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012


@onnx_test
def variable_batch_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [None, 3, 16, 16])

    node = onnx.helper.make_node('Identity', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


@onnx_test
def variable_batch_leq_zero_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [0, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [-1, 3, 16, 16])

    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [-1, 3, 16, 16])
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])