gen_onnx.py 69.7 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
import numpy as np
import onnx
from onnx import helper
from onnx import numpy_helper
from onnx import AttributeProto, TensorProto, GraphProto

Khalique's avatar
Khalique committed
7

Khalique's avatar
Khalique committed
8
9
def onnx_test(op_test):
    def run_test():
Khalique's avatar
Khalique committed
10
11
        op_info = op_test()
        if len(op_info) > 3:
Khalique's avatar
Khalique committed
12
13
14
15
16
            graph_def = helper.make_graph(op_info[0],
                                          op_test.__name__,
                                          op_info[1],
                                          op_info[2],
                                          initializer=op_info[3])
Khalique's avatar
Khalique committed
17
        else:
Khalique's avatar
Khalique committed
18
19
20
21
            graph_def = helper.make_graph(op_info[0], op_test.__name__,
                                          op_info[1], op_info[2])
        model_def = helper.make_model(graph_def,
                                      producer_name=op_test.__name__)
Khalique's avatar
Khalique committed
22
        onnx.save(model_def, '{}.onnx'.format(op_test.__name__))
Khalique's avatar
Khalique committed
23

Khalique's avatar
Khalique committed
24
25
    return run_test

Khalique's avatar
Khalique committed
26

Khalique's avatar
Khalique committed
27
@onnx_test
Khalique's avatar
Khalique committed
28
29
30
31
32
33
34
35
36
37
def acos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
38
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
39

Khalique's avatar
Khalique committed
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
@onnx_test
def acosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acosh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
55
@onnx_test
Khalique's avatar
Khalique committed
56
57
58
def add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
59
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
60

Khalique's avatar
Khalique committed
61
62
63
64
65
66
67
    node = onnx.helper.make_node('Add',
                                 inputs=['0', '1'],
                                 broadcast=1,
                                 axis=1,
                                 outputs=['2'])

    return ([node], [x, y], [z])
Khalique's avatar
Khalique committed
68
69


Khalique's avatar
Khalique committed
70
@onnx_test
Khalique's avatar
Khalique committed
71
72
73
74
75
76
77
78
79
80
81
def add_fp16_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
82
    return (
Khalique's avatar
Khalique committed
83
        [node],
Khalique's avatar
Khalique committed
84
        [x, y],
Khalique's avatar
Khalique committed
85
86
        [z],
        # '0' -> 1.5, '1' -> 2.5
Khalique's avatar
Khalique committed
87
88
89
90
        [
            onnx.helper.make_tensor('0', TensorProto.FLOAT16, [1], [15872]),
            onnx.helper.make_tensor('1', TensorProto.FLOAT16, [1], [16640])
        ])
Khalique's avatar
Khalique committed
91
92


Khalique's avatar
Khalique committed
93
@onnx_test
Khalique's avatar
Khalique committed
94
def add_scalar_test():
95
96
97
    x = helper.make_tensor_value_info('0', TensorProto.UINT8, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.UINT8, [])
    z = helper.make_tensor_value_info('2', TensorProto.UINT8, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
98

Khalique's avatar
Khalique committed
99
100
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

101
    return ([node], [x, y], [z])
Khalique's avatar
Khalique committed
102
103


Khalique's avatar
Khalique committed
104
@onnx_test
Khalique's avatar
Khalique committed
105
106
107
108
def argmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])

Khalique's avatar
Khalique committed
109
110
111
112
113
    node = onnx.helper.make_node('ArgMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=2,
                                 keepdims=0)
Khalique's avatar
Khalique committed
114

Khalique's avatar
Khalique committed
115
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
116

Khalique's avatar
Khalique committed
117

Khalique's avatar
Khalique committed
118
@onnx_test
Khalique's avatar
Khalique committed
119
120
121
122
def argmin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])

Khalique's avatar
Khalique committed
123
124
125
126
127
    node = onnx.helper.make_node('ArgMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=3,
                                 keepdims=0)
Khalique's avatar
Khalique committed
128

Khalique's avatar
Khalique committed
129
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
130

Khalique's avatar
Khalique committed
131

Khalique's avatar
Khalique committed
132
@onnx_test
Khalique's avatar
Khalique committed
133
134
135
136
137
138
139
140
141
142
def asin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
143
144
    return ([node], [x], [y])

Khalique's avatar
Khalique committed
145

146
147
148
149
150
151
152
153
154
155
156
157
158
159
@onnx_test
def asinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asinh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
160
@onnx_test
Khalique's avatar
Khalique committed
161
162
163
164
165
166
167
168
169
def atan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
170

Khalique's avatar
Khalique committed
171
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
172

Khalique's avatar
Khalique committed
173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
@onnx_test
def atanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atanh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
@onnx_test
def averagepool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET')

    return ([node], [x], [y])


@onnx_test
def averagepool_same_lower_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_LOWER')

    return ([node], [x], [y])


@onnx_test
def averagepool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_UPPER')

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
232
@onnx_test
Khalique's avatar
Khalique committed
233
234
235
236
def cast_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

Khalique's avatar
Khalique committed
237
238
    node = onnx.helper.make_node('Cast', inputs=['x'], outputs=['y'], to=1)

Khalique's avatar
Khalique committed
239
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
240

kahmed10's avatar
kahmed10 committed
241

Shucai Xiao's avatar
Shucai Xiao committed
242
243
244
245
246
247
248
249
250
251
252
253
@onnx_test
def ceil_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Ceil',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
254

kahmed10's avatar
kahmed10 committed
255

Khalique's avatar
Khalique committed
256
@onnx_test
Khalique's avatar
Khalique committed
257
258
259
260
def clip_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
261
262
263
264
265
    node = onnx.helper.make_node('Clip',
                                 inputs=['0'],
                                 outputs=['1'],
                                 max=6.0,
                                 min=0.0)
Khalique's avatar
Khalique committed
266

Khalique's avatar
Khalique committed
267
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
268

Khalique's avatar
Khalique committed
269

kahmed10's avatar
kahmed10 committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
@onnx_test
def clip_test_op11():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])
    max_val = helper.make_tensor('max', TensorProto.FLOAT, [], [6.0])

    node = onnx.helper.make_node('Clip',
                                 inputs=['0', 'min', 'max'],
                                 outputs=['1'])

    return ([node], [x], [y], [min_val, max_val])


@onnx_test
def clip_test_op11_min_only():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])

    node = onnx.helper.make_node('Clip', inputs=['0', 'min'], outputs=['1'])

    return ([node], [x], [y], [min_val])


@onnx_test
def clip_test_op11_no_args():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node('Clip', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
307
@onnx_test
Khalique's avatar
Khalique committed
308
309
310
311
312
313
314
315
316
317
318
319
def concat_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 4, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7, 4, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [9, 4, 3])

    node = onnx.helper.make_node(
        'Concat',
        inputs=['0', '1'],
        axis=0,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
320
321
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
322

Khalique's avatar
Khalique committed
323
@onnx_test
Khalique's avatar
Khalique committed
324
325
326
def constant_test():
    x = np.array([0, 1, 2])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
Khalique's avatar
Khalique committed
327

Khalique's avatar
Khalique committed
328
329
330
331
332
333
334
335
336
337
338
339
    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.FLOAT,
            dims=x.shape,
            vals=x.flatten().astype(float),
        ),
    )

Khalique's avatar
Khalique committed
340
    return ([node], [], [y])
Khalique's avatar
Khalique committed
341

Khalique's avatar
Khalique committed
342

Khalique's avatar
Khalique committed
343
@onnx_test
Khalique's avatar
Khalique committed
344
def constant_fill_test():
Khalique's avatar
Khalique committed
345
346
347
348
349
350
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=[],
        outputs=['value'],
Khalique's avatar
Khalique committed
351
352
353
354
        dtype=1,
        value=1.0,
        shape=[2, 3],
        input_as_shape=0,
Khalique's avatar
Khalique committed
355
356
    )

Khalique's avatar
Khalique committed
357
    return ([node], [], [value])
Khalique's avatar
Khalique committed
358

Khalique's avatar
Khalique committed
359

Khalique's avatar
Khalique committed
360
@onnx_test
Khalique's avatar
Khalique committed
361
def constant_fill_input_as_shape_test():
Khalique's avatar
Khalique committed
362
    np_shape = np.array([2, 3])
Khalique's avatar
Khalique committed
363
364
365
    shape = helper.make_tensor_value_info('shape', TensorProto.INT32, [2])
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

Khalique's avatar
Khalique committed
366
367
368
369
    ts_shape = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=np_shape.shape,
                                  vals=np_shape.flatten().astype(int))
Khalique's avatar
Khalique committed
370
371
372
373
374
375
376
377
378
379
380
381

    const_shape_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=ts_shape,
    )

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=['shape'],
        outputs=['value'],
Khalique's avatar
Khalique committed
382
383
384
        dtype=1,
        value=1.0,
        input_as_shape=1,
Khalique's avatar
Khalique committed
385
386
    )

Khalique's avatar
Khalique committed
387
    return ([const_shape_node, node], [], [value])
Khalique's avatar
Khalique committed
388

Khalique's avatar
Khalique committed
389

Khalique's avatar
Khalique committed
390
@onnx_test
Khalique's avatar
Khalique committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
def constant_scalar_test():
    x = np.array([1])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.INT32,
            dims=x.shape,
            vals=x.flatten().astype(int),
        ),
    )

Khalique's avatar
Khalique committed
407
    return ([node], [], [y])
Khalique's avatar
Khalique committed
408

Khalique's avatar
Khalique committed
409

Khalique's avatar
Khalique committed
410
@onnx_test
Khalique's avatar
Khalique committed
411
def const_of_shape_empty_input_test():
Khalique's avatar
Khalique committed
412
413
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
414
415
    shape_val = np.array([2, 3, 4]).astype(np.int64)
    empty_val = np.array([]).astype(np.int64)
Khalique's avatar
Khalique committed
416
417
418
419
    empty_ts = helper.make_tensor(name='empty_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=empty_val.shape,
                                  vals=empty_val.flatten().astype(int))
Khalique's avatar
Khalique committed
420
421
422
423
424
425
426
427
428
429
430
431
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=empty_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
Khalique's avatar
Khalique committed
432
        value=tensor_val,
Khalique's avatar
Khalique committed
433
434
    )

Khalique's avatar
Khalique committed
435
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
436

Khalique's avatar
Khalique committed
437

Khalique's avatar
Khalique committed
438
@onnx_test
Khalique's avatar
Khalique committed
439
def const_of_shape_float_test():
Khalique's avatar
Khalique committed
440
441
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.FLOAT, [1],
                                         [10])
Khalique's avatar
Khalique committed
442
443

    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
444
445
446
447
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
448
449
450
451
452
453
454
455
456

    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

Khalique's avatar
Khalique committed
457
458
459
460
    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
461

Khalique's avatar
Khalique committed
462
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
463

Khalique's avatar
Khalique committed
464

Khalique's avatar
Khalique committed
465
@onnx_test
Khalique's avatar
Khalique committed
466
def const_of_shape_int64_test():
Khalique's avatar
Khalique committed
467
468
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
469
    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
470
471
472
473
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
474
    shape_const = helper.make_node(
Khalique's avatar
Khalique committed
475
476
477
478
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
Khalique's avatar
Khalique committed
479
480
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
481
482
483
484
485

    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
486

Khalique's avatar
Khalique committed
487
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
488

Khalique's avatar
Khalique committed
489

Khalique's avatar
Khalique committed
490
@onnx_test
Khalique's avatar
Khalique committed
491
492
def const_of_shape_no_value_attr_test():
    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
493
494
495
496
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
497
498
499
500
501
502
503
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
504

Khalique's avatar
Khalique committed
505
506
507
508
509
510
    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
511
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
512

Khalique's avatar
Khalique committed
513

Khalique's avatar
Khalique committed
514
@onnx_test
Khalique's avatar
Khalique committed
515
516
517
518
519
def conv_autopad_fail_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 34, 34])

Khalique's avatar
Khalique committed
520
521
522
523
524
525
526
527
528
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 dilations=[1, 1],
                                 strides=[1, 1],
                                 auto_pad='SAME',
                                 pads=[0, 0, 1, 1, 0, 0, 1, 1])

    return ([node], [x, y], [out])
Khalique's avatar
Khalique committed
529
530


531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
@onnx_test
def conv_autopad_same_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 32, 32])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 dilations=[1, 1],
                                 strides=[1, 1],
                                 auto_pad='SAME')

    return ([node], [x, y], [out])


Khalique's avatar
Khalique committed
547
@onnx_test
Khalique's avatar
Khalique committed
548
549
550
551
552
553
def conv_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 28, 28])

Khalique's avatar
Khalique committed
554
555
556
557
558
559
560
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])

    return ([node], [x, y, z], [out])
Khalique's avatar
Khalique committed
561
562


Khalique's avatar
Khalique committed
563
@onnx_test
Khalique's avatar
Khalique committed
564
565
566
567
568
569
570
571
def conv_bn_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    k = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1])
    l = helper.make_tensor_value_info('6', TensorProto.FLOAT, [1])
Khalique's avatar
Khalique committed
572
573
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT,
                                        [1, 1, 14, 14])
Khalique's avatar
Khalique committed
574

Khalique's avatar
Khalique committed
575
576
577
578
579
580
    node0 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['7'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
581

Khalique's avatar
Khalique committed
582
583
584
585
586
    node1 = onnx.helper.make_node('BatchNormalization',
                                  inputs=['7', '3', '4', '5', '6'],
                                  outputs=['8'],
                                  epsilon=9.99999974737875e-06,
                                  momentum=0.899999976158142)
Khalique's avatar
Khalique committed
587

Khalique's avatar
Khalique committed
588
589
590
591
592
593
594
595
596
    node2 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node0, node1, node2, node3], [x, y, z, m, n, k, l], [out])
Khalique's avatar
Khalique committed
597
598


Khalique's avatar
Khalique committed
599
@onnx_test
Khalique's avatar
Khalique committed
600
601
602
603
604
605
def conv_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1, 1, 14, 14])

Khalique's avatar
Khalique committed
606
607
608
609
610
611
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['3'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
612

Khalique's avatar
Khalique committed
613
    node2 = onnx.helper.make_node('Relu', inputs=['3'], outputs=['4'])
Khalique's avatar
Khalique committed
614

Khalique's avatar
Khalique committed
615
616
617
618
619
620
621
622
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['4'],
                                  outputs=['5'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node1, node2, node3], [x, y, z], [out])
Khalique's avatar
Khalique committed
623
624


Khalique's avatar
Khalique committed
625
@onnx_test
Khalique's avatar
Khalique committed
626
627
628
629
630
631
632
633
def conv_relu_maxpool_x2_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 5, 5, 5])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT, [1, 1, 5, 5])

Khalique's avatar
Khalique committed
634
635
636
637
638
639
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['5'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
640

Khalique's avatar
Khalique committed
641
    node2 = onnx.helper.make_node('Relu', inputs=['5'], outputs=['6'])
Khalique's avatar
Khalique committed
642

Khalique's avatar
Khalique committed
643
644
645
646
647
648
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['6'],
                                  outputs=['7'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])
Khalique's avatar
Khalique committed
649

Khalique's avatar
Khalique committed
650
651
652
653
654
655
    node4 = onnx.helper.make_node('Conv',
                                  inputs=['7', '3', '4'],
                                  outputs=['8'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
656

Khalique's avatar
Khalique committed
657
    node5 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
Khalique's avatar
Khalique committed
658

Khalique's avatar
Khalique committed
659
660
661
662
663
664
665
666
    node6 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node1, node2, node3, node4, node5, node6], [x, y, z, m, n], [out])
Khalique's avatar
Khalique committed
667
668


669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
@onnx_test
def convinteger_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT8, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.INT8, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.INT32, [1])
    out = helper.make_tensor_value_info('3', TensorProto.INT32, [1, 2, 28, 28])

    node = onnx.helper.make_node('ConvInteger',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])

    return ([node], [x, y, z], [out])


Khalique's avatar
Khalique committed
685
@onnx_test
Khalique's avatar
Khalique committed
686
687
688
689
690
691
692
693
694
695
def cos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Cos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
696
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
697

Khalique's avatar
Khalique committed
698

Khalique's avatar
Khalique committed
699
@onnx_test
Khalique's avatar
Khalique committed
700
701
702
703
704
705
706
707
708
709
def cosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Cosh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
710
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
711

Khalique's avatar
Khalique committed
712

kahmed10's avatar
kahmed10 committed
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
@onnx_test
def deconv_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w'],
                                 outputs=['y'])

    return ([node], [x, w], [y])


@onnx_test
def deconv_bias_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w', 'b'],
                                 outputs=['y'])

    return ([node], [x, w, b], [y])


@onnx_test
def deconv_input_pads_strides_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 7, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[1, 1, 1, 1])

    return ([node], [x, w], [y])


@onnx_test
def deconv_input_pads_asymm_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 8, 6])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[0, 0, 1, 1])

    return ([node], [x, w], [y])


@onnx_test
def deconv_output_shape_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 output_shape=[10, 8])

    return ([node], [x, w], [y])


@onnx_test
def deconv_output_padding_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 output_padding=[1, 1])

    return ([node], [x, w], [y])


@onnx_test
def deconv_stride_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 7, 3])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2])

    return ([node], [x, w], [y])


Khalique's avatar
Khalique committed
816
@onnx_test
Khalique's avatar
Khalique committed
817
def dropout_test():
Khalique's avatar
Khalique committed
818
819
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])
Khalique's avatar
Khalique committed
820

Khalique's avatar
Khalique committed
821
822
823
824
825
826
827
    node = onnx.helper.make_node(
        'Dropout',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
828
829


Khalique's avatar
Khalique committed
830
@onnx_test
Khalique's avatar
Khalique committed
831
832
833
834
def elu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
835
836
837
838
    node = onnx.helper.make_node('Elu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
839

Khalique's avatar
Khalique committed
840
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
841

Khalique's avatar
Khalique committed
842

Khalique's avatar
Khalique committed
843
@onnx_test
Khalique's avatar
Khalique committed
844
845
846
847
848
849
850
851
852
853
def erf_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Erf',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
854
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
855

Khalique's avatar
Khalique committed
856

Khalique's avatar
Khalique committed
857
@onnx_test
Khalique's avatar
Khalique committed
858
859
860
861
862
863
864
865
866
867
def exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Exp',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
868
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
869

Khalique's avatar
Khalique committed
870

Khalique's avatar
Khalique committed
871
@onnx_test
Khalique's avatar
Khalique committed
872
873
def expand_test():
    shape_val = np.array([2, 3, 4, 5]).astype(np.int64)
Khalique's avatar
Khalique committed
874
875
876
877
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
878
879
880
881
882
883
884
885
886
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
887
888
889
890
891
892
    node = onnx.helper.make_node('Expand',
                                 inputs=['x', 'shape'],
                                 outputs=['y'])

    return ([shape_const, node], [x], [y])

Khalique's avatar
Khalique committed
893

Khalique's avatar
Khalique committed
894
@onnx_test
Khalique's avatar
Khalique committed
895
896
def flatten_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
897
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [6, 20])
Khalique's avatar
Khalique committed
898
899
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 60])

Khalique's avatar
Khalique committed
900
901
902
903
    node = onnx.helper.make_node('Flatten',
                                 inputs=['0'],
                                 axis=2,
                                 outputs=['2'])
Khalique's avatar
Khalique committed
904

Khalique's avatar
Khalique committed
905
906
907
    node2 = onnx.helper.make_node('Flatten', inputs=['0'], outputs=['3'])

    return ([node, node2], [x], [y, y2])
Khalique's avatar
Khalique committed
908

kahmed10's avatar
kahmed10 committed
909

Shucai Xiao's avatar
Shucai Xiao committed
910
911
912
913
914
915
916
917
918
919
920
921
@onnx_test
def floor_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Floor',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
922

kahmed10's avatar
kahmed10 committed
923

Khalique's avatar
Khalique committed
924
@onnx_test
Khalique's avatar
Khalique committed
925
926
def gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
Khalique's avatar
Khalique committed
927
928
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
Khalique's avatar
Khalique committed
929
930
931
932
933
934
935
936
937
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Gather',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
938
939
    return ([node], [x, i], [y])

Khalique's avatar
Khalique committed
940

Khalique's avatar
Khalique committed
941
@onnx_test
Khalique's avatar
Khalique committed
942
943
944
945
946
947
def gemm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 7])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [11, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [])
    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [7, 11])

Khalique's avatar
Khalique committed
948
949
950
951
952
953
954
955
956
    node = onnx.helper.make_node('Gemm',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 alpha=2.0,
                                 beta=2.0,
                                 transA=1,
                                 transB=1)

    return ([node], [x, y, z], [a])
Khalique's avatar
Khalique committed
957
958


Khalique's avatar
Khalique committed
959
@onnx_test
Khalique's avatar
Khalique committed
960
961
962
963
964
965
def gemm_ex_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 5, 6])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 7])
    m3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 1, 6, 7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 6, 7])

Khalique's avatar
Khalique committed
966
967
968
969
970
971
972
973
    node = onnx.helper.make_node('Gemm',
                                 inputs=['1', '2', '3'],
                                 outputs=['y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

    return ([node], [m1, m2, m3], [y])
Khalique's avatar
Khalique committed
974
975


Khalique's avatar
Khalique committed
976
@onnx_test
Khalique's avatar
Khalique committed
977
978
979
980
981
982
def gemm_ex_brcst_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 5, 6])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 7])
    m3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 1, 6, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 6, 7])

Khalique's avatar
Khalique committed
983
984
985
986
987
988
989
990
    node = onnx.helper.make_node('Gemm',
                                 inputs=['1', '2', '3'],
                                 outputs=['y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

    return ([node], [m1, m2, m3], [y])
Khalique's avatar
Khalique committed
991
992


Khalique's avatar
Khalique committed
993
@onnx_test
Khalique's avatar
Khalique committed
994
def globalavgpool_test():
Khalique's avatar
Khalique committed
995
996
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
997
998
999
1000
1001
1002
1003

    node = onnx.helper.make_node(
        'GlobalAveragePool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
1004
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1005

Khalique's avatar
Khalique committed
1006

Khalique's avatar
Khalique committed
1007
@onnx_test
Khalique's avatar
Khalique committed
1008
def globalmaxpool_test():
Khalique's avatar
Khalique committed
1009
1010
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
1011
1012
1013
1014
1015
1016
1017

    node = onnx.helper.make_node(
        'GlobalMaxPool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
1018
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1019

Khalique's avatar
Khalique committed
1020

Khalique's avatar
Khalique committed
1021
@onnx_test
Khalique's avatar
Khalique committed
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
def group_conv_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 4, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 1, 3, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 4, 14, 14])

    node = onnx.helper.make_node(
        'Conv',
        inputs=['0', '1'],
        group=4,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
1034
1035
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
1036

Khalique's avatar
Khalique committed
1037
@onnx_test
Khalique's avatar
Khalique committed
1038
def imagescaler_test():
Khalique's avatar
Khalique committed
1039
1040
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 16, 16])
Khalique's avatar
Khalique committed
1041

Khalique's avatar
Khalique committed
1042
1043
1044
1045
1046
    node = onnx.helper.make_node('ImageScaler',
                                 inputs=['0'],
                                 outputs=['1'],
                                 bias=[0.01, 0.02, 0.03],
                                 scale=0.5)
Khalique's avatar
Khalique committed
1047

Khalique's avatar
Khalique committed
1048
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1049

Khalique's avatar
Khalique committed
1050

Shucai Xiao's avatar
Shucai Xiao committed
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
@onnx_test
def imagescaler_half_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1, 3, 16, 16])

    node = onnx.helper.make_node('ImageScaler',
                                 inputs=['0'],
                                 outputs=['1'],
                                 bias=[0.01, 0.02, 0.03],
                                 scale=0.5)

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
1065
@onnx_test
Khalique's avatar
Khalique committed
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
def implicit_add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
1077
1078
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
1079

Khalique's avatar
Khalique committed
1080
@onnx_test
Khalique's avatar
Khalique committed
1081
1082
1083
def implicit_pow_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
Khalique's avatar
Khalique committed
1084
1085
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1086
1087
1088
1089
1090
1091
1092

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
1093
1094
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
1095

Khalique's avatar
Khalique committed
1096
@onnx_test
Khalique's avatar
Khalique committed
1097
1098
1099
def implicit_sub_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])
Khalique's avatar
Khalique committed
1100
1101
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1102
1103
1104
1105
1106
1107
1108

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
1109
1110
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
1111

1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
@onnx_test
def initializer_not_an_input():
    values = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
    w = helper.make_tensor(name='w',
                           data_type=TensorProto.FLOAT,
                           dims=values.shape,
                           vals=values.flatten().astype(np.float))

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 4])

    node = onnx.helper.make_node(
        'Gemm',
        inputs=['x', 'w'],
        outputs=['y'],
    )

    return ([node], [x], [y], [w])


kahmed10's avatar
kahmed10 committed
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
@onnx_test
def instance_norm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


@onnx_test
def instance_norm_val_test():
    x = np.array([[[[0, 1, 2], [3, 4, 5], [6, 7, 8]],
                   [[0, 1, 2], [3, 4, 5], [6, 7, 8]]]])
    scale = np.array([1, 2])
    bias = np.array([0, 1])

    x_tensor = helper.make_tensor(name='x_tensor',
                                  data_type=TensorProto.FLOAT,
                                  dims=x.shape,
                                  vals=x.flatten().astype(np.float))
    scale_tensor = helper.make_tensor(name='scale_tensor',
                                      data_type=TensorProto.FLOAT,
                                      dims=scale.shape,
                                      vals=scale.flatten().astype(np.float))
    bias_tensor = helper.make_tensor(name='bias_tensor',
                                     data_type=TensorProto.FLOAT,
                                     dims=bias.shape,
                                     vals=bias.flatten().astype(np.float))

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node(
        'InstanceNormalization',
        inputs=['x_tensor', 'scale_tensor', 'bias_tensor'],
        outputs=['y'])

    return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor])


Khalique's avatar
Khalique committed
1176
@onnx_test
Khalique's avatar
Khalique committed
1177
1178
1179
1180
def leaky_relu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
1181
1182
1183
1184
    node = onnx.helper.make_node('LeakyRelu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
1185

Khalique's avatar
Khalique committed
1186
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1187

Khalique's avatar
Khalique committed
1188

Khalique's avatar
Khalique committed
1189
@onnx_test
Khalique's avatar
Khalique committed
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
def log_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Log',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1200
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1201

Khalique's avatar
Khalique committed
1202

Khalique's avatar
Khalique committed
1203
@onnx_test
Khalique's avatar
Khalique committed
1204
1205
1206
1207
def logsoftmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

Khalique's avatar
Khalique committed
1208
1209
1210
1211
    node = onnx.helper.make_node('LogSoftmax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=1)
Khalique's avatar
Khalique committed
1212

Khalique's avatar
Khalique committed
1213
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1214

Khalique's avatar
Khalique committed
1215

Khalique's avatar
Khalique committed
1216
@onnx_test
Khalique's avatar
Khalique committed
1217
1218
1219
1220
def lrn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 28, 24, 24])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 28, 24, 24])

Khalique's avatar
Khalique committed
1221
1222
1223
1224
1225
1226
1227
    node = onnx.helper.make_node('LRN',
                                 inputs=['0'],
                                 size=5,
                                 alpha=0.0001,
                                 beta=0.75,
                                 bias=1.0,
                                 outputs=['1'])
Khalique's avatar
Khalique committed
1228

Khalique's avatar
Khalique committed
1229
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1230

Khalique's avatar
Khalique committed
1231

Khalique's avatar
Khalique committed
1232
@onnx_test
Khalique's avatar
Khalique committed
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
def matmul_bmbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 2, 1, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 2, 3, 6, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1244
1245
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
1246

Khalique's avatar
Khalique committed
1247
@onnx_test
Khalique's avatar
Khalique committed
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
def matmul_bmv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1259
1260
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
1261

Khalique's avatar
Khalique committed
1262
@onnx_test
Khalique's avatar
Khalique committed
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
def matmul_mv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1274
1275
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
1276

Khalique's avatar
Khalique committed
1277
@onnx_test
Khalique's avatar
Khalique committed
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
def matmul_vbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1289
1290
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
1291

Khalique's avatar
Khalique committed
1292
@onnx_test
Khalique's avatar
Khalique committed
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
def matmul_vm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1304
1305
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
1306

Khalique's avatar
Khalique committed
1307
@onnx_test
Khalique's avatar
Khalique committed
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
def matmul_vv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1319
1320
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
1321

1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
@onnx_test
def matmulinteger_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.INT8, [3, 6, 16])
    m2 = helper.make_tensor_value_info('2', TensorProto.INT8, [3, 16, 8])
    y = helper.make_tensor_value_info('y', TensorProto.INT32, [3, 6, 8])

    node = onnx.helper.make_node(
        'MatMulInteger',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


Khalique's avatar
Khalique committed
1337
@onnx_test
Khalique's avatar
Khalique committed
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
def max_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Max',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
1350
1351
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
1352

1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
@onnx_test
def maxpool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET')

    return ([node], [x], [y])


@onnx_test
def maxpool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_UPPER')

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
1383
@onnx_test
Khalique's avatar
Khalique committed
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
def min_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Min',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
1396
1397
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
1398

Khalique's avatar
Khalique committed
1399
@onnx_test
Khalique's avatar
Khalique committed
1400
1401
1402
1403
def no_pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 2])

Khalique's avatar
Khalique committed
1404
1405
1406
1407
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[0, 0, 0, 0],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
1408

Khalique's avatar
Khalique committed
1409
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1410

Khalique's avatar
Khalique committed
1411

kahmed10's avatar
kahmed10 committed
1412
1413
@onnx_test
def onehot_test():
Shucai Xiao's avatar
Shucai Xiao committed
1414
1415
1416
1417
1418
1419
    axis_value = 0
    depth = np.array([3])
    indices = helper.make_tensor_value_info("indices", TensorProto.INT32,
                                            [5, 2])
    values = helper.make_tensor_value_info("values", TensorProto.FLOAT16, [2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 5, 2])
kahmed10's avatar
kahmed10 committed
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430

    depth_tensor = helper.make_tensor(name="depth",
                                      data_type=TensorProto.INT32,
                                      dims=None,
                                      vals=depth.astype(int))

    node = onnx.helper.make_node('OneHot',
                                 inputs=['indices', 'depth', 'values'],
                                 outputs=['y'],
                                 axis=axis_value)

Shucai Xiao's avatar
Shucai Xiao committed
1431
    return ([node], [indices, values], [y], [depth_tensor])
kahmed10's avatar
kahmed10 committed
1432
1433


Khalique's avatar
Khalique committed
1434
@onnx_test
Khalique's avatar
Khalique committed
1435
1436
1437
1438
def pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 4])

Khalique's avatar
Khalique committed
1439
1440
1441
1442
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[1, 1, 1, 1],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
1443

Khalique's avatar
Khalique committed
1444
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1445

Khalique's avatar
Khalique committed
1446

1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
@onnx_test
def pad_3arg_test():
    values = np.array([1])
    val_tensor = helper.make_tensor(name='val',
                                    data_type=TensorProto.FLOAT,
                                    dims=values.reshape(()).shape,
                                    vals=values.astype(float))
    arg_val = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_val'],
                                    value=val_tensor)

    sizes = np.array([1, 1, 2, 2])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5, 5])

    node = onnx.helper.make_node('Pad',
                                 inputs=['0', 'arg_pad', 'arg_val'],
                                 outputs=['1'])

    return ([arg_val, arg_pad, node], [x], [y])


Khalique's avatar
Khalique committed
1479
@onnx_test
Khalique's avatar
Khalique committed
1480
1481
1482
def pow_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1483
1484
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1485
1486
1487
1488
1489
1490
1491

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
1492
    return ([node], [arg0, arg1], [arg_out])
Khalique's avatar
Khalique committed
1493

kahmed10's avatar
kahmed10 committed
1494

Shucai Xiao's avatar
Shucai Xiao committed
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
@onnx_test
def prelu_brcst_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'PRelu',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


kahmed10's avatar
kahmed10 committed
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
@onnx_test
def recip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Reciprocal',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
@onnx_test
def reducel1_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

    node = onnx.helper.make_node('ReduceL1',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reducel2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])
    axes = [-1]

    node = onnx.helper.make_node('ReduceL2',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reduce_log_sum_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 6])
    axes = [-3]

    node = onnx.helper.make_node('ReduceLogSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])


@onnx_test
def reduce_log_sum_exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 5, 6])
    axes = [-4]

    node = onnx.helper.make_node('ReduceLogSumExp',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
1585
1586
1587
@onnx_test
def reducemax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
1588
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
Shucai Xiao's avatar
Shucai Xiao committed
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
    axes = [2]

    node = onnx.helper.make_node('ReduceMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])

Khalique's avatar
Khalique committed
1599

Khalique's avatar
Khalique committed
1600
@onnx_test
Khalique's avatar
Khalique committed
1601
1602
1603
def reducemean_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
1604
    axes = [2, 3]
Khalique's avatar
Khalique committed
1605

Khalique's avatar
Khalique committed
1606
1607
1608
1609
1610
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
1611

Khalique's avatar
Khalique committed
1612
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1613

kahmed10's avatar
kahmed10 committed
1614

Khalique's avatar
Khalique committed
1615
@onnx_test
Khalique's avatar
Khalique committed
1616
1617
1618
def reducemean_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
1619
    axes = [2]
Khalique's avatar
Khalique committed
1620

Khalique's avatar
Khalique committed
1621
1622
1623
1624
1625
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
1626

Khalique's avatar
Khalique committed
1627
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1628

kahmed10's avatar
kahmed10 committed
1629

Shucai Xiao's avatar
Shucai Xiao committed
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
@onnx_test
def reducemin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 1])
    axes = [1, 3]

    node = onnx.helper.make_node('ReduceMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1643

kahmed10's avatar
kahmed10 committed
1644

Khalique's avatar
Khalique committed
1645
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
1646
def reduceprod_test():
Khalique's avatar
Khalique committed
1647
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
1648
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
1649
    axes = [2]
Khalique's avatar
Khalique committed
1650

Shucai Xiao's avatar
Shucai Xiao committed
1651
    node = onnx.helper.make_node('ReduceProd',
Khalique's avatar
Khalique committed
1652
1653
1654
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
Shucai Xiao's avatar
Shucai Xiao committed
1655
                                 keepdims=1)
Khalique's avatar
Khalique committed
1656

Khalique's avatar
Khalique committed
1657
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1658

Khalique's avatar
Khalique committed
1659

Khalique's avatar
Khalique committed
1660
@onnx_test
Shucai Xiao's avatar
Shucai Xiao committed
1661
def reducesum_test():
Khalique's avatar
Khalique committed
1662
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
1663
1664
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = [2]
Khalique's avatar
Khalique committed
1665

Khalique's avatar
Khalique committed
1666
1667
1668
1669
1670
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
1671

Khalique's avatar
Khalique committed
1672
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1673

Khalique's avatar
Khalique committed
1674

Khalique's avatar
Khalique committed
1675
@onnx_test
Khalique's avatar
Khalique committed
1676
1677
1678
def reducesum_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
Khalique's avatar
Khalique committed
1679
    axes = [2, 3]
Khalique's avatar
Khalique committed
1680

Khalique's avatar
Khalique committed
1681
1682
1683
1684
1685
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
1686

Khalique's avatar
Khalique committed
1687
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1688

Khalique's avatar
Khalique committed
1689

Shucai Xiao's avatar
Shucai Xiao committed
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
@onnx_test
def reducesum_multiaxis_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
    axes = [2, 3]

    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reducesum_square_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

    node = onnx.helper.make_node('ReduceSumSquare',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
1720
@onnx_test
Khalique's avatar
Khalique committed
1721
1722
1723
def reshape_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [4, 2, 3])
    x_shape = helper.make_tensor_value_info('1', TensorProto.INT64, [2])
Khalique's avatar
Khalique committed
1724
    x_shape_list = [3, 8]
Khalique's avatar
Khalique committed
1725
1726
1727
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 8])
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3, 8])

Khalique's avatar
Khalique committed
1728
    node = onnx.helper.make_node('Reshape', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
1729

Khalique's avatar
Khalique committed
1730
1731
1732
1733
1734
1735
1736
    node2 = onnx.helper.make_node('Reshape',
                                  inputs=['0'],
                                  shape=x_shape_list,
                                  outputs=['3'])

    return ([node, node2], [x, x_shape], [y, y2],
            [helper.make_tensor('1', TensorProto.INT64, [2], [3, 8])])
Khalique's avatar
Khalique committed
1737
1738


Khalique's avatar
Khalique committed
1739
@onnx_test
Khalique's avatar
Khalique committed
1740
1741
def reshape_non_standard_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
1742
1743
    trans_x = helper.make_tensor_value_info('trans_x', TensorProto.FLOAT,
                                            [2, 4, 3])
Khalique's avatar
Khalique committed
1744
1745
1746
1747
1748
1749
1750
1751
1752
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 3, 2])

    trans = helper.make_node(
        'Transpose',
        inputs=['x'],
        outputs=['trans_x'],
        perm=[0, 2, 1],
    )

Khalique's avatar
Khalique committed
1753
1754
1755
1756
1757
1758
    res = onnx.helper.make_node('Reshape',
                                inputs=['trans_x'],
                                outputs=['y'],
                                shape=[4, 3, 2])

    return ([trans, res], [x], [y])
Khalique's avatar
Khalique committed
1759
1760


Khalique's avatar
Khalique committed
1761
@onnx_test
Khalique's avatar
Khalique committed
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
def shape_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [4])

    node = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1772
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1773

Khalique's avatar
Khalique committed
1774

Khalique's avatar
Khalique committed
1775
@onnx_test
Khalique's avatar
Khalique committed
1776
1777
def shape_gather_test():
    values = np.array([1])
kahmed10's avatar
kahmed10 committed
1778
    # value = helper.make_tensor_value_info('value', TensorProto.INT32, [1])
Khalique's avatar
Khalique committed
1779
1780
1781
1782
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [7, 3, 10])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [3])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [1])

Khalique's avatar
Khalique committed
1783
1784
1785
1786
    value_tensor = helper.make_tensor(name='const_tensor',
                                      data_type=TensorProto.INT32,
                                      dims=values.shape,
                                      vals=values.flatten().astype(int))
Khalique's avatar
Khalique committed
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807

    node_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['value'],
        value=value_tensor,
    )

    node_shape = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

    node_gather = helper.make_node(
        'Gather',
        inputs=['y', 'value'],
        outputs=['z'],
        axis=0,
    )

Khalique's avatar
Khalique committed
1808
1809
    return ([node_const, node_shape, node_gather], [x], [z])

Khalique's avatar
Khalique committed
1810

Khalique's avatar
Khalique committed
1811
@onnx_test
Khalique's avatar
Khalique committed
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
def sign_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [10, 5])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [10, 5])

    node = onnx.helper.make_node(
        'Sign',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1822
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1823

Khalique's avatar
Khalique committed
1824

Khalique's avatar
Khalique committed
1825
@onnx_test
Khalique's avatar
Khalique committed
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
def sin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1836
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1837

Khalique's avatar
Khalique committed
1838

Khalique's avatar
Khalique committed
1839
@onnx_test
Khalique's avatar
Khalique committed
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
def sinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sinh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1850
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1851

Khalique's avatar
Khalique committed
1852

kahmed10's avatar
kahmed10 committed
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
@onnx_test
def slice_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0, 1],
                                 starts=[1, 0],
                                 ends=[2, 2],
                                 outputs=['1'])

    return ([node], [x], [y])


@onnx_test
def slice_3arg_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 5])
    start = np.array([0, 0])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))

    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    end = np.array([2, 5])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    node = onnx.helper.make_node('Slice',
                                 inputs=['0', 'arg_start', 'arg_end'],
                                 outputs=['1'])

    return ([arg_start, arg_end, node], [x], [y])


Shucai Xiao's avatar
Shucai Xiao committed
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
@onnx_test
def slice_5arg_test():
    step = np.array([1, 1])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    axis = np.array([-1, -2])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)

    end = np.array([-1, -1])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    start = np.array([-5, -3])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
@onnx_test
def slice_max_end_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [10, 20])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [9, 17])

    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0, 1],
                                 starts=[1, 2],
                                 ends=[3000000000, -1],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
1964

Khalique's avatar
Khalique committed
1965
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1966

Khalique's avatar
Khalique committed
1967

Khalique's avatar
Khalique committed
1968
@onnx_test
Khalique's avatar
Khalique committed
1969
1970
1971
1972
def softmax_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3])

Khalique's avatar
Khalique committed
1973
    node = onnx.helper.make_node('Softmax', inputs=['0'], outputs=['1'])
Khalique's avatar
Khalique committed
1974

Khalique's avatar
Khalique committed
1975
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1976

Khalique's avatar
Khalique committed
1977

Shucai Xiao's avatar
Shucai Xiao committed
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
@onnx_test
def split_minus_axis_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 5])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 5])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 5])

    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2', 'y3'],
        axis=-1,
    )

    return ([node], [x], [y1, y2, y3])


1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
@onnx_test
def split_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 7])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 4])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 4])

    node = onnx.helper.make_node('Split',
                                 inputs=['x'],
                                 outputs=['y1', 'y2', 'y3'],
                                 axis=1,
                                 split=[7, 4, 4])

    return ([node], [x], [y1, y2, y3])


@onnx_test
def split_test_default():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [5, 15])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [5, 15])

    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2'],
    )

    return ([node], [x], [y1, y2])


Khalique's avatar
Khalique committed
2026
@onnx_test
Khalique's avatar
Khalique committed
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
def sqrt_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Sqrt',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
2037
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2038

Khalique's avatar
Khalique committed
2039

Khalique's avatar
Khalique committed
2040
@onnx_test
Khalique's avatar
Khalique committed
2041
def squeeze_unsqueeze_test():
Khalique's avatar
Khalique committed
2042
2043
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, 1, 1, 2, 1])
Khalique's avatar
Khalique committed
2044
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 2])
Khalique's avatar
Khalique committed
2045
2046
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                      [1, 1, 3, 1, 2, 1])
Khalique's avatar
Khalique committed
2047

Khalique's avatar
Khalique committed
2048
2049
2050
2051
    node = onnx.helper.make_node('Squeeze',
                                 inputs=['0'],
                                 axes=[0, 2, 3, 5],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
2052

Khalique's avatar
Khalique committed
2053
2054
2055
2056
2057
2058
    node2 = onnx.helper.make_node('Unsqueeze',
                                  inputs=['1'],
                                  axes=[0, 1, 3, 5],
                                  outputs=['2'])

    return ([node, node2], [x], [z])
Khalique's avatar
Khalique committed
2059
2060


Khalique's avatar
Khalique committed
2061
@onnx_test
Khalique's avatar
Khalique committed
2062
2063
2064
def sub_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
2065
2066
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
2067
2068
2069
2070
2071

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
Khalique's avatar
Khalique committed
2072
2073
        broadcast=1,
        axis=1,
Khalique's avatar
Khalique committed
2074
2075
    )

Khalique's avatar
Khalique committed
2076
2077
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
2078

Khalique's avatar
Khalique committed
2079
@onnx_test
Khalique's avatar
Khalique committed
2080
2081
def sub_scalar_test():
    values = np.array([1])
Khalique's avatar
Khalique committed
2082
2083
2084
2085
2086
2087
2088
    arg_node = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                             [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    values_tensor = helper.make_tensor(name='const',
                                       data_type=TensorProto.FLOAT,
2089
                                       dims=values.reshape(()).shape,
Khalique's avatar
Khalique committed
2090
                                       vals=values.flatten().astype(float))
Khalique's avatar
Khalique committed
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104

    arg_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['arg_const'],
        value=values_tensor,
    )

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', 'arg_const'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
2105
2106
    return ([arg_const, node], [arg_node], [arg_out])

Khalique's avatar
Khalique committed
2107

Khalique's avatar
Khalique committed
2108
@onnx_test
Khalique's avatar
Khalique committed
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
def sum_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Sum',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
2121
2122
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
2123

Khalique's avatar
Khalique committed
2124
@onnx_test
Khalique's avatar
Khalique committed
2125
2126
2127
2128
2129
def tan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
2130
2131
2132
2133
        'Tan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
2134

Khalique's avatar
Khalique committed
2135
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2136

Khalique's avatar
Khalique committed
2137

Khalique's avatar
Khalique committed
2138
@onnx_test
Khalique's avatar
Khalique committed
2139
2140
2141
2142
2143
def tanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
2144
2145
2146
2147
        'Tanh',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
2148

Khalique's avatar
Khalique committed
2149
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2150

Khalique's avatar
Khalique committed
2151

kahmed10's avatar
kahmed10 committed
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
@onnx_test
def tile_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [2, 4])

    node = onnx.helper.make_node('Tile', inputs=['x', 'y'], outputs=['z'])

    return ([node], [x, y], [z],
            [helper.make_tensor('y', TensorProto.INT64, [2], [1, 2])])


@onnx_test
def tile_test_3x2():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [6, 4])

    node = onnx.helper.make_node('Tile', inputs=['x', 'y'], outputs=['z'])

    return ([node], [x, y], [z],
            [helper.make_tensor('y', TensorProto.INT64, [2], [3, 2])])


Khalique's avatar
Khalique committed
2176
@onnx_test
Khalique's avatar
Khalique committed
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
def transpose_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 3, 1, 2],
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
2188
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2189

Khalique's avatar
Khalique committed
2190

Khalique's avatar
Khalique committed
2191
2192
2193
@onnx_test
def transpose_gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 5, 4, 6])
Khalique's avatar
Khalique committed
2194
2195
2196
2197
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 4, 3, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT,
                                      [3, 2, 3, 4, 5, 4, 5, 6])
Khalique's avatar
Khalique committed
2198
2199
2200
2201
2202
2203
2204
2205

    td = onnx.helper.make_node(
        'Transpose',
        inputs=['data'],
        outputs=['tdata'],
        perm=[0, 2, 1, 3],
    )

Khalique's avatar
Khalique committed
2206
2207
2208
2209
    ti = onnx.helper.make_node('Transpose',
                               inputs=['indices'],
                               outputs=['tindices'],
                               perm=[0, 2, 1, 3])
Khalique's avatar
Khalique committed
2210
2211
2212
2213
2214
2215
2216
2217

    node = onnx.helper.make_node(
        'Gather',
        inputs=['tdata', 'tindices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
2218
    return ([td, ti, node], [x, i], [y])
Khalique's avatar
Khalique committed
2219

Khalique's avatar
Khalique committed
2220

2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
@onnx_test
def undefined_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node('Identity', inputs=[''], outputs=['1'])

    return ([node], [x], [y])


Khalique's avatar
Khalique committed
2231
@onnx_test
Khalique's avatar
Khalique committed
2232
2233
2234
def unknown_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
2235
2236
2237

    helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
2238
2239
    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
2240
    node = onnx.helper.make_node('Unknown', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
2241

Khalique's avatar
Khalique committed
2242
    node2 = onnx.helper.make_node('Unknown', inputs=['2'], outputs=['3'])
Khalique's avatar
Khalique committed
2243

Khalique's avatar
Khalique committed
2244
    return ([node, node2], [x, y], [a])
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267


@onnx_test
def variable_batch_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [None, 3, 16, 16])

    node = onnx.helper.make_node('Identity', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


@onnx_test
def variable_batch_leq_zero_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [0, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [-1, 3, 16, 16])

    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [-1, 3, 16, 16])
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])