Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
4295961c
"vscode:/vscode.git/clone" did not exist on "db223fc1b90c591774dca05827150aad8abce689"
Commit
4295961c
authored
Aug 29, 2019
by
Khalique
Browse files
formatting
parent
53349569
Changes
2
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
636 additions
and
665 deletions
+636
-665
test/onnx/gen_onnx.py
test/onnx/gen_onnx.py
+463
-542
test/tf/gen_tf_pb.py
test/tf/gen_tf_pb.py
+173
-123
No files found.
test/onnx/gen_onnx.py
View file @
4295961c
This diff is collapsed.
Click to expand it.
test/tf/gen_tf_pb.py
View file @
4295961c
import
numpy
as
np
import
numpy
as
np
import
tensorflow
as
tf
import
tensorflow
as
tf
def
tf_test
(
op_test
):
def
tf_test
(
op_test
):
def
run_test
():
def
run_test
():
g1
=
tf
.
Graph
()
g1
=
tf
.
Graph
()
op_test
(
g1
)
op_test
(
g1
)
tf
.
io
.
write_graph
(
g1
,
'.'
,
'{}.pb'
.
format
(
op_test
.
__name__
),
as_text
=
False
)
tf
.
io
.
write_graph
(
g1
,
'.'
,
'{}.pb'
.
format
(
op_test
.
__name__
),
as_text
=
False
)
return
run_test
return
run_test
@
tf_test
@
tf_test
def
add_test
(
g1
):
def
add_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
2
,
3
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
2
,
3
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
2
,
3
),
name
=
'1'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
2
,
3
),
name
=
'1'
)
tf
.
add
(
g1_input
,
g2_input
,
name
=
'add1'
)
tf
.
add
(
g1_input
,
g2_input
,
name
=
'add1'
)
@
tf_test
@
tf_test
def
add_bcast_test
(
g1
):
def
add_bcast_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
,
3
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
,
3
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
,
1
),
name
=
'1'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
,
1
),
name
=
'1'
)
tf
.
math
.
add
(
g1_input
,
g2_input
,
name
=
'add_bcast1'
)
tf
.
math
.
add
(
g1_input
,
g2_input
,
name
=
'add_bcast1'
)
@
tf_test
@
tf_test
def
assert_less_equal_test
(
g1
):
def
assert_less_equal_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
,
3
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
,
3
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
,
3
),
name
=
'1'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
,
3
),
name
=
'1'
)
with
tf
.
control_dependencies
([
tf
.
assert_less_equal
(
g1_input
,
g2_input
)]):
with
tf
.
control_dependencies
(
tf
.
add
(
g1_input
,
g2_input
,
name
=
'add1'
)
[
tf
.
assert_less_equal
(
g1_input
,
g2_input
)]):
tf
.
add
(
g1_input
,
g2_input
,
name
=
'add1'
)
@
tf_test
@
tf_test
def
batchmatmul_test
(
g1
):
def
batchmatmul_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
8
,
4
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
8
,
4
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
4
,
8
),
name
=
'1'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
4
,
8
),
name
=
'1'
)
tf
.
matmul
(
g1_input
,
g2_input
,
transpose_a
=
True
,
transpose_b
=
True
,
name
=
'batchmatmul1'
)
tf
.
matmul
(
g1_input
,
g2_input
,
transpose_a
=
True
,
transpose_b
=
True
,
name
=
'batchmatmul1'
)
@
tf_test
@
tf_test
def
batchnorm_test
(
g1
):
def
batchnorm_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
16
,
16
,
32
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
16
,
16
,
32
),
name
=
'0'
)
g1_scale
=
tf
.
constant
(
1.0
,
dtype
=
tf
.
float32
,
shape
=
[
32
],
name
=
'1'
)
g1_scale
=
tf
.
constant
(
1.0
,
dtype
=
tf
.
float32
,
shape
=
[
32
],
name
=
'1'
)
g1_offset
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
32
),
name
=
'2'
)
g1_offset
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
32
),
name
=
'2'
)
g1_mean
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
32
),
name
=
'3'
)
g1_mean
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
32
),
name
=
'3'
)
g1_variance
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
32
),
name
=
'4'
)
g1_variance
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
32
),
name
=
'4'
)
tf
.
nn
.
fused_batch_norm
(
tf
.
nn
.
fused_batch_norm
(
g1_input
,
g1_input
,
g1_scale
,
g1_offset
,
g1_mean
,
g1_variance
,
g1_scale
,
epsilon
=
0.00001
,
is_training
=
False
,
name
=
'batchnorm1'
g1_offset
,
)
g1_mean
,
g1_variance
,
epsilon
=
0.00001
,
is_training
=
False
,
name
=
'batchnorm1'
)
@
tf_test
@
tf_test
def
biasadd_test
(
g1
):
def
biasadd_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
1
,
1
,
500
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
1
,
1
,
500
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
500
),
name
=
'1'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
500
),
name
=
'1'
)
tf
.
nn
.
bias_add
(
g1_input
,
g2_input
,
name
=
'bias_add1'
)
tf
.
nn
.
bias_add
(
g1_input
,
g2_input
,
name
=
'bias_add1'
)
@
tf_test
@
tf_test
def
cast_test
(
g1
):
def
cast_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
tf
.
cast
(
g1_input
,
dtype
=
tf
.
int32
,
name
=
'cast1'
)
tf
.
cast
(
g1_input
,
dtype
=
tf
.
int32
,
name
=
'cast1'
)
@
tf_test
@
tf_test
def
concat_test
(
g1
):
def
concat_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
4
,
7
,
3
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
4
,
7
,
3
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
4
,
2
,
3
),
name
=
'1'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
4
,
2
,
3
),
name
=
'1'
)
tf
.
concat
([
g1_input
,
g2_input
],
axis
=
1
,
name
=
'concat1'
)
tf
.
concat
([
g1_input
,
g2_input
],
axis
=
1
,
name
=
'concat1'
)
@
tf_test
@
tf_test
def
const_test
(
g1
):
def
const_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
tf
.
constant
(
1.0
,
dtype
=
tf
.
float32
,
name
=
'constant1'
)
tf
.
constant
(
1.0
,
dtype
=
tf
.
float32
,
name
=
'constant1'
)
@
tf_test
@
tf_test
def
conv_test
(
g1
):
def
conv_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
16
,
16
,
3
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
16
,
16
,
3
),
name
=
'0'
)
g1_weights
=
tf
.
constant
(
value
=
1.0
,
dtype
=
tf
.
float32
,
shape
=
(
3
,
3
,
3
,
32
),
name
=
'1'
)
g1_weights
=
tf
.
constant
(
value
=
1.0
,
tf
.
nn
.
conv2d
(
g1_input
,
g1_weights
,
[
1
,
1
,
1
,
1
],
"SAME"
,
name
=
'conv1'
)
dtype
=
tf
.
float32
,
shape
=
(
3
,
3
,
3
,
32
),
name
=
'1'
)
tf
.
nn
.
conv2d
(
g1_input
,
g1_weights
,
[
1
,
1
,
1
,
1
],
"SAME"
,
name
=
'conv1'
)
@
tf_test
@
tf_test
def
depthwiseconv_test
(
g1
):
def
depthwiseconv_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
16
,
16
,
3
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
16
,
16
,
3
),
name
=
'0'
)
g1_weights
=
tf
.
constant
(
value
=
1.0
,
dtype
=
tf
.
float32
,
shape
=
(
3
,
3
,
3
,
1
),
name
=
'1'
)
g1_weights
=
tf
.
constant
(
value
=
1.0
,
tf
.
nn
.
depthwise_conv2d_native
(
g1_input
,
g1_weights
,
[
1
,
1
,
1
,
1
],
"SAME"
,
name
=
'depthwiseconv1'
)
dtype
=
tf
.
float32
,
shape
=
(
3
,
3
,
3
,
1
),
name
=
'1'
)
tf
.
nn
.
depthwise_conv2d_native
(
g1_input
,
g1_weights
,
[
1
,
1
,
1
,
1
],
"SAME"
,
name
=
'depthwiseconv1'
)
@
tf_test
@
tf_test
def
expanddims_test
(
g1
):
def
expanddims_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
,
3
,
4
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
,
3
,
4
),
name
=
'0'
)
tf
.
expand_dims
(
g1_input
,
axis
=-
1
,
name
=
'expanddims_neg'
)
tf
.
expand_dims
(
g1_input
,
axis
=-
1
,
name
=
'expanddims_neg'
)
@
tf_test
@
tf_test
def
gather_test
(
g1
):
def
gather_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
,
4
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
,
4
),
name
=
'0'
)
tf
.
gather
(
g1_input
,
[
1
,
1
],
axis
=
1
,
name
=
'gather1'
)
tf
.
gather
(
g1_input
,
[
1
,
1
],
axis
=
1
,
name
=
'gather1'
)
@
tf_test
@
tf_test
def
identity_test
(
g1
):
def
identity_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
tf
.
identity
(
g1_input
,
'identity'
)
tf
.
identity
(
g1_input
,
'identity'
)
@
tf_test
@
tf_test
def
matmul_test
(
g1
):
def
matmul_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
8
,
4
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
8
,
4
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
4
,
8
),
name
=
'1'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
4
,
8
),
name
=
'1'
)
tf
.
matmul
(
g1_input
,
g2_input
,
transpose_a
=
True
,
transpose_b
=
True
,
name
=
'matmul1'
)
tf
.
matmul
(
g1_input
,
g2_input
,
transpose_a
=
True
,
transpose_b
=
True
,
name
=
'matmul1'
)
@
tf_test
@
tf_test
def
mean_test
(
g1
):
def
mean_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
tf
.
math
.
reduce_mean
(
tf
.
math
.
reduce_mean
(
g1_input
,
axis
=
(
2
,
3
),
keepdims
=
True
,
name
=
'mean1'
)
g1_input
,
tf
.
math
.
reduce_mean
(
g1_input
,
axis
=
(
2
,
3
),
axis
=
(
2
,
3
),
keepdims
=
True
,
keepdims
=
False
,
name
=
'mean1'
name
=
'mean2'
)
)
tf
.
math
.
reduce_mean
(
g1_input
,
axis
=
(
2
,
3
),
keepdims
=
False
,
name
=
'mean2'
)
@
tf_test
@
tf_test
def
mean_test_nhwc
(
g1
):
def
mean_test_nhwc
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
16
,
16
,
3
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
16
,
16
,
3
),
name
=
'0'
)
tf
.
math
.
reduce_mean
(
tf
.
math
.
reduce_mean
(
g1_input
,
axis
=
(
1
,
2
),
keepdims
=
True
,
name
=
'mean1'
)
g1_input
,
tf
.
math
.
reduce_mean
(
g1_input
,
axis
=
(
1
,
2
),
axis
=
(
1
,
2
),
keepdims
=
True
,
keepdims
=
False
,
name
=
'mean1'
name
=
'mean2'
)
)
tf
.
math
.
reduce_mean
(
g1_input
,
axis
=
(
1
,
2
),
keepdims
=
False
,
name
=
'mean2'
)
@
tf_test
@
tf_test
def
mul_test
(
g1
):
def
mul_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
1
,
1
,
16
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
1
,
1
,
16
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
1
,
1
,
16
),
name
=
'1'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
1
,
1
,
16
),
name
=
'1'
)
tf
.
multiply
(
g1_input
,
g2_input
,
name
=
'mul1'
)
tf
.
multiply
(
g1_input
,
g2_input
,
name
=
'mul1'
)
@
tf_test
@
tf_test
def
pack_test
(
g1
):
def
pack_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
),
name
=
'1'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
),
name
=
'1'
)
g3_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
),
name
=
'2'
)
g3_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
2
),
name
=
'2'
)
tf
.
stack
([
g1_input
,
g2_input
,
g3_input
],
axis
=
1
,
name
=
'pack1'
)
tf
.
stack
([
g1_input
,
g2_input
,
g3_input
],
axis
=
1
,
name
=
'pack1'
)
@
tf_test
@
tf_test
def
pack_test_nhwc
(
g1
):
def
pack_test_nhwc
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
1
,
1
,
2
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
1
,
1
,
2
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
1
,
1
,
2
),
name
=
'1'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
1
,
1
,
2
),
name
=
'1'
)
g3_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
1
,
1
,
2
),
name
=
'2'
)
g3_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
1
,
1
,
2
),
name
=
'2'
)
tf
.
stack
([
g1_input
,
g2_input
,
g3_input
],
axis
=
3
,
name
=
'pack1'
)
tf
.
stack
([
g1_input
,
g2_input
,
g3_input
],
axis
=
3
,
name
=
'pack1'
)
@
tf_test
@
tf_test
def
pooling_test
(
g1
):
def
pooling_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
16
,
16
,
3
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
16
,
16
,
3
),
name
=
'0'
)
tf
.
nn
.
avg_pool
(
tf
.
nn
.
avg_pool
(
value
=
g1_input
,
value
=
g1_input
,
ksize
=
(
1
,
2
,
2
,
1
),
ksize
=
(
1
,
2
,
2
,
1
),
strides
=
(
1
,
2
,
2
,
1
),
strides
=
(
1
,
2
,
2
,
1
),
padding
=
'VALID'
,
padding
=
'VALID'
,
data_format
=
'NHWC'
,
data_format
=
'NHWC'
,
name
=
'avg_pooling'
)
name
=
'avg_pooling'
tf
.
nn
.
max_pool
(
value
=
g1_input
,
)
ksize
=
(
1
,
2
,
2
,
1
),
tf
.
nn
.
max_pool
(
strides
=
(
1
,
2
,
2
,
1
),
value
=
g1_input
,
padding
=
'VALID'
,
ksize
=
(
1
,
2
,
2
,
1
),
data_format
=
'NHWC'
,
strides
=
(
1
,
2
,
2
,
1
),
name
=
'max_pooling'
)
padding
=
'VALID'
,
data_format
=
'NHWC'
,
name
=
'max_pooling'
)
@
tf_test
@
tf_test
def
pow_test
(
g1
):
def
pow_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
2
,
3
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
2
,
3
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
2
,
3
),
name
=
'1'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
2
,
3
),
name
=
'1'
)
tf
.
pow
(
g1_input
,
g2_input
,
name
=
'pow1'
)
tf
.
pow
(
g1_input
,
g2_input
,
name
=
'pow1'
)
@
tf_test
@
tf_test
def
relu_test
(
g1
):
def
relu_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
tf
.
nn
.
relu
(
g1_input
,
'relu'
)
tf
.
nn
.
relu
(
g1_input
,
'relu'
)
@
tf_test
@
tf_test
def
relu6_test
(
g1
):
def
relu6_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
tf
.
nn
.
relu6
(
g1_input
,
'relu6'
)
tf
.
nn
.
relu6
(
g1_input
,
'relu6'
)
@
tf_test
@
tf_test
def
reshape_test
(
g1
):
def
reshape_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
16
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
16
),
name
=
'0'
)
tf
.
reshape
(
g1_input
,
(
1
,
1
,
1
,
16
),
'reshape'
)
tf
.
reshape
(
g1_input
,
(
1
,
1
,
1
,
16
),
'reshape'
)
@
tf_test
@
tf_test
def
rsqrt_test
(
g1
):
def
rsqrt_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
tf
.
math
.
rsqrt
(
g1_input
,
'rsqrt'
)
tf
.
math
.
rsqrt
(
g1_input
,
'rsqrt'
)
@
tf_test
@
tf_test
def
slice_test
(
g1
):
def
slice_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
5
,
10
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
5
,
10
),
name
=
'0'
)
tf
.
slice
(
g1_input
,
[
1
,
0
],
[
2
,
-
1
],
name
=
'slice1'
)
tf
.
slice
(
g1_input
,
[
1
,
0
],
[
2
,
-
1
],
name
=
'slice1'
)
@
tf_test
@
tf_test
def
softmax_test
(
g1
):
def
softmax_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
),
name
=
'0'
)
tf
.
nn
.
softmax
(
g1_input
,
name
=
'softmax'
)
tf
.
nn
.
softmax
(
g1_input
,
name
=
'softmax'
)
@
tf_test
@
tf_test
def
sqdiff_test
(
g1
):
def
sqdiff_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
2
,
3
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
2
,
3
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
2
,
3
),
name
=
'1'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
2
,
3
),
name
=
'1'
)
tf
.
squared_difference
(
g1_input
,
g2_input
,
name
=
'sqdiff'
)
tf
.
squared_difference
(
g1_input
,
g2_input
,
name
=
'sqdiff'
)
@
tf_test
@
tf_test
def
squeeze_test
(
g1
):
def
squeeze_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
3
,
1
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
3
,
1
),
name
=
'0'
)
tf
.
squeeze
(
g1_input
,
name
=
'squeeze'
)
tf
.
squeeze
(
g1_input
,
name
=
'squeeze'
)
@
tf_test
@
tf_test
def
stopgradient_test
(
g1
):
def
stopgradient_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
tf
.
stop_gradient
(
g1_input
,
'stopgradient'
)
tf
.
stop_gradient
(
g1_input
,
'stopgradient'
)
@
tf_test
@
tf_test
def
stridedslice_test
(
g1
):
def
stridedslice_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
1
,
1
,
10
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
1
,
1
,
10
),
name
=
'0'
)
tf
.
strided_slice
(
g1_input
,
[
0
,
0
,
0
,
0
],
[
1
,
1
,
1
,
5
],
[
1
,
1
,
1
,
1
],
shrink_axis_mask
=
2
,
name
=
'stridedslice1'
)
tf
.
strided_slice
(
g1_input
,
[
0
,
0
,
0
,
0
],
[
1
,
1
,
1
,
5
],
[
1
,
1
,
1
,
1
],
shrink_axis_mask
=
2
,
name
=
'stridedslice1'
)
@
tf_test
@
tf_test
def
stridedslice_masks_test
(
g1
):
def
stridedslice_masks_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
3
,
10
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
3
,
10
),
name
=
'0'
)
tf
.
strided_slice
(
g1_input
,
[
0
,
1
,
1
,
0
],
[
0
,
0
,
0
,
0
],
[
1
,
1
,
1
,
1
],
begin_mask
=
9
,
end_mask
=
15
,
name
=
'stridedslice1'
)
tf
.
strided_slice
(
g1_input
,
[
0
,
1
,
1
,
0
],
[
0
,
0
,
0
,
0
],
[
1
,
1
,
1
,
1
],
begin_mask
=
9
,
end_mask
=
15
,
name
=
'stridedslice1'
)
@
tf_test
@
tf_test
def
sub_test
(
g1
):
def
sub_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
2
,
3
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
2
,
3
),
name
=
'0'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
2
,
3
),
name
=
'1'
)
g2_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
2
,
2
,
3
),
name
=
'1'
)
tf
.
subtract
(
g1_input
,
g2_input
,
name
=
'sub1'
)
tf
.
subtract
(
g1_input
,
g2_input
,
name
=
'sub1'
)
@
tf_test
@
tf_test
def
tanh_test
(
g1
):
def
tanh_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
tf
.
tanh
(
g1_input
,
'tanh'
)
tf
.
tanh
(
g1_input
,
'tanh'
)
@
tf_test
@
tf_test
def
transpose_test
(
g1
):
def
transpose_test
(
g1
):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
g1_input
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
3
,
16
,
16
),
name
=
'0'
)
tf
.
transpose
(
g1_input
,
perm
=
[
0
,
2
,
3
,
1
],
name
=
'transpose'
)
tf
.
transpose
(
g1_input
,
perm
=
[
0
,
2
,
3
,
1
],
name
=
'transpose'
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment