gen_onnx.py 265 KB
Newer Older
1
2
3
#####################################################################################
# The MIT License (MIT)
#
Brian Pickrell's avatar
Brian Pickrell committed
4
# Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#####################################################################################
24
25
# This script generates onnx files for MIGraphX onnx operator tests.
# To generate an individual onnx file, you can use the following
Brian Pickrell's avatar
Brian Pickrell committed
26
# command: python3 -c "import gen_onnx; gen_onnx.{test_name}_test()"
Khalique's avatar
Khalique committed
27
28
29
import numpy as np
import onnx
from onnx import helper
30
from onnx import TensorProto
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from onnx.numpy_helper import from_array


def onnx_test(external_data=False):
    def create_onnx_test(op_test):
        def run_test():
            op_info = op_test()
            if len(op_info) > 3:
                graph_def = helper.make_graph(op_info[0],
                                              op_test.__name__,
                                              op_info[1],
                                              op_info[2],
                                              initializer=op_info[3])
            else:
                graph_def = helper.make_graph(op_info[0], op_test.__name__,
                                              op_info[1], op_info[2])
            model_def = helper.make_model(graph_def,
                                          producer_name=op_test.__name__)
            onnx.save_model(model_def,
                            '{}.onnx'.format(op_test.__name__),
                            save_as_external_data=external_data,
                            location='{}.weight'.format(op_test.__name__),
                            size_threshold=0,
                            convert_attribute=True)

        return run_test

    return create_onnx_test


@onnx_test()
Khalique's avatar
Khalique committed
62
63
64
65
66
67
68
69
70
71
def acos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
72
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
73

Khalique's avatar
Khalique committed
74

75
@onnx_test()
76
77
78
79
80
81
82
83
84
85
86
87
88
def acosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acosh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


89
@onnx_test()
Khalique's avatar
Khalique committed
90
91
92
def add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
93
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
94

Khalique's avatar
Khalique committed
95
96
97
98
99
100
101
    node = onnx.helper.make_node('Add',
                                 inputs=['0', '1'],
                                 broadcast=1,
                                 axis=1,
                                 outputs=['2'])

    return ([node], [x, y], [z])
Khalique's avatar
Khalique committed
102
103


104
@onnx_test()
Khalique's avatar
Khalique committed
105
106
107
108
109
110
111
112
113
114
115
def add_fp16_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
116
    return (
Khalique's avatar
Khalique committed
117
        [node],
Khalique's avatar
Khalique committed
118
        [x, y],
Khalique's avatar
Khalique committed
119
120
        [z],
        # '0' -> 1.5, '1' -> 2.5
Khalique's avatar
Khalique committed
121
122
123
124
        [
            onnx.helper.make_tensor('0', TensorProto.FLOAT16, [1], [15872]),
            onnx.helper.make_tensor('1', TensorProto.FLOAT16, [1], [16640])
        ])
Khalique's avatar
Khalique committed
125
126


127
@onnx_test()
Khalique's avatar
Khalique committed
128
def add_scalar_test():
129
130
131
    x = helper.make_tensor_value_info('0', TensorProto.UINT8, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.UINT8, [])
    z = helper.make_tensor_value_info('2', TensorProto.UINT8, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
132

Khalique's avatar
Khalique committed
133
134
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

135
    return ([node], [x, y], [z])
Khalique's avatar
Khalique committed
136
137


138
@onnx_test()
Khalique's avatar
Khalique committed
139
140
141
142
def argmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])

Khalique's avatar
Khalique committed
143
144
145
146
147
    node = onnx.helper.make_node('ArgMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=2,
                                 keepdims=0)
Khalique's avatar
Khalique committed
148

Khalique's avatar
Khalique committed
149
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
150

Khalique's avatar
Khalique committed
151

152
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
153
154
155
156
157
158
159
160
161
162
163
164
165
def argmax_dyn_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 4, 6])

    node = onnx.helper.make_node('ArgMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=2,
                                 keepdims=0)

    return ([node], [x], [y])


166
@onnx_test()
Khalique's avatar
Khalique committed
167
168
169
170
def argmin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])

Khalique's avatar
Khalique committed
171
172
173
174
175
    node = onnx.helper.make_node('ArgMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=3,
                                 keepdims=0)
Khalique's avatar
Khalique committed
176

Khalique's avatar
Khalique committed
177
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
178

Khalique's avatar
Khalique committed
179

180
@onnx_test()
Khalique's avatar
Khalique committed
181
182
183
184
185
186
187
188
189
190
def asin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
191
192
    return ([node], [x], [y])

Khalique's avatar
Khalique committed
193

194
@onnx_test()
195
196
197
198
199
200
201
202
203
204
205
206
207
def asinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asinh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


208
@onnx_test()
Khalique's avatar
Khalique committed
209
210
211
212
213
214
215
216
217
def atan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
218

Khalique's avatar
Khalique committed
219
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
220

Khalique's avatar
Khalique committed
221

222
@onnx_test()
223
224
225
226
227
228
229
230
231
232
233
234
235
def atanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atanh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


236
@onnx_test()
237
238
239
240
241
242
243
244
245
246
247
248
def averagepool_1d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    out = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['0'],
                                 outputs=['1'],
                                 kernel_shape=[3])

    return ([node], [x], [out])


249
@onnx_test()
250
251
252
253
254
255
256
257
258
259
260
261
262
def averagepool_3d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
    out = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                        [1, 3, 3, 3, 3])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['0'],
                                 outputs=['1'],
                                 kernel_shape=[3, 3, 3])

    return ([node], [x], [out])


263
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
264
265
266
267
268
269
270
271
272
273
274
275
276
277
def averagepool_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 5, 5, 5])
    out = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                        [None, 3, 3, 3, 3])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['0'],
                                 outputs=['1'],
                                 kernel_shape=[3, 3, 3])

    return ([node], [x], [out])


278
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
279
280
281
282
283
284
285
286
287
288
289
290
291
def averagepool_dyn_autopad_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_LOWER')

    return ([node], [x], [y])


292
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
def averagepool_dyn_asym_padding_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 1, 3, 3])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1])

    return ([node], [x], [y])


307
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
308
309
310
311
312
313
314
315
316
317
318
319
320
def averagepool_dyn_cip_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 1, 1, 1])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 count_include_pad=1)

    return ([node], [x], [y])


321
@onnx_test()
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
def averagepool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET')

    return ([node], [x], [y])


337
@onnx_test()
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
def averagepool_nt_cip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET',
                                 count_include_pad=1)

    return ([node], [x], [y])


354
@onnx_test()
355
356
357
358
359
360
361
362
363
364
365
366
367
def averagepool_same_lower_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_LOWER')

    return ([node], [x], [y])


368
@onnx_test()
369
370
371
372
373
374
375
376
377
378
379
380
381
382
def averagepool_sl_cip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_LOWER',
                                 count_include_pad=1)

    return ([node], [x], [y])


383
@onnx_test()
384
385
386
387
388
389
390
391
392
393
394
395
396
def averagepool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('AveragePool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_UPPER')

    return ([node], [x], [y])


397
@onnx_test()
398
399
400
401
402
403
404
405
406
407
408
409
410
def batch_norm_flat_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [1])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [1])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [1])
    var = helper.make_tensor_value_info('variance', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['x', 'scale', 'bias', 'mean', 'variance'],
        outputs=['y'],
        epsilon=1e-6)
411
412
413
414

    return ([node], [x, scale, bias, mean, var], [out])


415
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
def batch_norm_rank_2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [5])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [5])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [5])
    var = helper.make_tensor_value_info('variance', TensorProto.FLOAT, [5])
    out = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 5])

    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['x', 'scale', 'bias', 'mean', 'variance'],
        outputs=['y'],
        epsilon=1e-6)

    return ([node], [x, scale, bias, mean, var], [out])


433
@onnx_test()
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
def batch_norm_1d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [2, 3, 4])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [3])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [3])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [3])
    var = helper.make_tensor_value_info('variance', TensorProto.FLOAT, [3])
    out = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [2, 3, 4])

    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['x', 'scale', 'bias', 'mean', 'variance'],
        outputs=['y'])

    return ([node], [x, scale, bias, mean, var], [out])


450
@onnx_test()
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
def batch_norm_2d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4, 4])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [3])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [3])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [3])
    var = helper.make_tensor_value_info('variance', TensorProto.FLOAT, [3])
    out = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 4])

    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['x', 'scale', 'bias', 'mean', 'variance'],
        outputs=['y'])

    return ([node], [x, scale, bias, mean, var], [out])


467
@onnx_test()
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
def batch_norm_3d_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16,
                                      [2, 2, 2, 2, 2])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT16, [2])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT16, [2])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT16, [2])
    var = helper.make_tensor_value_info('variance', TensorProto.FLOAT16, [2])
    out = helper.make_tensor_value_info('y', TensorProto.FLOAT16,
                                        [2, 2, 2, 2, 2])

    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['x', 'scale', 'bias', 'mean', 'variance'],
        outputs=['y'],
        epsilon=1e-6)

    return ([node], [x, scale, bias, mean, var], [out])


487
@onnx_test()
488
489
490
491
492
493
494
495
496
497
498
499
def batch_norm_invalid_bias_rank_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4, 4])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [3])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [3, 1])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [3])
    var = helper.make_tensor_value_info('variance', TensorProto.FLOAT, [3])
    out = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 4])

    node = onnx.helper.make_node(
        'BatchNormalization',
        inputs=['x', 'scale', 'bias', 'mean', 'variance'],
        outputs=['y'])
500
501
502
503

    return ([node], [x, scale, bias, mean, var], [out])


504
@onnx_test()
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
def binary_dyn_brcst_prelu_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                         [None, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [None, 3, 4, 5])

    node = onnx.helper.make_node(
        'PRelu',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


521
@onnx_test()
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
def binary_dyn_brcst_add_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                         [None, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [None, 3, 4, 5])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


538
@onnx_test()
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
def binary_dyn_brcst_attr_error_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                         [None, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [None, 3, 4, 5])

    node = onnx.helper.make_node('Add',
                                 inputs=['0', '1'],
                                 outputs=['out'],
                                 broadcast=1,
                                 axis=1)

    return ([node], [arg0, arg1], [arg_out])


555
@onnx_test()
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
def binary_dyn_brcst_mul_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                         [None, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [None, 3, 4, 5])

    node = onnx.helper.make_node(
        'Mul',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


572
@onnx_test()
Khalique's avatar
Khalique committed
573
574
575
576
def cast_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

Khalique's avatar
Khalique committed
577
578
    node = onnx.helper.make_node('Cast', inputs=['x'], outputs=['y'], to=1)

Khalique's avatar
Khalique committed
579
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
580

kahmed10's avatar
kahmed10 committed
581

582
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
583
584
585
586
587
588
589
590
591
592
593
def ceil_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Ceil',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
594

kahmed10's avatar
kahmed10 committed
595

596
@onnx_test()
597
598
599
600
601
602
603
604
605
606
607
608
def celu_alpha_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node('Celu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.8)

    return ([node], [x], [y])


609
@onnx_test()
610
611
612
613
614
615
616
617
618
def celu_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('Celu', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


619
@onnx_test()
620
621
622
623
624
625
626
627
628
629
630
631
def celu_verify_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('Celu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.5)

    return ([node], [x], [y])


632
@onnx_test()
633
634
635
636
637
638
639
640
641
def celu_wrong_type_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [2, 3])

    node = onnx.helper.make_node('Celu', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


642
@onnx_test()
643
644
645
646
647
648
649
650
651
652
653
654
def celu_zero_alpha_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('Celu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.0)

    return ([node], [x], [y])


655
@onnx_test()
Khalique's avatar
Khalique committed
656
657
658
659
def clip_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
660
661
662
663
664
    node = onnx.helper.make_node('Clip',
                                 inputs=['0'],
                                 outputs=['1'],
                                 max=6.0,
                                 min=0.0)
Khalique's avatar
Khalique committed
665

Khalique's avatar
Khalique committed
666
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
667

Khalique's avatar
Khalique committed
668

669
@onnx_test()
kahmed10's avatar
kahmed10 committed
670
671
672
673
674
675
676
677
678
679
680
681
682
683
def clip_test_op11():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])
    max_val = helper.make_tensor('max', TensorProto.FLOAT, [], [6.0])

    node = onnx.helper.make_node('Clip',
                                 inputs=['0', 'min', 'max'],
                                 outputs=['1'])

    return ([node], [x], [y], [min_val, max_val])


684
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
685
686
687
688
689
690
691
692
693
694
695
696
697
def clip_test_op11_max_only():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    max_val = helper.make_tensor('max', TensorProto.FLOAT, [], [0.0])

    node = onnx.helper.make_node('Clip',
                                 inputs=['0', '', 'max'],
                                 outputs=['1'])

    return ([node], [x], [y], [max_val])


698
@onnx_test()
kahmed10's avatar
kahmed10 committed
699
700
701
702
703
704
705
706
707
708
709
def clip_test_op11_min_only():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])

    node = onnx.helper.make_node('Clip', inputs=['0', 'min'], outputs=['1'])

    return ([node], [x], [y], [min_val])


710
@onnx_test()
kahmed10's avatar
kahmed10 committed
711
712
713
714
715
716
717
718
719
def clip_test_op11_no_args():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node('Clip', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


720
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
721
722
723
724
725
726
727
728
729
def clip_test_op11_no_args1():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node('Clip', inputs=['0', '', ''], outputs=['1'])

    return ([node], [x], [y])


730
@onnx_test()
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
def clip_test_args_type_mismatch():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 3])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [1, 3],
                                 [1.5, 2.5, 3.5])
    max_val = helper.make_tensor('max', TensorProto.INT64, [3, 1], [2, 3, 4])

    node = onnx.helper.make_node('Clip',
                                 inputs=['0', 'min', 'max'],
                                 outputs=['1'])

    return ([node], [x], [y], [min_val, max_val])


746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
@onnx_test()
def clip_dyn_min_max_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])
    max_val = helper.make_tensor('max', TensorProto.FLOAT, [], [6.0])

    node = onnx.helper.make_node('Clip',
                                 inputs=['0', 'min', 'max'],
                                 outputs=['1'])

    return ([node], [x], [y], [min_val, max_val])


@onnx_test()
def clip_dyn_min_only_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None])

    min_val = helper.make_tensor('min', TensorProto.FLOAT, [], [0.0])

    node = onnx.helper.make_node('Clip', inputs=['0', 'min'], outputs=['1'])

    return ([node], [x], [y], [min_val])


773
@onnx_test()
Khalique's avatar
Khalique committed
774
775
776
777
778
779
780
781
782
783
784
785
def concat_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 4, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7, 4, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [9, 4, 3])

    node = onnx.helper.make_node(
        'Concat',
        inputs=['0', '1'],
        axis=0,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
786
787
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
788

789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
@onnx_test()
def concat_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, None, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, None, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [None, None, 3])

    node = onnx.helper.make_node(
        'Concat',
        inputs=['0', '1'],
        axis=0,
        outputs=['2'],
    )

    return ([node], [x, y], [z])


805
@onnx_test()
Khalique's avatar
Khalique committed
806
807
808
def constant_test():
    x = np.array([0, 1, 2])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
Khalique's avatar
Khalique committed
809

Khalique's avatar
Khalique committed
810
811
812
813
814
815
816
817
818
819
820
821
    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.FLOAT,
            dims=x.shape,
            vals=x.flatten().astype(float),
        ),
    )

Khalique's avatar
Khalique committed
822
    return ([node], [], [y])
Khalique's avatar
Khalique committed
823

Khalique's avatar
Khalique committed
824

825
@onnx_test()
Khalique's avatar
Khalique committed
826
def constant_fill_test():
Khalique's avatar
Khalique committed
827
828
829
830
831
832
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=[],
        outputs=['value'],
Khalique's avatar
Khalique committed
833
834
835
836
        dtype=1,
        value=1.0,
        shape=[2, 3],
        input_as_shape=0,
Khalique's avatar
Khalique committed
837
838
    )

Khalique's avatar
Khalique committed
839
    return ([node], [], [value])
Khalique's avatar
Khalique committed
840

Khalique's avatar
Khalique committed
841

842
@onnx_test()
Khalique's avatar
Khalique committed
843
def constant_fill_input_as_shape_test():
Khalique's avatar
Khalique committed
844
    np_shape = np.array([2, 3])
Khalique's avatar
Khalique committed
845
846
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

Khalique's avatar
Khalique committed
847
848
849
850
    ts_shape = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=np_shape.shape,
                                  vals=np_shape.flatten().astype(int))
Khalique's avatar
Khalique committed
851
852
853
854
855
856
857
858
859
860
861
862

    const_shape_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=ts_shape,
    )

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=['shape'],
        outputs=['value'],
Khalique's avatar
Khalique committed
863
864
865
        dtype=1,
        value=1.0,
        input_as_shape=1,
Khalique's avatar
Khalique committed
866
867
    )

Khalique's avatar
Khalique committed
868
    return ([const_shape_node, node], [], [value])
Khalique's avatar
Khalique committed
869

Khalique's avatar
Khalique committed
870

871
@onnx_test()
Khalique's avatar
Khalique committed
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
def constant_scalar_test():
    x = np.array([1])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.INT32,
            dims=x.shape,
            vals=x.flatten().astype(int),
        ),
    )

Khalique's avatar
Khalique committed
888
    return ([node], [], [y])
Khalique's avatar
Khalique committed
889

Khalique's avatar
Khalique committed
890

891
@onnx_test()
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
def constant_empty_scalar_int64_test():
    x = np.array([]).astype(np.int64)
    y = helper.make_tensor_value_info('0', TensorProto.INT64, [0])

    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='one_element_tensor',
            data_type=TensorProto.INT64,
            dims=x.shape,
            vals=x.flatten().astype(np.int64),
        ),
    )

    return ([node], [], [y])


911
@onnx_test()
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
def constant_one_val_int64_test():
    x = np.array([1]).astype(np.int64)
    y = helper.make_tensor_value_info('0', TensorProto.INT64, [0])

    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='empty_tensor',
            data_type=TensorProto.INT64,
            dims=x.shape,
            vals=x.flatten().astype(np.int64),
        ),
    )

    return ([node], [], [y])


931
@onnx_test()
Khalique's avatar
Khalique committed
932
def const_of_shape_empty_input_test():
Khalique's avatar
Khalique committed
933
934
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
935
    empty_val = np.array([]).astype(np.int64)
Khalique's avatar
Khalique committed
936
937
938
939
    empty_ts = helper.make_tensor(name='empty_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=empty_val.shape,
                                  vals=empty_val.flatten().astype(int))
Khalique's avatar
Khalique committed
940
941
942
943
944
945
946
947
948
949
950
951
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=empty_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
Khalique's avatar
Khalique committed
952
        value=tensor_val,
Khalique's avatar
Khalique committed
953
954
    )

Khalique's avatar
Khalique committed
955
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
956

Khalique's avatar
Khalique committed
957

958
@onnx_test()
Khalique's avatar
Khalique committed
959
def const_of_shape_float_test():
Khalique's avatar
Khalique committed
960
961
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.FLOAT, [1],
                                         [10])
Khalique's avatar
Khalique committed
962
963

    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
964
965
966
967
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
968
969
970
971
972
973
974
975
976

    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

Khalique's avatar
Khalique committed
977
978
979
980
    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
981

Khalique's avatar
Khalique committed
982
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
983

Khalique's avatar
Khalique committed
984

985
@onnx_test()
Khalique's avatar
Khalique committed
986
def const_of_shape_int64_test():
Khalique's avatar
Khalique committed
987
988
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
989
    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
990
991
992
993
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
994
    shape_const = helper.make_node(
Khalique's avatar
Khalique committed
995
996
997
998
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
Khalique's avatar
Khalique committed
999
1000
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
1001
1002
1003
1004
1005

    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
1006

Khalique's avatar
Khalique committed
1007
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
1008

Khalique's avatar
Khalique committed
1009

1010
@onnx_test()
Khalique's avatar
Khalique committed
1011
1012
def const_of_shape_no_value_attr_test():
    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
1013
1014
1015
1016
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
1017
1018
1019
1020
1021
1022
1023
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
1024

Khalique's avatar
Khalique committed
1025
1026
1027
1028
1029
1030
    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1031
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
1032

Khalique's avatar
Khalique committed
1033

1034
@onnx_test()
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
def conv_1d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 3])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [out])


1045
@onnx_test()
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
def conv_3d_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, 3, 3, 3])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [out])


1057
@onnx_test()
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
def conv_attr_fail_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 3])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 strides=[1, 1],
                                 outputs=['2'])

    return ([node], [x, y], [out])


1071
@onnx_test()
Khalique's avatar
Khalique committed
1072
1073
1074
1075
1076
def conv_autopad_fail_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 34, 34])

Khalique's avatar
Khalique committed
1077
1078
1079
1080
1081
1082
1083
1084
1085
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 dilations=[1, 1],
                                 strides=[1, 1],
                                 auto_pad='SAME',
                                 pads=[0, 0, 1, 1, 0, 0, 1, 1])

    return ([node], [x, y], [out])
Khalique's avatar
Khalique committed
1086
1087


1088
@onnx_test()
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
def conv_autopad_same_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 32, 32])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 dilations=[1, 1],
                                 strides=[1, 1],
                                 auto_pad='SAME')

    return ([node], [x, y], [out])


1104
@onnx_test()
Khalique's avatar
Khalique committed
1105
1106
1107
1108
1109
1110
def conv_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 28, 28])

Khalique's avatar
Khalique committed
1111
1112
1113
1114
1115
1116
1117
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])

    return ([node], [x, y, z], [out])
Khalique's avatar
Khalique committed
1118
1119


1120
@onnx_test()
Khalique's avatar
Khalique committed
1121
1122
1123
1124
1125
1126
1127
1128
def conv_bn_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    k = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1])
    l = helper.make_tensor_value_info('6', TensorProto.FLOAT, [1])
Khalique's avatar
Khalique committed
1129
1130
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT,
                                        [1, 1, 14, 14])
Khalique's avatar
Khalique committed
1131

Khalique's avatar
Khalique committed
1132
1133
1134
1135
1136
1137
    node0 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['7'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
1138

Khalique's avatar
Khalique committed
1139
1140
1141
1142
1143
    node1 = onnx.helper.make_node('BatchNormalization',
                                  inputs=['7', '3', '4', '5', '6'],
                                  outputs=['8'],
                                  epsilon=9.99999974737875e-06,
                                  momentum=0.899999976158142)
Khalique's avatar
Khalique committed
1144

Khalique's avatar
Khalique committed
1145
1146
1147
1148
1149
1150
1151
1152
1153
    node2 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node0, node1, node2, node3], [x, y, z, m, n, k, l], [out])
Khalique's avatar
Khalique committed
1154
1155


1156
@onnx_test()
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
def conv_dynamic_batch_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 3, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [None, 1, 3, 3])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])
    return ([node], [x, y], [out])


Charlie Lin's avatar
Charlie Lin committed
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
@onnx_test()
def conv_dynamic_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('3', TensorProto.FLOAT,
                                        [None, 2, 28, 28])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])

    return ([node], [x, y, z], [out])


1185
@onnx_test()
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
def conv_dynamic_img_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, None, None])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])
    return ([node], [x, y], [out])


1197
@onnx_test()
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
def conv_dynamic_weights_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [1, 3, None, None])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, None, None])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])
    return ([node], [x, y], [out])


1209
@onnx_test()
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
def conv_dynamic_img_and_weights_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [1, 3, None, None])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, None, None])

    node = onnx.helper.make_node('Conv', inputs=['0', '1'], outputs=['2'])
    return ([node], [x, y], [out])


1222
@onnx_test()
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
def conv_dynamic_batch_same_upper_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 3, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 auto_pad='SAME_UPPER')
    return ([node], [x, y], [out])


1235
@onnx_test()
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
def conv_dynamic_img_same_upper_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                        [1, 1, None, None])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 auto_pad='SAME_UPPER')
    return ([node], [x, y], [out])


1250
@onnx_test()
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
def conv_dynamic_kernel_same_lower_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [1, 3, None, None])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 auto_pad='SAME_LOWER')
    return ([node], [x, y], [out])


1264
@onnx_test()
Khalique's avatar
Khalique committed
1265
1266
1267
1268
1269
1270
def conv_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1, 1, 14, 14])

Khalique's avatar
Khalique committed
1271
1272
1273
1274
1275
1276
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['3'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
1277

Khalique's avatar
Khalique committed
1278
    node2 = onnx.helper.make_node('Relu', inputs=['3'], outputs=['4'])
Khalique's avatar
Khalique committed
1279

Khalique's avatar
Khalique committed
1280
1281
1282
1283
1284
1285
1286
1287
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['4'],
                                  outputs=['5'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node1, node2, node3], [x, y, z], [out])
Khalique's avatar
Khalique committed
1288
1289


1290
@onnx_test()
Khalique's avatar
Khalique committed
1291
1292
1293
1294
1295
1296
1297
1298
def conv_relu_maxpool_x2_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 5, 5, 5])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT, [1, 1, 5, 5])

Khalique's avatar
Khalique committed
1299
1300
1301
1302
1303
1304
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['5'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
1305

Khalique's avatar
Khalique committed
1306
    node2 = onnx.helper.make_node('Relu', inputs=['5'], outputs=['6'])
Khalique's avatar
Khalique committed
1307

Khalique's avatar
Khalique committed
1308
1309
1310
1311
1312
1313
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['6'],
                                  outputs=['7'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])
Khalique's avatar
Khalique committed
1314

Khalique's avatar
Khalique committed
1315
1316
1317
1318
1319
1320
    node4 = onnx.helper.make_node('Conv',
                                  inputs=['7', '3', '4'],
                                  outputs=['8'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
1321

Khalique's avatar
Khalique committed
1322
    node5 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
Khalique's avatar
Khalique committed
1323

Khalique's avatar
Khalique committed
1324
1325
1326
1327
1328
1329
1330
1331
    node6 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node1, node2, node3, node4, node5, node6], [x, y, z, m, n], [out])
Khalique's avatar
Khalique committed
1332
1333


1334
@onnx_test()
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
def convinteger_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT8, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.INT8, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.INT32, [1])
    out = helper.make_tensor_value_info('3', TensorProto.INT32, [1, 2, 28, 28])

    node = onnx.helper.make_node('ConvInteger',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])

    return ([node], [x, y, z], [out])


1350
@onnx_test()
Khalique's avatar
Khalique committed
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
def cos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Cos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1361
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1362

Khalique's avatar
Khalique committed
1363

1364
@onnx_test()
Khalique's avatar
Khalique committed
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
def cosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Cosh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1375
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1376

Khalique's avatar
Khalique committed
1377

1378
@onnx_test()
1379
def conv_transpose_test():
kahmed10's avatar
kahmed10 committed
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w'],
                                 outputs=['y'])

    return ([node], [x, w], [y])


1392
@onnx_test()
1393
def conv_transpose_bias_test():
kahmed10's avatar
kahmed10 committed
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w', 'b'],
                                 outputs=['y'])

    return ([node], [x, w, b], [y])


1407
@onnx_test()
1408
def conv_transpose_input_pads_strides_test():
kahmed10's avatar
kahmed10 committed
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 7, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[1, 1, 1, 1])

    return ([node], [x, w], [y])


1422
@onnx_test()
1423
def conv_transpose_input_pads_asymm_test():
kahmed10's avatar
kahmed10 committed
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 8, 6])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[0, 0, 1, 1])

    return ([node], [x, w], [y])


1437
@onnx_test()
1438
def conv_transpose_input_pads_asymm_1d_test():
kahmed10's avatar
kahmed10 committed
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 6])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[2],
                                 pads=[0, 1],
                                 dilations=[1])

    return ([node], [x, w], [y])


1453
@onnx_test()
1454
def conv_transpose_output_padding_test():
kahmed10's avatar
kahmed10 committed
1455
1456
1457
1458
1459
1460
1461
1462
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
kahmed10's avatar
kahmed10 committed
1463
                                 output_padding=[1, 1])
kahmed10's avatar
kahmed10 committed
1464
1465
1466
1467

    return ([node], [x, w], [y])


1468
@onnx_test()
1469
def conv_transpose_output_padding_3d_test():
kahmed10's avatar
kahmed10 committed
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2, 2],
                                 output_padding=[1, 1, 1])

    return ([node], [x, w], [y])


1483
@onnx_test()
1484
def conv_transpose_output_shape_test():
kahmed10's avatar
kahmed10 committed
1485
1486
1487
1488
1489
1490
1491
1492
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
kahmed10's avatar
kahmed10 committed
1493
1494
1495
1496
1497
                                 output_shape=[10, 8])

    return ([node], [x, w], [y])


1498
@onnx_test()
1499
def conv_transpose_output_shape_3d_test():
kahmed10's avatar
kahmed10 committed
1500
1501
1502
1503
1504
1505
1506
1507
1508
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 10, 8, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2, 2],
                                 output_shape=[10, 8, 8])
kahmed10's avatar
kahmed10 committed
1509
1510
1511
1512

    return ([node], [x, w], [y])


1513
@onnx_test()
1514
def conv_transpose_stride_test():
kahmed10's avatar
kahmed10 committed
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 7, 3])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2])

    return ([node], [x, w], [y])


1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
@onnx_test()
def conv_transpose_auto_pad_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 3, 3])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 auto_pad='SAME_UPPER')

    return ([node], [x, w], [y])


@onnx_test()
def conv_transpose_dyn_asym_padding_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 8, 6])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 pads=[0, 0, 1, 1])

    return ([node], [x, w], [y])


@onnx_test()
def conv_transpose_dyn_output_shape_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 2, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 2, 10, 8])

    node = onnx.helper.make_node('ConvTranspose',
                                 inputs=['x', 'w'],
                                 outputs=['y'],
                                 strides=[3, 2],
                                 output_shape=[10, 8])

    return ([node], [x, w], [y])


@onnx_test()
def conv_transpose_dyn_batch_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 1, 3, 3])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 1, 5, 5])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w'],
                                 outputs=['y'])

    return ([node], [x, w], [y])


@onnx_test()
def conv_transpose_dyn_img_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT,
                                      [1, 1, None, None])
    w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [1, 1, 3, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT,
                                      [1, 1, None, None])

    node = onnx.helper.make_node('ConvTranspose',
                                 name='conv1',
                                 inputs=['x', 'w'],
                                 outputs=['y'])

    return ([node], [x, w], [y])


1602
@onnx_test()
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
def depthtospace_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 8, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 10, 10])

    node = onnx.helper.make_node('DepthToSpace',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2,
                                 mode='DCR')

    return ([node], [x], [y])


1617
@onnx_test()
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
def depthtospace_simple_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 8, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 4, 6])

    node = onnx.helper.make_node('DepthToSpace',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2,
                                 mode='DCR')

    return ([node], [x], [y])


1632
@onnx_test()
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
def depthtospace_crd_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 8, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 10, 10])

    node = onnx.helper.make_node('DepthToSpace',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2,
                                 mode='CRD')

    return ([node], [x], [y])


1647
@onnx_test()
Umang Yadav's avatar
Umang Yadav committed
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
def spacetodepth_test():

    x = helper.make_tensor_value_info('x', TensorProto.float, [2, 2, 10, 10])
    y = helper.make_tensor_value_info('y', TensorProto.float, [2, 8, 5, 5])

    node = onnx.helper.make_node('spacetodepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2)

    return ([node], [x], [y])


1661
@onnx_test()
Umang Yadav's avatar
Umang Yadav committed
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
def spacetodepth_simple_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 4, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 8, 2, 3])

    node = onnx.helper.make_node('SpaceToDepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2)

    return ([node], [x], [y])


1675
@onnx_test()
Umang Yadav's avatar
Umang Yadav committed
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
def spacetodepth_invalid_blocksize_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 4, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 8, 2, 3])

    node = onnx.helper.make_node('SpaceToDepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=0.3)

    return ([node], [x], [y])


1689
@onnx_test()
Umang Yadav's avatar
Umang Yadav committed
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
def spacetodepth_nondivisibility_test():

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 8, 2, 2])

    node = onnx.helper.make_node('SpaceToDepth',
                                 inputs=['x'],
                                 outputs=['y'],
                                 blocksize=2)

    return ([node], [x], [y])


1703
@onnx_test()
1704
def dequantizelinear_test():
turneram's avatar
turneram committed
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node(
        'DequantizeLinear',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


1718
@onnx_test()
turneram's avatar
turneram committed
1719
def dequantizelinear_zero_point_test():
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node(
        'DequantizeLinear',
        inputs=['0', '1', '2'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1, arg2], [arg_out])


def make_dequantizelinear_axis_graph(axis):
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT8, [1, 1, 5, 1])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [1, 1, 5, 1])

    node = onnx.helper.make_node('DequantizeLinear',
                                 inputs=['0', '1', '2'],
                                 outputs=['out'],
                                 axis=axis)

    return ([node], [arg0, arg1, arg2], [arg_out])


1749
@onnx_test()
1750
1751
1752
1753
def dequantizelinear_axis_test():
    return make_dequantizelinear_axis_graph(2)


1754
@onnx_test()
1755
1756
1757
1758
def dequantizelinear_neg_axis_test():
    return make_dequantizelinear_axis_graph(-2)


1759
@onnx_test()
Khalique's avatar
Khalique committed
1760
def dropout_test():
Khalique's avatar
Khalique committed
1761
1762
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])
Khalique's avatar
Khalique committed
1763

Khalique's avatar
Khalique committed
1764
1765
1766
1767
1768
1769
1770
    node = onnx.helper.make_node(
        'Dropout',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1771
1772


1773
@onnx_test()
Khalique's avatar
Khalique committed
1774
1775
1776
1777
def elu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
1778
1779
1780
1781
    node = onnx.helper.make_node('Elu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
1782

Khalique's avatar
Khalique committed
1783
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1784

Khalique's avatar
Khalique committed
1785

1786
@onnx_test()
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
def embedding_bag_test():

    index_val = np.array([1, 0, 2])
    offset_val = np.array([0])

    index_tensor = helper.make_tensor(name='index_val',
                                      data_type=TensorProto.INT32,
                                      dims=index_val.shape,
                                      vals=index_val.astype(np.int32))

    index = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['index'],
                                  value=index_tensor)

    offset_tensor = helper.make_tensor(name='offset_val',
                                       data_type=TensorProto.INT32,
                                       dims=offset_val.reshape(()).shape,
                                       vals=offset_val.astype(np.int32))

    offset = onnx.helper.make_node('Constant',
                                   inputs=[],
                                   outputs=['offset'],
                                   value=offset_tensor)

    weight = helper.make_tensor_value_info('weight', TensorProto.FLOAT, [4, 2])

    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [1, 2])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [1, 2])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [1, 2])

    node1 = onnx.helper.make_node('ATen',
                                  inputs=['weight', 'index', 'offset'],
                                  outputs=['y1'],
                                  mode=0,
                                  operator='embedding_bag')

    node2 = onnx.helper.make_node('ATen',
                                  inputs=['weight', 'index', 'offset'],
                                  outputs=['y2'],
                                  mode=1,
                                  operator='embedding_bag')

    node3 = onnx.helper.make_node('ATen',
                                  inputs=['weight', 'index', 'offset'],
                                  outputs=['y3'],
                                  mode=2,
                                  operator='embedding_bag')

    return ([index, offset, node1, node2, node3], [weight], [y1, y2, y3])


1839
@onnx_test()
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
def embedding_bag_offset_test():

    index_val = np.array([1, 0])
    offset_val = np.array([0, 1])

    index_tensor = helper.make_tensor(name='index_val',
                                      data_type=TensorProto.INT32,
                                      dims=index_val.shape,
                                      vals=index_val.astype(np.int32))

    index = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['index'],
                                  value=index_tensor)

    offset_tensor = helper.make_tensor(name='offset_val',
                                       data_type=TensorProto.INT32,
                                       dims=offset_val.shape,
                                       vals=offset_val.astype(np.int32))

    offset = onnx.helper.make_node('Constant',
                                   inputs=[],
                                   outputs=['offset'],
                                   value=offset_tensor)

    weight = helper.make_tensor_value_info('weight', TensorProto.FLOAT, [2, 3])

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('ATen',
                                 inputs=['weight', 'index', 'offset'],
                                 outputs=['y'],
                                 mode=0,
                                 operator='embedding_bag')

    return ([index, offset, node], [weight], [y])


1878
@onnx_test()
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
def equal_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
    x1 = helper.make_tensor("x1",
                            data_type=TensorProto.FLOAT,
                            dims=(2, 3),
                            vals=ax1.astype(np.float32))

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Equal',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


1898
@onnx_test()
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
def equal_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Equal',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


1916
@onnx_test()
Khalique's avatar
Khalique committed
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
def erf_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Erf',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1927
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1928

Khalique's avatar
Khalique committed
1929

1930
@onnx_test()
Khalique's avatar
Khalique committed
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
def exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Exp',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1941
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1942

Khalique's avatar
Khalique committed
1943

1944
@onnx_test()
Khalique's avatar
Khalique committed
1945
1946
def expand_test():
    shape_val = np.array([2, 3, 4, 5]).astype(np.int64)
Khalique's avatar
Khalique committed
1947
1948
1949
1950
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
1951
1952
1953
1954
1955
1956
1957
1958
1959
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
1960
1961
1962
1963
1964
1965
    node = onnx.helper.make_node('Expand',
                                 inputs=['x', 'shape'],
                                 outputs=['y'])

    return ([shape_const, node], [x], [y])

Khalique's avatar
Khalique committed
1966

1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
@onnx_test(True)
def external_constant_test():
    x = np.array([0, 1, 2])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])

    tensor = from_array(x)
    tensor.name = 'const_tensor'

    node = onnx.helper.make_node('Constant',
                                 inputs=[],
                                 outputs=['0'],
                                 value=tensor)

    return ([node], [], [y])


@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
def eyelike_default_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


1996
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
def eyelike_double_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.DOUBLE, [6, 15])
    T2 = helper.make_tensor_value_info('T2', TensorProto.DOUBLE, [6, 15])

    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


2009
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
def eyelike_half_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT16, [8, 8])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT16, [8, 8])

    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


2022
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2023
2024
2025
2026
2027
2028
2029
def eyelike_k_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike', inputs=['T1'], outputs=['T2'], k=1)
    return ([node], [T1], [T2])


2030
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
def eyelike_k_outofbounds_neg_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [2, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [2, 4])
    node = onnx.helper.make_node('EyeLike',
                                 inputs=['T1'],
                                 outputs=['T2'],
                                 k=-2)
    return ([node], [T1], [T2])


2041
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2042
2043
2044
2045
2046
2047
2048
def eyelike_k_outofbounds_pos_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike', inputs=['T1'], outputs=['T2'], k=4)
    return ([node], [T1], [T2])


2049
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
def eyelike_not_rank2_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4, 2])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node(
        'EyeLike',
        inputs=['T1'],
        outputs=['T2'],
    )
    return ([node], [T1], [T2])


2061
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2062
2063
2064
2065
2066
2067
2068
def eyelike_verify_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike', inputs=['T1'], outputs=['T2'], k=1)
    return ([node], [T1], [T2])


2069
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
def eyelike_verify_negk_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
    node = onnx.helper.make_node('EyeLike',
                                 inputs=['T1'],
                                 outputs=['T2'],
                                 k=-2)
    return ([node], [T1], [T2])


2080
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
def eyelike_set_dtype_test():
    T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
    T2 = helper.make_tensor_value_info('T2', TensorProto.DOUBLE, [3, 4])
    node = onnx.helper.make_node('EyeLike',
                                 inputs=['T1'],
                                 outputs=['T2'],
                                 dtype=TensorProto.DOUBLE)
    return ([node], [T1], [T2])


2091
@onnx_test()
Khalique's avatar
Khalique committed
2092
2093
def flatten_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
2094
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [6, 20])
Khalique's avatar
Khalique committed
2095
2096
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 60])

Khalique's avatar
Khalique committed
2097
2098
2099
2100
    node = onnx.helper.make_node('Flatten',
                                 inputs=['0'],
                                 axis=2,
                                 outputs=['2'])
Khalique's avatar
Khalique committed
2101

Khalique's avatar
Khalique committed
2102
2103
2104
    node2 = onnx.helper.make_node('Flatten', inputs=['0'], outputs=['3'])

    return ([node, node2], [x], [y, y2])
Khalique's avatar
Khalique committed
2105

kahmed10's avatar
kahmed10 committed
2106

2107
@onnx_test()
Khalique's avatar
Khalique committed
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
def flatten_nonstd_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 5, 4])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [6, 20])
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 60])

    trans = helper.make_node(
        'Transpose',
        inputs=['0'],
        outputs=['tx'],
        perm=[0, 1, 3, 2],
    )

    node = onnx.helper.make_node('Flatten',
                                 inputs=['tx'],
                                 axis=2,
                                 outputs=['2'])

    node2 = onnx.helper.make_node('Flatten', inputs=['tx'], outputs=['3'])

    return ([trans, node, node2], [x], [y, y2])


2130
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
def flatten_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 3, 4, 5])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [None, 20])

    node = onnx.helper.make_node('Flatten',
                                 inputs=['0'],
                                 axis=2,
                                 outputs=['2'])

    return ([node], [x], [y])


2143
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
def floor_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Floor',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2155

kahmed10's avatar
kahmed10 committed
2156

2157
@onnx_test()
Khalique's avatar
Khalique committed
2158
2159
def gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
Khalique's avatar
Khalique committed
2160
2161
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
Khalique's avatar
Khalique committed
2162
2163
2164
2165
2166
2167
2168
2169
2170
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Gather',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
2171
2172
    return ([node], [x, i], [y])

Khalique's avatar
Khalique committed
2173

Brian Pickrell's avatar
Brian Pickrell committed
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
@onnx_test()
def gather_scalar_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32, [])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 5, 6])

    node = onnx.helper.make_node(
        'Gather',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

    return ([node], [x, i], [y])


@onnx_test()
def gather_dyn_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT,
                                      [None, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [None, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Gather',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

    return ([node], [x, i], [y])


2208
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
def gather_elements_axis0_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'GatherElements',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=0,
    )

    return ([node], [x, i], [y])


2224
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
def gather_elements_axis1_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'GatherElements',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

    return ([node], [x, i], [y])


2240
@onnx_test()
turneram's avatar
turneram committed
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
def gathernd_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2])
    i = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2])

    node = onnx.helper.make_node('GatherND',
                                 inputs=['data', 'indices'],
                                 outputs=['y'])

    return ([node], [x, i], [y])


Brian Pickrell's avatar
Brian Pickrell committed
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
@onnx_test()
def gathernd_dyn_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [None, 2])
    i = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2])

    node = onnx.helper.make_node('GatherND',
                                 inputs=['data', 'indices'],
                                 outputs=['y'])

    return ([node], [x, i], [y])


2266
@onnx_test()
turneram's avatar
turneram committed
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
def gathernd_batch_dims_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    i = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2])

    node = onnx.helper.make_node(
        'GatherND',
        inputs=['data', 'indices'],
        outputs=['y'],
        batch_dims=1,
    )

    return ([node], [x, i], [y])


2282
@onnx_test()
Khalique's avatar
Khalique committed
2283
def gemm_test():
Charlie Lin's avatar
Charlie Lin committed
2284
2285
2286
2287
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [8, 6])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [8, 7])
    C = helper.make_tensor_value_info('C', TensorProto.FLOAT, [6, 7])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [6, 7])
Khalique's avatar
Khalique committed
2288

Khalique's avatar
Khalique committed
2289
    node = onnx.helper.make_node('Gemm',
Charlie Lin's avatar
Charlie Lin committed
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
                                 inputs=['A', 'B', 'C'],
                                 outputs=['Y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

    return ([node], [A, B, C], [Y])


@onnx_test()
def gemm_no_C_test():
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [5, 7])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [11, 5])
    C = helper.make_tensor_value_info('C', TensorProto.FLOAT, [])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [7, 11])

    node = onnx.helper.make_node('Gemm',
                                 inputs=['A', 'B', 'C'],
                                 outputs=['Y'],
Khalique's avatar
Khalique committed
2309
2310
2311
2312
2313
                                 alpha=2.0,
                                 beta=2.0,
                                 transA=1,
                                 transB=1)

Charlie Lin's avatar
Charlie Lin committed
2314
    return ([node], [A, B, C], [Y])
Khalique's avatar
Khalique committed
2315
2316


2317
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2318
2319
2320
2321
2322
def gemm_brcst_C_test():
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [5, 6])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [5, 7])
    C = helper.make_tensor_value_info('C', TensorProto.FLOAT, [6, 1])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [6, 7])
Khalique's avatar
Khalique committed
2323

Khalique's avatar
Khalique committed
2324
    node = onnx.helper.make_node('Gemm',
Charlie Lin's avatar
Charlie Lin committed
2325
2326
                                 inputs=['A', 'B', 'C'],
                                 outputs=['Y'],
Khalique's avatar
Khalique committed
2327
2328
2329
2330
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

Charlie Lin's avatar
Charlie Lin committed
2331
    return ([node], [A, B, C], [Y])
Khalique's avatar
Khalique committed
2332
2333


2334
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2335
2336
2337
2338
2339
def gemm_half_test():
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT16, [8, 6])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT16, [8, 7])
    C = helper.make_tensor_value_info('C', TensorProto.FLOAT16, [6, 1])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT16, [6, 7])
Khalique's avatar
Khalique committed
2340

Khalique's avatar
Khalique committed
2341
    node = onnx.helper.make_node('Gemm',
Charlie Lin's avatar
Charlie Lin committed
2342
2343
                                 inputs=['A', 'B', 'C'],
                                 outputs=['Y'],
Khalique's avatar
Khalique committed
2344
2345
2346
2347
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

Charlie Lin's avatar
Charlie Lin committed
2348
    return ([node], [A, B, C], [Y])
Khalique's avatar
Khalique committed
2349
2350


2351
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2352
2353
2354
2355
def gemm_dyn_inner_test():
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [None, 6])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [None, 7])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [6, 7])
Shucai Xiao's avatar
Shucai Xiao committed
2356
2357

    node = onnx.helper.make_node('Gemm',
Charlie Lin's avatar
Charlie Lin committed
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
                                 inputs=['A', 'B'],
                                 outputs=['Y'],
                                 alpha=0.5,
                                 transA=1)

    return ([node], [A, B], [Y])


@onnx_test()
def gemm_dyn_outer_test():
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [5, None])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [11, 5])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [None, 11])

    node = onnx.helper.make_node('Gemm',
                                 inputs=['A', 'B'],
                                 outputs=['Y'],
                                 alpha=2.0,
                                 transA=1,
                                 transB=1)

    return ([node], [A, B], [Y])


@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2383
def gemm_dyn_bias_test():
Charlie Lin's avatar
Charlie Lin committed
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [8, None])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [8, 7])
    C = helper.make_tensor_value_info('C', TensorProto.FLOAT, [1, 7])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [None, 7])

    node = onnx.helper.make_node('Gemm',
                                 inputs=['A', 'B', 'C'],
                                 outputs=['Y'],
                                 alpha=1.0,
                                 beta=1.0,
                                 transA=1)

    return ([node], [A, B, C], [Y])


@onnx_test()
def gemm_rank_error():
    A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [4, 1, 8, 6])
    B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [4, 1, 8, 7])
    C = helper.make_tensor_value_info('C', TensorProto.FLOAT, [6, 7])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [4, 1, 6, 7])

    node = onnx.helper.make_node('Gemm',
                                 inputs=['A', 'B', 'C'],
                                 outputs=['Y'],
Shucai Xiao's avatar
Shucai Xiao committed
2409
2410
2411
2412
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

Charlie Lin's avatar
Charlie Lin committed
2413
    return ([node], [A, B, C], [Y])
Shucai Xiao's avatar
Shucai Xiao committed
2414
2415


2416
@onnx_test()
Khalique's avatar
Khalique committed
2417
def globalavgpool_test():
Khalique's avatar
Khalique committed
2418
2419
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
2420
2421
2422
2423
2424
2425
2426

    node = onnx.helper.make_node(
        'GlobalAveragePool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
2427
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2428

Khalique's avatar
Khalique committed
2429

2430
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
def globalavgpool_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 3, 1, 1])

    node = onnx.helper.make_node(
        'GlobalAveragePool',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


2445
@onnx_test()
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
def globallppool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])

    node = onnx.helper.make_node(
        'GlobalLpPool',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


2459
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
def globallppool_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])

    node = onnx.helper.make_node(
        'GlobalLpPool',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


2474
@onnx_test()
Khalique's avatar
Khalique committed
2475
def globalmaxpool_test():
Khalique's avatar
Khalique committed
2476
2477
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
2478
2479
2480
2481
2482
2483
2484

    node = onnx.helper.make_node(
        'GlobalMaxPool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
2485
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
2486

Khalique's avatar
Khalique committed
2487

2488
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
def globalmaxpool_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 3, 1, 1])

    node = onnx.helper.make_node(
        'GlobalMaxPool',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


2503
@onnx_test()
Khalique's avatar
Khalique committed
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
def greater_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
    x1 = helper.make_tensor("x1",
                            data_type=TensorProto.FLOAT,
                            dims=(2, 3),
                            vals=ax1.astype(np.float32))

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Greater',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


2523
@onnx_test()
Khalique's avatar
Khalique committed
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
def greater_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Greater',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


2541
@onnx_test()
turneram's avatar
turneram committed
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
def greaterorequal_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'GreaterOrEqual',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x1, x2], [y])


2557
@onnx_test()
Khalique's avatar
Khalique committed
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
def group_conv_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 4, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 1, 3, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 4, 14, 14])

    node = onnx.helper.make_node(
        'Conv',
        inputs=['0', '1'],
        group=4,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
2570
2571
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
2572

2573
@onnx_test()
turneram's avatar
turneram committed
2574
2575
2576
2577
2578
2579
2580
2581
2582
def hardsigmoid_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 3, 4, 5])

    node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


2583
@onnx_test()
turneram's avatar
turneram committed
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
def hardsigmoid_double_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [1, 3, 4, 5])

    node = onnx.helper.make_node('HardSigmoid',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.3,
                                 beta=0.7)

    return ([node], [x], [y])


2597
@onnx_test()
turneram's avatar
turneram committed
2598
2599
2600
2601
2602
2603
2604
2605
2606
def hardsigmoid_half_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [1, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [1, 3, 4, 5])

    node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


2607
@onnx_test()
turneram's avatar
turneram committed
2608
2609
2610
2611
2612
2613
2614
2615
2616
def hardsigmoid_verify_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 5])

    node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


2617
@onnx_test()
2618
2619
2620
2621
2622
2623
2624
2625
2626
def hardswish_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 5])

    node = onnx.helper.make_node('HardSwish', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


2627
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
2628
2629
2630
2631
def if_else_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    xt = np.ones((2, 3)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

    cond_tensor = onnx.helper.make_tensor_value_info("cond",
                                                     onnx.TensorProto.BOOL,
                                                     [1])
    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y, cond_tensor], [res], [xt_tensor, yt_tensor])


@onnx_test()
def if_else_test_inlined():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

Shucai Xiao's avatar
Shucai Xiao committed
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    xt = np.ones((2, 3)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

2717
    cond = np.array([0]).astype(bool)
Shucai Xiao's avatar
Shucai Xiao committed
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
    cond_tensor = helper.make_tensor(name="cond",
                                     data_type=TensorProto.BOOL,
                                     dims=cond.shape,
                                     vals=cond.astype(bool))
    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y], [res], [cond_tensor, xt_tensor, yt_tensor])


2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
@onnx_test()
def if_then_else_multi_output_shapes_inlined_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT,
                                           [2, 3, 1])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3, 1])
    then_out2 = onnx.helper.make_tensor_value_info('then_out2',
                                                   onnx.TensorProto.FLOAT,
                                                   [2, 3, 1])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    else_out2 = onnx.helper.make_tensor_value_info('else_out2',
                                                   onnx.TensorProto.FLOAT,
                                                   [2, 3])

    xt = np.ones((2, 3, 1)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    then_add_node2 = onnx.helper.make_node('Add',
                                           inputs=['x', 'x'],
                                           outputs=['then_out2'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    else_sub_node = onnx.helper.make_node('Sub',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out2'])

    then_body = onnx.helper.make_graph([then_add_node, then_add_node2],
                                       'then_body', [], [then_out, then_out2])

    else_body = onnx.helper.make_graph([else_mul_node, else_sub_node],
                                       'else_body', [], [else_out, else_out2])

2787
    cond = np.array([1]).astype(bool)
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
    cond_tensor = helper.make_tensor(name="cond",
                                     data_type=TensorProto.BOOL,
                                     dims=cond.shape,
                                     vals=cond.astype(bool))

    res1 = onnx.helper.make_tensor_value_info('res1', TensorProto.FLOAT, [])
    res2 = onnx.helper.make_tensor_value_info('res2', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res1', 'res2'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y], [res1, res2], [cond_tensor, xt_tensor, yt_tensor])


@onnx_test()
def if_then_else_multi_output_shapes_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT,
                                           [2, 3, 1])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT,
                                           [2, 3, 1])

    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3, 1])
    then_out2 = onnx.helper.make_tensor_value_info('then_out2',
                                                   onnx.TensorProto.FLOAT,
                                                   [2, 3, 1])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3, 1])

    else_out2 = onnx.helper.make_tensor_value_info('else_out2',
                                                   onnx.TensorProto.FLOAT,
                                                   [2, 3, 1])

    xt = np.ones((2, 3, 1)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3, 1).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    then_add_node2 = onnx.helper.make_node('Add',
                                           inputs=['x', 'x'],
                                           outputs=['then_out2'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    else_sub_node = onnx.helper.make_node('Sub',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out2'])

    then_body = onnx.helper.make_graph([then_add_node, then_add_node2],
                                       'then_body', [], [then_out, then_out2])

    else_body = onnx.helper.make_graph([else_mul_node, else_sub_node],
                                       'else_body', [], [else_out, else_out2])

    cond_tensor = onnx.helper.make_tensor_value_info("cond",
                                                     onnx.TensorProto.BOOL,
                                                     [1])

    res1 = onnx.helper.make_tensor_value_info('res1', TensorProto.FLOAT, [])
    res2 = onnx.helper.make_tensor_value_info('res2', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res1', 'res2'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y, cond_tensor], [res1, res2], [xt_tensor, yt_tensor])


2876
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
2877
2878
2879
2880
2881
2882
2883
2884
def if_literal_test():
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT, [5])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT, [5])

    x = np.array([1, 2, 3, 4, 5]).astype(np.float32)
    y = np.array([5, 4, 3, 2, 1]).astype(np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
2885
    z = np.array([]).astype(np.float32)
Shucai Xiao's avatar
Shucai Xiao committed
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898

    then_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['then_out'],
        value=onnx.numpy_helper.from_array(x))

    else_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['else_out'],
        value=onnx.numpy_helper.from_array(y))

Shucai Xiao's avatar
Shucai Xiao committed
2899
2900
2901
2902
2903
    empty_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['empty_out'],
        value=onnx.numpy_helper.from_array(z))
Shucai Xiao's avatar
Shucai Xiao committed
2904

Shucai Xiao's avatar
Shucai Xiao committed
2905
2906
2907
2908
2909
    then_body = onnx.helper.make_graph([then_const_node, empty_const_node],
                                       'then_body', [], [then_out])

    else_body = onnx.helper.make_graph([else_const_node, empty_const_node],
                                       'else_body', [], [else_out])
Shucai Xiao's avatar
Shucai Xiao committed
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input], [ret])


2924
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
def if_param_excp_test():
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 4])

    yt = np.random.randn(2, 4).astype(np.float)
    xt = np.random.randn(2, 3).astype(np.float)

    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out], [xt_tensor])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out], [yt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input, x, y], [ret])


2976
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
def if_param_excp1_test():
    then_out = onnx.helper.make_tensor_value_info('sub_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])

    xt = np.random.randn(2, 3).astype(np.float)

    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['sub_out'])

    sub_body = onnx.helper.make_graph([then_add_node], 'sub_body', [],
                                      [then_out], [xt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [2])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=sub_body,
                                 else_branch=sub_body)

    return ([node], [cond_input, x], [ret])


3011
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
def if_param_test():
    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

    yt = np.random.randn(2, 3).astype(np.float)
    xt = np.random.randn(2, 3).astype(np.float)

    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out], [xt_tensor])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out], [yt_tensor])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input, x, y], [ret])


3063
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
def if_pl_test():
    out_x = onnx.helper.make_tensor_value_info('out_x', onnx.TensorProto.FLOAT,
                                               [2, 3])
    out_l_x = onnx.helper.make_tensor_value_info('out_l_x',
                                                 onnx.TensorProto.FLOAT,
                                                 [2, 3])
    out_y = onnx.helper.make_tensor_value_info('out_y', onnx.TensorProto.FLOAT,
                                               [3, 3])
    out_l_y = onnx.helper.make_tensor_value_info('out_l_y',
                                                 onnx.TensorProto.FLOAT,
                                                 [3, 3])

    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [3, 3])

    xt = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
    yt = np.array([[8, 7, 6], [5, 4, 3], [2, 1, 0]]).astype(np.float32)

    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['out_x'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['out_y'])

    then_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['out_l_y'],
        value=onnx.numpy_helper.from_array(yt))

    else_const_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['out_l_x'],
        value=onnx.numpy_helper.from_array(xt))

    then_body = onnx.helper.make_graph([then_add_node, then_const_node],
                                       'then_body', [], [out_x, out_l_y])

    else_body = onnx.helper.make_graph([else_mul_node, else_const_node],
                                       'else_body', [], [out_l_x, out_y])

    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])
    ret = onnx.helper.make_tensor_value_info('ret', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['ret'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input, x, y], [ret], [xt_tensor, yt_tensor])


3131
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
def if_then_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194

    xt = np.ones((2, 3)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

    cond_tensor = onnx.helper.make_tensor_value_info("cond",
                                                     onnx.TensorProto.BOOL,
                                                     [1])

    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y, cond_tensor], [res], [xt_tensor, yt_tensor])


@onnx_test()
def if_then_test_inlined():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [2, 3])

    then_out = onnx.helper.make_tensor_value_info('then_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
    else_out = onnx.helper.make_tensor_value_info('else_out',
                                                  onnx.TensorProto.FLOAT,
                                                  [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221

    xt = np.ones((2, 3)).astype(np.float)
    xt_tensor = helper.make_tensor(name='xt',
                                   data_type=TensorProto.FLOAT,
                                   dims=xt.shape,
                                   vals=xt.flatten().astype(np.float32))

    yt = np.random.randn(2, 3).astype(np.float)
    yt_tensor = helper.make_tensor(name='yt',
                                   data_type=TensorProto.FLOAT,
                                   dims=yt.shape,
                                   vals=yt.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'xt'],
                                          outputs=['then_out'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'yt'],
                                          outputs=['else_out'])

    then_body = onnx.helper.make_graph([then_add_node], 'then_body', [],
                                       [then_out])

    else_body = onnx.helper.make_graph([else_mul_node], 'else_body', [],
                                       [else_out])

3222
    cond = np.array([1]).astype(bool)
Shucai Xiao's avatar
Shucai Xiao committed
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
    cond_tensor = helper.make_tensor(name="cond",
                                     data_type=TensorProto.BOOL,
                                     dims=cond.shape,
                                     vals=cond.astype(bool))
    res = onnx.helper.make_tensor_value_info('res', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [x, y], [res], [cond_tensor, xt_tensor, yt_tensor])


3238
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
def if_tuple_test():
    x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [1, 4])
    y = onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [3, 4])
    cond_input = onnx.helper.make_tensor_value_info('cond',
                                                    onnx.TensorProto.BOOL, [])

    then_out0 = onnx.helper.make_tensor_value_info('then_out0',
                                                   onnx.TensorProto.FLOAT,
                                                   [1, 4])
    then_out1 = onnx.helper.make_tensor_value_info('then_out1',
                                                   onnx.TensorProto.FLOAT,
                                                   [3, 4])
    else_out0 = onnx.helper.make_tensor_value_info('else_out0',
                                                   onnx.TensorProto.FLOAT,
                                                   [1, 4])
    else_out1 = onnx.helper.make_tensor_value_info('else_out1',
                                                   onnx.TensorProto.FLOAT,
                                                   [3, 4])

    one = np.ones([1]).astype(np.float)
    one_tensor = helper.make_tensor(name='one',
                                    data_type=TensorProto.FLOAT,
                                    dims=one.shape,
                                    vals=one.flatten().astype(np.float32))

    two = np.array([2]).astype(np.float)
    two_tensor = helper.make_tensor(name='two',
                                    data_type=TensorProto.FLOAT,
                                    dims=two.shape,
                                    vals=two.flatten().astype(np.float32))

    three = np.array([3]).astype(np.float)
    three_tensor = helper.make_tensor(name='three',
                                      data_type=TensorProto.FLOAT,
                                      dims=three.shape,
                                      vals=three.flatten().astype(np.float32))

    then_add_node = onnx.helper.make_node('Add',
                                          inputs=['x', 'one'],
                                          outputs=['then_out0'])
    then_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['y', 'two'],
                                          outputs=['then_out1'])

    else_mul_node = onnx.helper.make_node('Mul',
                                          inputs=['x', 'three'],
                                          outputs=['else_out0'])
    else_add_node = onnx.helper.make_node('Add',
                                          inputs=['y', 'three'],
                                          outputs=['else_out1'])

    then_body = onnx.helper.make_graph([then_add_node, then_mul_node],
                                       'then_body', [], [then_out0, then_out1])

    else_body = onnx.helper.make_graph([else_mul_node, else_add_node],
                                       'else_body', [], [else_out0, else_out1])

    res0 = onnx.helper.make_tensor_value_info('res0', TensorProto.FLOAT, [])
    res1 = onnx.helper.make_tensor_value_info('res1', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('If',
                                 inputs=['cond'],
                                 outputs=['res0', 'res1'],
                                 then_branch=then_body,
                                 else_branch=else_body)

    return ([node], [cond_input, x,
                     y], [res0, res1], [one_tensor, two_tensor, three_tensor])


3309
@onnx_test()
Khalique's avatar
Khalique committed
3310
def imagescaler_test():
Khalique's avatar
Khalique committed
3311
3312
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 16, 16])
Khalique's avatar
Khalique committed
3313

Khalique's avatar
Khalique committed
3314
3315
3316
3317
3318
    node = onnx.helper.make_node('ImageScaler',
                                 inputs=['0'],
                                 outputs=['1'],
                                 bias=[0.01, 0.02, 0.03],
                                 scale=0.5)
Khalique's avatar
Khalique committed
3319

Khalique's avatar
Khalique committed
3320
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3321

Khalique's avatar
Khalique committed
3322

3323
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
def imagescaler_half_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1, 3, 16, 16])

    node = onnx.helper.make_node('ImageScaler',
                                 inputs=['0'],
                                 outputs=['1'],
                                 bias=[0.01, 0.02, 0.03],
                                 scale=0.5)

    return ([node], [x], [y])


3337
@onnx_test()
Khalique's avatar
Khalique committed
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
def implicit_add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
3349
3350
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
3351

3352
@onnx_test()
Khalique's avatar
Khalique committed
3353
3354
3355
def implicit_pow_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
Khalique's avatar
Khalique committed
3356
3357
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
3358
3359
3360
3361
3362
3363
3364

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
3365
3366
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
3367

3368
@onnx_test()
Khalique's avatar
Khalique committed
3369
def implicit_sub_bcast_test():
Shucai Xiao's avatar
Shucai Xiao committed
3370
3371
3372
    arg0 = helper.make_tensor_value_info('0', TensorProto.UINT64, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.UINT64, [4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.UINT64,
Khalique's avatar
Khalique committed
3373
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
3374
3375
3376
3377
3378
3379
3380

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
3381
3382
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
3383

3384
@onnx_test()
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
def initializer_not_an_input():
    values = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
    w = helper.make_tensor(name='w',
                           data_type=TensorProto.FLOAT,
                           dims=values.shape,
                           vals=values.flatten().astype(np.float))

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 4])

    node = onnx.helper.make_node(
        'Gemm',
        inputs=['x', 'w'],
        outputs=['y'],
    )

    return ([node], [x], [y], [w])


3404
@onnx_test()
kahmed10's avatar
kahmed10 committed
3405
3406
3407
3408
3409
def instance_norm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])
3410
3411
3412
3413
3414
3415
3416
3417

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


3418
@onnx_test()
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
def instance_norm_half_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT16, [1, 2, 3, 3])

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


3432
@onnx_test()
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
def instance_norm_type_mismatch_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
@onnx_test()
def instance_norm_dyn_batch_test():
    # the batch size is a dynamic dimension
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [None, 2, 3, 3])

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])
    return ([node], [x, scale, bias], [y])


@onnx_test()
def instance_norm_dyn_batch_half_test():
    # the batch size is a dynamic dimension
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16,
                                      [None, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT16,
                                      [None, 2, 3, 3])

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


3479
@onnx_test()
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
def instance_norm_invalid_type_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT32, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


3493
@onnx_test()
3494
3495
3496
3497
3498
def instance_norm_nonbroadcastable_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3, 3])
    scale = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4])
    bias = helper.make_tensor_value_info('2', TensorProto.FLOAT, [4])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 3, 3])
kahmed10's avatar
kahmed10 committed
3499
3500
3501
3502
3503
3504
3505
3506

    node = onnx.helper.make_node('InstanceNormalization',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'])

    return ([node], [x, scale, bias], [y])


3507
@onnx_test()
kahmed10's avatar
kahmed10 committed
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
def instance_norm_val_test():
    x = np.array([[[[0, 1, 2], [3, 4, 5], [6, 7, 8]],
                   [[0, 1, 2], [3, 4, 5], [6, 7, 8]]]])
    scale = np.array([1, 2])
    bias = np.array([0, 1])

    x_tensor = helper.make_tensor(name='x_tensor',
                                  data_type=TensorProto.FLOAT,
                                  dims=x.shape,
                                  vals=x.flatten().astype(np.float))
    scale_tensor = helper.make_tensor(name='scale_tensor',
                                      data_type=TensorProto.FLOAT,
                                      dims=scale.shape,
                                      vals=scale.flatten().astype(np.float))
    bias_tensor = helper.make_tensor(name='bias_tensor',
                                     data_type=TensorProto.FLOAT,
                                     dims=bias.shape,
                                     vals=bias.flatten().astype(np.float))

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 3, 3])

    node = onnx.helper.make_node(
        'InstanceNormalization',
        inputs=['x_tensor', 'scale_tensor', 'bias_tensor'],
kahmed10's avatar
kahmed10 committed
3532
3533
3534
3535
3536
        outputs=['y'])

    return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor])


3537
@onnx_test()
kahmed10's avatar
kahmed10 committed
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
def instance_norm_val_3d_test():
    x = np.array([[[[[0, 1], [2, 3]], [[4, 5], [6, 7]]],
                   [[[0, 1], [2, 3]], [[4, 5], [6, 7]]]]])
    scale = np.array([1, 2])
    bias = np.array([0, 1])

    x_tensor = helper.make_tensor(name='x_tensor',
                                  data_type=TensorProto.FLOAT,
                                  dims=x.shape,
                                  vals=x.flatten().astype(np.float))
    scale_tensor = helper.make_tensor(name='scale_tensor',
                                      data_type=TensorProto.FLOAT,
                                      dims=scale.shape,
                                      vals=scale.flatten().astype(np.float))
    bias_tensor = helper.make_tensor(name='bias_tensor',
                                     data_type=TensorProto.FLOAT,
                                     dims=bias.shape,
                                     vals=bias.flatten().astype(np.float))

    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2, 2, 2, 2])

    node = onnx.helper.make_node(
        'InstanceNormalization',
        inputs=['x_tensor', 'scale_tensor', 'bias_tensor'],
kahmed10's avatar
kahmed10 committed
3562
3563
3564
3565
3566
        outputs=['y'])

    return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor])


3567
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
def isnan_float_test():
    t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT, [2, 3])
    t2 = helper.make_tensor_value_info('t2', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'IsNaN',
        inputs=['t1'],
        outputs=['t2'],
    )
    return ([node], [t1], [t2])


3580
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
def isnan_half_test():
    t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT16, [2, 3])
    t2 = helper.make_tensor_value_info('t2', TensorProto.FLOAT16, [2, 3])

    node = onnx.helper.make_node(
        'IsNaN',
        inputs=['t1'],
        outputs=['t2'],
    )
    return ([node], [t1], [t2])


3593
@onnx_test()
kahmed10's avatar
kahmed10 committed
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
def layernorm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 1, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 5])
    scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [5])
    bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [5])
    axes = [2]
    pow_2 = np.array([[[2, 2, 2, 2, 2]]])
    epsilon = np.array([1e-12])

    pow_tensor = helper.make_tensor(name='pow',
                                    data_type=TensorProto.FLOAT,
                                    dims=pow_2.shape,
                                    vals=pow_2.flatten().astype(np.float))

    epsilon_tensor = helper.make_tensor(name='epsilon',
                                        data_type=TensorProto.FLOAT,
                                        dims=epsilon.shape,
                                        vals=epsilon.flatten().astype(
                                            np.float))

    mean = onnx.helper.make_node('ReduceMean',
                                 inputs=['0'],
                                 outputs=['mean_out'],
                                 axes=axes)

    sub_mean = onnx.helper.make_node('Sub',
                                     inputs=['0', 'mean_out'],
                                     outputs=['sub_out'])

    sub_pow = onnx.helper.make_node('Pow',
                                    inputs=['sub_out', 'pow'],
                                    outputs=['pow_out'])

    var = onnx.helper.make_node('ReduceMean',
                                inputs=['pow_out'],
                                outputs=['var_out'],
                                axes=axes)

    add = onnx.helper.make_node('Add',
                                inputs=['var_out', 'epsilon'],
                                outputs=['add_out'])

    sqrt = onnx.helper.make_node('Sqrt',
                                 inputs=['add_out'],
                                 outputs=['sqrt_out'])

    div = onnx.helper.make_node('Div',
                                inputs=['sub_out', 'sqrt_out'],
                                outputs=['div_out'])

    mul = onnx.helper.make_node('Mul',
                                inputs=['scale', 'div_out'],
                                outputs=['mul_out'])

    bias_add = onnx.helper.make_node('Add',
                                     inputs=['mul_out', 'bias'],
                                     outputs=['1'])

    return ([mean, sub_mean, sub_pow, var, add, sqrt, div, mul,
             bias_add], [x, scale, bias], [y], [pow_tensor, epsilon_tensor])


3656
@onnx_test()
Khalique's avatar
Khalique committed
3657
3658
3659
3660
def leaky_relu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
3661
3662
3663
3664
    node = onnx.helper.make_node('LeakyRelu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
3665

Khalique's avatar
Khalique committed
3666
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3667

Khalique's avatar
Khalique committed
3668

3669
@onnx_test()
Khalique's avatar
Khalique committed
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
def less_test():
    ax1 = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
    x1 = helper.make_tensor("x1",
                            data_type=TensorProto.FLOAT,
                            dims=(2, 3),
                            vals=ax1.astype(np.float32))

    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'Less',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x2], [y], [x1])


3689
@onnx_test()
Khalique's avatar
Khalique committed
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
def less_bool_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.BOOL, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node1 = onnx.helper.make_node('Cast', inputs=['x1'], outputs=['bx1'], to=9)

    node2 = onnx.helper.make_node(
        'Less',
        inputs=['bx1', 'x2'],
        outputs=['y'],
    )

    return ([node1, node2], [x1, x2], [y])


3707
@onnx_test()
Khalique's avatar
Khalique committed
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
def lessorequal_test():

    x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3])
    x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'LessOrEqual',
        inputs=['x1', 'x2'],
        outputs=['y'],
    )

    return ([node], [x1, x2], [y])


3723
@onnx_test()
Khalique's avatar
Khalique committed
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
def log_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Log',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
3734
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3735

Khalique's avatar
Khalique committed
3736

3737
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
def logical_and_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4, 5])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('And', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


3748
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
def logical_or_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [2, 3, 4, 5])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('Or', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


3759
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
def logical_xor_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4, 1])
    z = helper.make_tensor_value_info('2', TensorProto.BOOL, [2, 3, 4, 5])

    node = onnx.helper.make_node('Xor', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])


3770
@onnx_test()
Khalique's avatar
Khalique committed
3771
3772
3773
3774
def logsoftmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

Khalique's avatar
Khalique committed
3775
3776
3777
3778
    node = onnx.helper.make_node('LogSoftmax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=1)
Khalique's avatar
Khalique committed
3779

Khalique's avatar
Khalique committed
3780
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3781

Khalique's avatar
Khalique committed
3782

3783
@onnx_test()
3784
3785
def logsoftmax_nonstd_input_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [6, 9])
3786
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 4])
3787
3788
3789
3790
3791
3792
3793
3794

    node0 = onnx.helper.make_node('Slice',
                                  inputs=['0'],
                                  axes=[0, 1],
                                  starts=[1, 0],
                                  ends=[4, 4],
                                  outputs=['1'])

Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
3795
3796
3797
3798
    node1 = onnx.helper.make_node('LogSoftmax',
                                  inputs=['1'],
                                  outputs=['2'],
                                  axis=-1)
3799

3800
    return ([node0, node1], [x], [y])
3801
3802


3803
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
def loop_default_test():
    body = helper.make_graph([
        helper.make_node("Add", ["a", "b_in"], ["my_local"]),
        helper.make_node("Sub", ["a", "b_in"], ["a_sub_b_in"]),
        helper.make_node("Greater", ["my_local", "a_sub_b_in"],
                         ["keep_going"]),
        helper.make_node("Add", ["a_sub_b_in", "a_sub_b_in"],
                         ["user_defined_vals"]),
    ], "body", [
        helper.make_tensor_value_info('iteration_num', TensorProto.INT64, []),
        helper.make_tensor_value_info('keep_going_inp', TensorProto.BOOL, []),
        helper.make_tensor_value_info('b_in', TensorProto.FLOAT, [])
    ], [
        helper.make_tensor_value_info('keep_going', TensorProto.BOOL, []),
        helper.make_tensor_value_info('a_sub_b_in', TensorProto.FLOAT, []),
        helper.make_tensor_value_info('my_local', TensorProto.FLOAT, []),
        helper.make_tensor_value_info('user_defined_vals', TensorProto.FLOAT,
                                      []),
    ])

    node = helper.make_node(
        "Loop",
        inputs=["", "", "b"],
        outputs=["b_loop", "my_local_loop", "user_defined_vals_loop"],
        body=body)

    a = helper.make_tensor_value_info('a', TensorProto.FLOAT, [])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [])

    b_loop = helper.make_tensor_value_info('b_loop', TensorProto.FLOAT, [])
    uout = helper.make_tensor_value_info('user_defined_vals_loop',
                                         TensorProto.FLOAT, [2, 1])

    return ([node], [a, b], [b_loop, uout])


3840
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
def loop_test():
    body = helper.make_graph([
        helper.make_node("Add", ["a", "b_in"], ["my_local"]),
        helper.make_node("Sub", ["a", "b_in"], ["a_sub_b_in"]),
        helper.make_node("Greater", ["my_local", "a_sub_b_in"],
                         ["keep_going"]),
        helper.make_node("Add", ["a_sub_b_in", "a_sub_b_in"],
                         ["user_defined_vals"]),
    ], "body", [
        helper.make_tensor_value_info('iteration_num', TensorProto.INT64, [1]),
        helper.make_tensor_value_info('keep_going_inp', TensorProto.BOOL, [1]),
        helper.make_tensor_value_info('b_in', TensorProto.FLOAT, [1])
    ], [
        helper.make_tensor_value_info('keep_going', TensorProto.BOOL, [1]),
        helper.make_tensor_value_info('a_sub_b_in', TensorProto.FLOAT, [1]),
        helper.make_tensor_value_info('my_local', TensorProto.FLOAT, [1]),
        helper.make_tensor_value_info('user_defined_vals', TensorProto.FLOAT,
                                      [1]),
    ])

    node = helper.make_node(
        "Loop",
        inputs=["max_trip_count", "keep_going_cond", "b"],
        outputs=["b_loop", "my_local_loop", "user_defined_vals_loop"],
        body=body)

    a = helper.make_tensor_value_info('a', TensorProto.FLOAT, [1])
    b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [1])
    cond = helper.make_tensor_value_info('keep_going_cond', TensorProto.BOOL,
                                         [1])
    iter = helper.make_tensor_value_info('max_trip_count', TensorProto.INT64,
                                         [1])

    b_loop = helper.make_tensor_value_info('b_loop', TensorProto.FLOAT, [1])
    uout = helper.make_tensor_value_info('user_defined_vals_loop',
                                         TensorProto.FLOAT, [2, 1])

    return ([node], [iter, cond, a, b], [b_loop, uout])


3881
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
def lpnormalization_axis_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('LpNormalization',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=2)
    return ([node], [x], [y])


3893
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
def lpnormalization_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'LpNormalization',
        inputs=['x'],
        outputs=['y'],
        axis=0,
    )
    return ([node], [x], [y])


3907
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
def lpnormalization_l1_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'LpNormalization',
        inputs=['x'],
        outputs=['y'],
        p=1,
    )
    return ([node], [x], [y])


3921
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
def lpnormalization_l2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node('LpNormalization',
                                 inputs=['x'],
                                 outputs=['y'],
                                 p=2)
    return ([node], [x], [y])


3933
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
def lpnormalization_p_error_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node('LpNormalization',
                                 inputs=['x'],
                                 outputs=['y'],
                                 p=3)
    return ([node], [x], [y])


3945
@onnx_test()
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
def lppool_l1_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 3, 3])

    node = onnx.helper.make_node('LpPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[3],
                                 p=1)
    return ([node], [x], [y])


3958
@onnx_test()
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
def lppool_l2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 3, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 3, 3])

    node = onnx.helper.make_node('LpPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[3],
                                 p=2)
    return ([node], [x], [y])


3971
@onnx_test()
Khalique's avatar
Khalique committed
3972
3973
3974
3975
def lrn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 28, 24, 24])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 28, 24, 24])

Khalique's avatar
Khalique committed
3976
3977
3978
3979
3980
3981
3982
    node = onnx.helper.make_node('LRN',
                                 inputs=['0'],
                                 size=5,
                                 alpha=0.0001,
                                 beta=0.75,
                                 bias=1.0,
                                 outputs=['1'])
Khalique's avatar
Khalique committed
3983

Khalique's avatar
Khalique committed
3984
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
3985

Khalique's avatar
Khalique committed
3986

3987
@onnx_test()
Khalique's avatar
Khalique committed
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
def matmul_bmbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 2, 1, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 2, 3, 6, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
3999
4000
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
4001

4002
@onnx_test()
Khalique's avatar
Khalique committed
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
def matmul_bmv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4014
4015
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
4016

4017
@onnx_test()
Khalique's avatar
Khalique committed
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
def matmul_mv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4029
4030
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
4031

4032
@onnx_test()
Khalique's avatar
Khalique committed
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
def matmul_vbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4044
4045
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
4046

4047
@onnx_test()
Khalique's avatar
Khalique committed
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
def matmul_vm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4059
4060
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
4061

4062
@onnx_test()
Khalique's avatar
Khalique committed
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
def matmul_vv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
4074
4075
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
4076

Charlie Lin's avatar
Charlie Lin committed
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
@onnx_test()
def matmul_dyn_mm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7, None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, None])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


@onnx_test()
def matmul_dyn_mv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 1])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


@onnx_test()
def matmul_dyn_vm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7, None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, None])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


@onnx_test()
def matmul_dyn_vv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


@onnx_test()
def matmul_dyn_broadcast_error():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 7, None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, None])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


4152
@onnx_test()
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
def matmulinteger_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.INT8, [3, 6, 16])
    m2 = helper.make_tensor_value_info('2', TensorProto.INT8, [3, 16, 8])
    y = helper.make_tensor_value_info('y', TensorProto.INT32, [3, 6, 8])

    node = onnx.helper.make_node(
        'MatMulInteger',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


Charlie Lin's avatar
Charlie Lin committed
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
@onnx_test()
def matmulinteger_dyn_error():
    m1 = helper.make_tensor_value_info('1', TensorProto.INT8, [None, 6, 16])
    m2 = helper.make_tensor_value_info('2', TensorProto.INT8, [None, 16, 8])
    y = helper.make_tensor_value_info('y', TensorProto.INT32, [None, 6, 8])

    node = onnx.helper.make_node(
        'MatMulInteger',
        inputs=['1', '2'],
        outputs=['y'],
    )

    return ([node], [m1, m2], [y])


4182
@onnx_test()
Khalique's avatar
Khalique committed
4183
4184
4185
4186
def max_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
4187
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])
Khalique's avatar
Khalique committed
4188
4189
4190
4191
4192
4193
4194

    node = onnx.helper.make_node(
        'Max',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
4195
4196
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
4197

4198
@onnx_test()
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
def maxpool_notset_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 1, 1])

    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[6, 6],
                                 strides=[2, 2],
                                 pads=[0, 0, 1, 1],
                                 auto_pad='NOTSET')

    return ([node], [x], [y])


4214
@onnx_test()
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
def maxpool_same_upper_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 5, 5])

    node = onnx.helper.make_node('MaxPool',
                                 inputs=['x'],
                                 outputs=['y'],
                                 kernel_shape=[2, 2],
                                 auto_pad='SAME_UPPER')

    return ([node], [x], [y])


4228
@onnx_test()
turneram's avatar
turneram committed
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
def mean_broadcast_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 4])
    data_1 = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                           [1, 2, 3, 4])
    data_2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [4])
    data_3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1])
    data_4 = helper.make_tensor_value_info('4', TensorProto.FLOAT, [2, 3, 1])

    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT,
                                         [1, 2, 3, 4])

    node = onnx.helper.make_node("Mean",
                                 inputs=["0", "1", "2", "3", "4"],
                                 outputs=["mean"])

    return ([node], [data_0, data_1, data_2, data_3, data_4], [mean])


4247
@onnx_test()
turneram's avatar
turneram committed
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
def mean_fp16_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1, 2, 3])
    data_1 = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1, 2, 3])
    data_2 = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1, 2, 3])

    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT16,
                                         [1, 2, 3])

    node = onnx.helper.make_node("Mean",
                                 inputs=["0", "1", "2"],
                                 outputs=["mean"])

    return ([node], [data_0, data_1, data_2], [mean])


4263
@onnx_test()
turneram's avatar
turneram committed
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
def mean_invalid_broadcast_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3])
    data_1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2, 3])
    data_2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 2, 4])

    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [1, 2, 3])

    node = onnx.helper.make_node("Mean",
                                 inputs=["0", "1", "2"],
                                 outputs=["mean"])

    return ([node], [data_0, data_1, data_2], [mean])


4278
@onnx_test()
turneram's avatar
turneram committed
4279
4280
4281
4282
4283
4284
4285
4286
4287
def mean_single_input_test():
    data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3])
    mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [1, 2, 3])

    node = onnx.helper.make_node("Mean", inputs=["0"], outputs=["mean"])

    return ([node], [data_0], [mean])


4288
@onnx_test()
turneram's avatar
turneram committed
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
def mean_test():
    data = [
        helper.make_tensor_value_info(str(i), TensorProto.DOUBLE, [2, 2, 2])
        for i in range(10)
    ]
    data_names = [str(i) for i in range(10)]
    mean = helper.make_tensor_value_info('mean', TensorProto.DOUBLE, [2, 2, 2])

    node = onnx.helper.make_node("Mean", inputs=data_names, outputs=["mean"])

    return ([node], data, [mean])


4302
@onnx_test()
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
def mean_integral_test():
    data = [
        helper.make_tensor_value_info(str(i), TensorProto.INT32, [2, 2, 2])
        for i in range(10)
    ]
    data_names = [str(i) for i in range(10)]
    mean = helper.make_tensor_value_info('mean', TensorProto.INT32, [2, 2, 2])

    node = onnx.helper.make_node("Mean", inputs=data_names, outputs=["mean"])

    return ([node], data, [mean])


4316
@onnx_test()
Khalique's avatar
Khalique committed
4317
4318
4319
4320
def min_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
4321
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])
Khalique's avatar
Khalique committed
4322
4323
4324
4325
4326
4327
4328

    node = onnx.helper.make_node(
        'Min',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
4329
4330
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
4331

4332
@onnx_test()
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
def mod_test():
    a = helper.make_tensor_value_info('0', TensorProto.INT32, [3, 3, 3])
    b = helper.make_tensor_value_info('1', TensorProto.INT32, [3, 3, 3])
    y = helper.make_tensor_value_info('2', TensorProto.INT32, [3, 3, 3])

    node = onnx.helper.make_node('Mod', inputs=['0', '1'], outputs=['2'])

    return ([node], [a, b], [y])


4343
@onnx_test()
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
def mod_test_half():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [3, 3, 3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [3, 3, 3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [3, 3, 3])

    node = onnx.helper.make_node('Mod', inputs=['0', '1'], outputs=['2'])

    return ([node], [a, b], [y])


4354
@onnx_test()
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
def mod_test_different_dtypes():
    a = helper.make_tensor_value_info('0', TensorProto.INT16, [3, 3, 3])
    b = helper.make_tensor_value_info('1', TensorProto.INT32, [3, 3, 3])
    y = helper.make_tensor_value_info('2', TensorProto.INT32, [3, 3, 3])

    node = onnx.helper.make_node(
        'Mod',
        inputs=['0', '1'],
        outputs=['2'],
    )

    return ([node], [a, b], [y])


4369
@onnx_test()
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
def mod_test_fmod():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 3, 3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 3, 3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 3, 3])

    node = onnx.helper.make_node(
        'Mod',
        inputs=['0', '1'],
        outputs=['2'],
        fmod=1  #fmod flag = 1
    )

    return ([node], [a, b], [y])


4385
@onnx_test()
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
def mod_test_fmod_half():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [3, 3, 3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [3, 3, 3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [3, 3, 3])

    node = onnx.helper.make_node('Mod',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 fmod=1)

    return ([node], [a, b], [y])


4399
@onnx_test()
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
def mod_test_fmod_different_dtypes():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 3, 3])
    b = helper.make_tensor_value_info('1', TensorProto.INT32, [3, 3, 3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 3, 3])

    node = onnx.helper.make_node(
        'Mod',
        inputs=['0', '1'],
        outputs=['2'],
        fmod=1  #fmod flag = 1
    )

    return ([node], [a, b], [y])


4415
@onnx_test()
turneram's avatar
turneram committed
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
def multinomial_test():
    sample_size = 10
    seed = 0.0
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 seed=seed,
                                 outputs=['output'])

    return ([node], [input], [output])


4432
@onnx_test()
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
def multinomial_generated_seed_test():
    sample_size = 10
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 outputs=['output'])

    return ([node], [input], [output])


4447
@onnx_test()
turneram's avatar
turneram committed
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
def multinomial_dtype_error_test():
    sample_size = 10
    dtype = 0
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT64,
                                           [1, 10])

    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 dtype=dtype,
                                 outputs=['output'])

    return ([node], [input], [output])


4464
@onnx_test()
turneram's avatar
turneram committed
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
def multinomial_int64_test():
    sample_size = 10
    dtype = 7
    seed = 1.0
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT64,
                                           [1, 10])

    node = onnx.helper.make_node('Multinomial',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 dtype=dtype,
                                 seed=seed,
                                 outputs=['output'])

    return ([node], [input], [output])


4483
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
4484
def neg_test():
Shucai Xiao's avatar
Shucai Xiao committed
4485
4486
    x = helper.make_tensor_value_info('0', TensorProto.INT64, [2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.INT64, [2, 3])
Shucai Xiao's avatar
Shucai Xiao committed
4487
4488
4489
4490
4491
4492

    node = onnx.helper.make_node('Neg', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


4493
@onnx_test()
4494
4495
4496
4497
4498
4499
4500
4501
4502
def neg_dynamic_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT64, [None, 3])
    y = helper.make_tensor_value_info('1', TensorProto.INT64, [None, 3])

    node = onnx.helper.make_node('Neg', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


4503
@onnx_test()
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
def nms_test():
    b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [1, 6, 4])
    s = helper.make_tensor_value_info('scores', TensorProto.FLOAT, [1, 1, 6])
    mo = helper.make_tensor_value_info('max_output_boxes_per_class',
                                       TensorProto.INT64, [1])
    iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
                                        [1])
    st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
                                       [1])
    out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
Charlie Lin's avatar
Charlie Lin committed
4514
                                        [None, 3])
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527

    node = onnx.helper.make_node('NonMaxSuppression',
                                 inputs=[
                                     'boxes', 'scores',
                                     'max_output_boxes_per_class',
                                     'iou_threshold', 'score_threshold'
                                 ],
                                 outputs=['selected_indices'],
                                 center_point_box=1)

    return ([node], [b, s, mo, iou, st], [out])


4528
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
def nms_use_dyn_output_false_test():
    b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [1, 6, 4])
    s = helper.make_tensor_value_info('scores', TensorProto.FLOAT, [1, 1, 6])
    mo = helper.make_tensor_value_info('max_output_boxes_per_class',
                                       TensorProto.INT64, [1])
    iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
                                        [1])
    st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
                                       [1])
    out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
                                        [None, 3])

    node = onnx.helper.make_node('NonMaxSuppression',
                                 inputs=[
                                     'boxes', 'scores',
                                     'max_output_boxes_per_class',
                                     'iou_threshold', 'score_threshold'
                                 ],
                                 outputs=['selected_indices'],
                                 use_dyn_output=0)

    return ([node], [b, s, mo, iou, st], [out])


4553
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
def nms_dynamic_batch_test():
    b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [None, 6, 4])
    s = helper.make_tensor_value_info('scores', TensorProto.FLOAT,
                                      [None, 1, 6])
    mo = helper.make_tensor_value_info('max_output_boxes_per_class',
                                       TensorProto.INT64, [1])
    iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
                                        [1])
    st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
                                       [1])
    out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
                                        [None, 3])

    node = onnx.helper.make_node('NonMaxSuppression',
                                 inputs=[
                                     'boxes', 'scores',
                                     'max_output_boxes_per_class',
                                     'iou_threshold', 'score_threshold'
                                 ],
                                 outputs=['selected_indices'],
                                 center_point_box=1,
                                 use_dyn_output=1)

    return ([node], [b, s, mo, iou, st], [out])


4580
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
def nms_dynamic_boxes_test():
    b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [1, None, 4])
    s = helper.make_tensor_value_info('scores', TensorProto.FLOAT,
                                      [1, 1, None])
    mo = helper.make_tensor_value_info('max_output_boxes_per_class',
                                       TensorProto.INT64, [1])
    iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
                                        [1])
    st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
                                       [1])
    out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
                                        [None, 3])

    node = onnx.helper.make_node('NonMaxSuppression',
                                 inputs=[
                                     'boxes', 'scores',
                                     'max_output_boxes_per_class',
                                     'iou_threshold', 'score_threshold'
                                 ],
                                 outputs=['selected_indices'])

    return ([node], [b, s, mo, iou, st], [out])


4605
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
def nms_dynamic_classes_test():
    b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [1, 6, 4])
    s = helper.make_tensor_value_info('scores', TensorProto.FLOAT,
                                      [1, None, 6])
    mo = helper.make_tensor_value_info('max_output_boxes_per_class',
                                       TensorProto.INT64, [1])
    iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
                                        [1])
    st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
                                       [1])
    out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
                                        [None, 3])

    node = onnx.helper.make_node('NonMaxSuppression',
                                 inputs=[
                                     'boxes', 'scores',
                                     'max_output_boxes_per_class',
                                     'iou_threshold', 'score_threshold'
                                 ],
                                 outputs=['selected_indices'])

    return ([node], [b, s, mo, iou, st], [out])


4630
@onnx_test()
4631
4632
4633
4634
4635
4636
4637
4638
4639
def not_test():
    x = helper.make_tensor_value_info('0', TensorProto.INT32, [4])
    y = helper.make_tensor_value_info('1', TensorProto.INT32, [4])

    node = onnx.helper.make_node('Not', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


4640
@onnx_test()
4641
4642
4643
4644
4645
4646
4647
4648
4649
def not_bool_test():
    x = helper.make_tensor_value_info('0', TensorProto.BOOL, [4])
    y = helper.make_tensor_value_info('1', TensorProto.BOOL, [4])

    node = onnx.helper.make_node('Not', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


4650
@onnx_test()
Khalique's avatar
Khalique committed
4651
4652
4653
4654
def no_pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 2])

Khalique's avatar
Khalique committed
4655
4656
4657
4658
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[0, 0, 0, 0],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
4659

Khalique's avatar
Khalique committed
4660
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4661

Khalique's avatar
Khalique committed
4662

4663
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
def nonzero_dynamic_test():
    x = helper.make_tensor_value_info('data', TensorProto.BOOL, [2, 2])
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 3])

    node = onnx.helper.make_node('NonZero',
                                 inputs=['data'],
                                 outputs=['indices'])

    return ([node], [x], [y])


4675
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
def nonzero_test():
    data1 = np.array([[1., 0.], [1., 1.]])
    data = helper.make_tensor(name='data',
                              data_type=TensorProto.FLOAT,
                              dims=data1.shape,
                              vals=data1.flatten().astype(np.float))
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 3])

    node = onnx.helper.make_node('NonZero',
                                 inputs=['data'],
                                 outputs=['indices'])

    return ([node], [], [y], [data])


4691
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
def nonzero_int_test():
    data1 = np.array([[1, 1, 0], [1, 0, 1]])
    data = helper.make_tensor(name='data',
                              data_type=TensorProto.INT16,
                              dims=data1.shape,
                              vals=data1.flatten().astype(np.int16))
    y = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 4])

    node = onnx.helper.make_node('NonZero',
                                 inputs=['data'],
                                 outputs=['indices'])

    return ([node], [], [y], [data])


4707
@onnx_test()
kahmed10's avatar
kahmed10 committed
4708
def onehot_test():
Shucai Xiao's avatar
Shucai Xiao committed
4709
4710
4711
4712
4713
4714
    axis_value = 0
    depth = np.array([3])
    indices = helper.make_tensor_value_info("indices", TensorProto.INT32,
                                            [5, 2])
    values = helper.make_tensor_value_info("values", TensorProto.FLOAT16, [2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 5, 2])
kahmed10's avatar
kahmed10 committed
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725

    depth_tensor = helper.make_tensor(name="depth",
                                      data_type=TensorProto.INT32,
                                      dims=None,
                                      vals=depth.astype(int))

    node = onnx.helper.make_node('OneHot',
                                 inputs=['indices', 'depth', 'values'],
                                 outputs=['y'],
                                 axis=axis_value)

Shucai Xiao's avatar
Shucai Xiao committed
4726
    return ([node], [indices, values], [y], [depth_tensor])
kahmed10's avatar
kahmed10 committed
4727
4728


4729
@onnx_test()
Khalique's avatar
Khalique committed
4730
4731
4732
4733
def pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 4])

Khalique's avatar
Khalique committed
4734
4735
4736
4737
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[1, 1, 1, 1],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
4738

Khalique's avatar
Khalique committed
4739
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
4740

Khalique's avatar
Khalique committed
4741

4742
@onnx_test()
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
def pad_3arg_test():
    values = np.array([1])
    val_tensor = helper.make_tensor(name='val',
                                    data_type=TensorProto.FLOAT,
                                    dims=values.reshape(()).shape,
                                    vals=values.astype(float))
    arg_val = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_val'],
                                    value=val_tensor)

    sizes = np.array([1, 1, 2, 2])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5, 5])

    node = onnx.helper.make_node('Pad',
                                 inputs=['0', 'arg_pad', 'arg_val'],
                                 outputs=['1'])

    return ([arg_val, arg_pad, node], [x], [y])


4774
@onnx_test()
kahmed10's avatar
kahmed10 committed
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
def pad_reflect_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 5])

    sizes = np.array([0, 2, 0, 1])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    node = onnx.helper.make_node('Pad',
                                 mode='reflect',
                                 inputs=['0', 'arg_pad'],
                                 outputs=['1'])

    return ([arg_pad, node], [x], [y])


4797
@onnx_test()
kahmed10's avatar
kahmed10 committed
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
def pad_reflect_multiaxis_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])

    sizes = np.array([0, 2, 2, 0])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    node = onnx.helper.make_node('Pad',
                                 mode='reflect',
                                 inputs=['0', 'arg_pad'],
                                 outputs=['1'])

    return ([arg_pad, node], [x], [y])


Charlie Lin's avatar
Charlie Lin committed
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
@onnx_test()
def pad_attr_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, None])

    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[1, 1, 1, 1],
                                 outputs=['1'])

    return ([node], [x], [y])


@onnx_test()
def pad_cnst_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, None])

    sizes = np.array([0, 2, 0, 1])
    pad_tensor = helper.make_tensor(name='pad_size',
                                    data_type=TensorProto.INT32,
                                    dims=sizes.shape,
                                    vals=sizes.astype(int))
    arg_pad = onnx.helper.make_node('Constant',
                                    inputs=[],
                                    outputs=['arg_pad'],
                                    value=pad_tensor)

    node = onnx.helper.make_node('Pad', inputs=['0', 'arg_pad'], outputs=['1'])

    return ([arg_pad, node], [x], [y])


@onnx_test()
def pad_dyn_reflect_error():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, None])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, None])

    node = onnx.helper.make_node('Pad',
                                 mode='reflect',
                                 inputs=['0'],
                                 pads=[0, 2, 0, 1],
                                 outputs=['1'])

    return ([node], [x], [y])


4867
@onnx_test()
Khalique's avatar
Khalique committed
4868
4869
4870
def pow_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
4871
4872
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
4873
4874
4875
4876
4877
4878
4879

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
4880
    return ([node], [arg0, arg1], [arg_out])
Khalique's avatar
Khalique committed
4881

kahmed10's avatar
kahmed10 committed
4882

4883
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
def pow_fp32_i64_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.INT64, [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


4899
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
def pow_i64_fp32_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT64, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT64,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


4915
@onnx_test()
turneram's avatar
turneram committed
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
def prefix_scan_sum_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 2])
    axis_val = np.array([0])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis_val.shape,
                                     vals=axis_val.astype(int))
    node = onnx.helper.make_node('CumSum',
                                 inputs=['x', 'axis'],
                                 outputs=['y'],
                                 exclusive=1,
                                 reverse=1)
    return ([node], [x], [y], [axis_tensor])


4932
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
def prelu_brcst_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'PRelu',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


4948
@onnx_test()
4949
def quantizelinear_test():
turneram's avatar
turneram committed
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


4963
@onnx_test()
turneram's avatar
turneram committed
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
def quantizelinear_int32_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.INT32, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1], [arg_out])


4978
@onnx_test()
turneram's avatar
turneram committed
4979
def quantizelinear_zero_point_test():
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [1])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8, [5])

    node = onnx.helper.make_node(
        'QuantizeLinear',
        inputs=['0', '1', '2'],
        outputs=['out'],
    )

    return ([node], [arg0, arg1, arg2], [arg_out])


def make_quantizelinear_axis_graph(axis):
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 1, 5, 1])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5])
    arg2 = helper.make_tensor_value_info('2', TensorProto.INT8, [5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.INT8,
                                            [1, 1, 5, 1])

    node = onnx.helper.make_node('QuantizeLinear',
                                 inputs=['0', '1', '2'],
                                 outputs=['out'],
                                 axis=axis)

    return ([node], [arg0, arg1, arg2], [arg_out])


5009
@onnx_test()
5010
5011
5012
5013
def quantizelinear_axis_test():
    return make_quantizelinear_axis_graph(2)


5014
@onnx_test()
5015
5016
5017
5018
def quantizelinear_neg_axis_test():
    return make_quantizelinear_axis_graph(-2)


5019
@onnx_test()
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
def randomnormal_test():
    dtype = 11
    mean = 10.0
    scale = 1.5
    seed = 0.0
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.DOUBLE,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormal',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 mean=mean,
                                 scale=scale,
                                 seed=seed,
                                 shape=shape)

    return ([node], [], [output])


5041
@onnx_test()
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
def randomnormal_dtype_error_test():
    dtype = 6
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.INT32,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormal',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 shape=shape)

    return ([node], [], [output])


5057
@onnx_test()
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
def randomnormal_generated_seed_test():
    sample_size = 10
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

    node = onnx.helper.make_node('RandomNormal',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 outputs=['output'])

    return ([node], [input], [output])


5072
@onnx_test()
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
def randomnormal_shape_error_test():
    dtype = 1
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormal',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype)

    return ([node], [], [output])


5086
@onnx_test()
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
def randomnormallike_test():
    dtype = 10
    mean = 10.0
    scale = 1.5
    seed = 0.0
    input = helper.make_tensor_value_info('input', TensorProto.FLOAT16,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT16,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormalLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 dtype=dtype,
                                 mean=mean,
                                 scale=scale,
                                 seed=seed)

    return ([node], [input], [output])


5108
@onnx_test()
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
def randomnormallike_type_error_test():
    seed = 0
    input = helper.make_tensor_value_info('input', TensorProto.INT32,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomNormalLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 seed=seed)

    return ([node], [input], [output])


5124
@onnx_test()
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
def randomuniform_test():
    dtype = 11
    high = 1.0
    low = 0.0
    seed = 0.0
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.DOUBLE,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniform',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 high=high,
                                 low=low,
                                 seed=seed,
                                 shape=shape)

    return ([node], [], [output])


5146
@onnx_test()
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
def randomuniform_dtype_error_test():
    dtype = 6
    shape = [2, 3, 4]
    output = helper.make_tensor_value_info('output', TensorProto.INT32,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniform',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype,
                                 shape=shape)

    return ([node], [], [output])


5162
@onnx_test()
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
def randomuniform_generated_seed_test():
    sample_size = 10
    input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
    output = helper.make_tensor_value_info("output", TensorProto.INT32,
                                           [1, 10])

    node = onnx.helper.make_node('RandomUniform',
                                 inputs=['input'],
                                 sample_size=sample_size,
                                 outputs=['output'])

    return ([node], [input], [output])


5177
@onnx_test()
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
def randomuniform_shape_error_test():
    dtype = 1
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniform',
                                 inputs=[],
                                 outputs=['output'],
                                 dtype=dtype)

    return ([node], [], [output])


5191
@onnx_test()
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
def randomuniformlike_test():
    dtype = 10
    high = 10.0
    low = 1.0
    seed = 0.0
    input = helper.make_tensor_value_info('input', TensorProto.FLOAT16,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT16,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniformLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 dtype=dtype,
                                 high=high,
                                 low=low,
                                 seed=seed)

    return ([node], [input], [output])


5213
@onnx_test()
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
def randomuniformlike_type_error_test():
    seed = 0
    input = helper.make_tensor_value_info('input', TensorProto.INT32,
                                          [2, 3, 4])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 3, 4])

    node = onnx.helper.make_node('RandomUniformLike',
                                 inputs=['input'],
                                 outputs=['output'],
                                 seed=seed)

    return ([node], [input], [output])


5229
@onnx_test()
kahmed10's avatar
kahmed10 committed
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
def range_test():

    start_val = np.array([10])
    limit_val = np.array([6])
    delta_val = np.array([-3])

    start_tensor = helper.make_tensor(name='start_val',
                                      data_type=TensorProto.INT64,
                                      dims=start_val.reshape(()).shape,
                                      vals=start_val.astype(np.int64))
    start = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['start'],
                                  value=start_tensor)

    limit_tensor = helper.make_tensor(name='limit_val',
                                      data_type=TensorProto.INT64,
                                      dims=limit_val.reshape(()).shape,
                                      vals=limit_val.astype(np.int64))
    limit = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['limit'],
                                  value=limit_tensor)

    delta_tensor = helper.make_tensor(name='delta_val',
                                      data_type=TensorProto.INT64,
                                      dims=delta_val.reshape(()).shape,
                                      vals=delta_val.astype(np.int64))
    delta = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['delta'],
                                  value=delta_tensor)

    node = onnx.helper.make_node('Range',
                                 inputs=['start', 'limit', 'delta'],
                                 outputs=['1'])

    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    return ([start, limit, delta, node], [], [y])


5272
@onnx_test()
kahmed10's avatar
kahmed10 committed
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
def range_float_test():

    start_val = np.array([2])
    limit_val = np.array([11])
    delta_val = np.array([2])

    start_tensor = helper.make_tensor(name='start_val',
                                      data_type=TensorProto.FLOAT,
                                      dims=start_val.reshape(()).shape,
                                      vals=start_val.astype(np.float))
    start = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['start'],
                                  value=start_tensor)

    limit_tensor = helper.make_tensor(name='limit_val',
                                      data_type=TensorProto.FLOAT,
                                      dims=limit_val.reshape(()).shape,
                                      vals=limit_val.astype(np.float))
    limit = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['limit'],
                                  value=limit_tensor)

    delta_tensor = helper.make_tensor(name='delta_val',
                                      data_type=TensorProto.FLOAT,
                                      dims=delta_val.reshape(()).shape,
                                      vals=delta_val.astype(np.float))
    delta = onnx.helper.make_node('Constant',
                                  inputs=[],
                                  outputs=['delta'],
                                  value=delta_tensor)

    node = onnx.helper.make_node('Range',
                                 inputs=['start', 'limit', 'delta'],
                                 outputs=['1'])

    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

    return ([start, limit, delta, node], [], [y])


5315
@onnx_test()
kahmed10's avatar
kahmed10 committed
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
def recip_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Reciprocal',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


5329
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
def reducel1_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

    node = onnx.helper.make_node('ReduceL1',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


Brian Pickrell's avatar
Brian Pickrell committed
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
@onnx_test
def reducel1_dyn_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None])
    axes = [-2]

    node = onnx.helper.make_node('ReduceL1',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reducel1_dyn_noaxes_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None])

    node = onnx.helper.make_node('ReduceL1',
                                 inputs=['x'],
                                 outputs=['y'],
                                 keepdims=0)

    return ([node], [x], [y])


5372
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
def reducel2_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])
    axes = [-1]

    node = onnx.helper.make_node('ReduceL2',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


5387
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
def reduce_log_sum_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 6])
    axes = [-3]

    node = onnx.helper.make_node('ReduceLogSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])


5402
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
def reduce_log_sum_exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 5, 6])
    axes = [-4]

    node = onnx.helper.make_node('ReduceLogSumExp',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])


5417
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5418
5419
def reducemax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
5420
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
Brian Pickrell's avatar
Brian Pickrell committed
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436

    axes = [2]

    node = onnx.helper.make_node('ReduceMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


@onnx_test
def reducemax_dyn_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 4, 6])
Shucai Xiao's avatar
Shucai Xiao committed
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
    axes = [2]

    node = onnx.helper.make_node('ReduceMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])

Khalique's avatar
Khalique committed
5447

5448
@onnx_test()
Khalique's avatar
Khalique committed
5449
5450
5451
def reducemean_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
5452
    axes = [2, 3]
Khalique's avatar
Khalique committed
5453

Khalique's avatar
Khalique committed
5454
5455
5456
5457
5458
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
5459

Khalique's avatar
Khalique committed
5460
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5461

kahmed10's avatar
kahmed10 committed
5462

5463
@onnx_test()
Khalique's avatar
Khalique committed
5464
5465
5466
def reducemean_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
5467
    axes = [2]
Khalique's avatar
Khalique committed
5468

Khalique's avatar
Khalique committed
5469
5470
5471
5472
5473
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
5474

Khalique's avatar
Khalique committed
5475
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5476

kahmed10's avatar
kahmed10 committed
5477

5478
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
def reducemin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 1])
    axes = [1, 3]

    node = onnx.helper.make_node('ReduceMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5491

kahmed10's avatar
kahmed10 committed
5492

5493
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5494
def reduceprod_test():
Khalique's avatar
Khalique committed
5495
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
5496
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
5497
    axes = [2]
Khalique's avatar
Khalique committed
5498

Shucai Xiao's avatar
Shucai Xiao committed
5499
    node = onnx.helper.make_node('ReduceProd',
Khalique's avatar
Khalique committed
5500
5501
5502
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
Shucai Xiao's avatar
Shucai Xiao committed
5503
                                 keepdims=1)
Khalique's avatar
Khalique committed
5504

Khalique's avatar
Khalique committed
5505
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5506

Khalique's avatar
Khalique committed
5507

5508
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5509
def reducesum_test():
Khalique's avatar
Khalique committed
5510
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
Shucai Xiao's avatar
Shucai Xiao committed
5511
5512
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = [2]
Khalique's avatar
Khalique committed
5513

Khalique's avatar
Khalique committed
5514
5515
5516
5517
5518
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
5519

Khalique's avatar
Khalique committed
5520
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5521

Khalique's avatar
Khalique committed
5522

5523
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
def reducesum_empty_axes_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = np.array([], dtype=np.int64)
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))

    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x', 'axes'],
                                 outputs=['y'],
                                 keepdims=0,
                                 noop_with_empty_axes=False)

    return ([node], [x], [y], [axes_tensor])


5542
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
def reducesum_noop_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = np.array([], dtype=np.int64)
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))

    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x', 'axes'],
                                 outputs=['y'],
                                 keepdims=0,
                                 noop_with_empty_axes=True)

    return ([node], [x], [y], [axes_tensor])


5561
@onnx_test()
Khalique's avatar
Khalique committed
5562
5563
5564
def reducesum_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
Khalique's avatar
Khalique committed
5565
    axes = [2, 3]
Khalique's avatar
Khalique committed
5566

Khalique's avatar
Khalique committed
5567
5568
5569
5570
5571
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
5572

Khalique's avatar
Khalique committed
5573
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
5574

Khalique's avatar
Khalique committed
5575

5576
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
def reducesum_multiaxis_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
    axes = [2, 3]

    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


5591
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
def reducesum_square_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])
    axes = [-2]

    node = onnx.helper.make_node('ReduceSumSquare',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])


5606
@onnx_test()
Khalique's avatar
Khalique committed
5607
5608
5609
def reshape_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [4, 2, 3])
    x_shape = helper.make_tensor_value_info('1', TensorProto.INT64, [2])
Khalique's avatar
Khalique committed
5610
    x_shape_list = [3, 8]
Khalique's avatar
Khalique committed
5611
5612
5613
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 8])
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3, 8])

Khalique's avatar
Khalique committed
5614
    node = onnx.helper.make_node('Reshape', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
5615

Khalique's avatar
Khalique committed
5616
5617
5618
5619
5620
5621
5622
    node2 = onnx.helper.make_node('Reshape',
                                  inputs=['0'],
                                  shape=x_shape_list,
                                  outputs=['3'])

    return ([node, node2], [x, x_shape], [y, y2],
            [helper.make_tensor('1', TensorProto.INT64, [2], [3, 8])])
Khalique's avatar
Khalique committed
5623
5624


5625
@onnx_test()
Khalique's avatar
Khalique committed
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
def reshape_non_standard_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 3, 2])

    trans = helper.make_node(
        'Transpose',
        inputs=['x'],
        outputs=['trans_x'],
        perm=[0, 2, 1],
    )

Khalique's avatar
Khalique committed
5637
5638
5639
5640
5641
5642
    res = onnx.helper.make_node('Reshape',
                                inputs=['trans_x'],
                                outputs=['y'],
                                shape=[4, 3, 2])

    return ([trans, res], [x], [y])
Khalique's avatar
Khalique committed
5643
5644


5645
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5646
5647
5648
5649
5650
5651
5652
5653
def resize_downsample_f_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
5654
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])
Shucai Xiao's avatar
Shucai Xiao committed
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        coordinate_transformation_mode='align_corners',
        mode='nearest',
        nearest_mode='floor')

    return ([node], [X], [Y], [scale_tensor])


5667
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
def resize_downsample_c_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 1, 2])

    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 coordinate_transformation_mode='asymmetric',
                                 mode='nearest',
                                 nearest_mode='ceil')

    return ([node], [X], [Y], [scale_tensor])


5688
@onnx_test()
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
def resize_downsample_linear_test():
    scales = np.array([1.0, 1.0, 0.6, 0.5], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='linear')

    return ([node], [X], [Y], [scale_tensor])


5707
@onnx_test()
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
def resize_nonstd_input_test():
    scales = np.array([1.0, 1.0, 0.6, 0.6], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 4, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 1, 2])

    trn = onnx.helper.make_node('Transpose',
                                inputs=['X'],
                                outputs=['TX'],
                                perm=[0, 1, 3, 2])

    node = onnx.helper.make_node('Resize',
                                 inputs=['TX', '', 'scales'],
                                 outputs=['Y'],
                                 coordinate_transformation_mode='asymmetric',
                                 mode='nearest',
                                 nearest_mode='ceil')

    return ([trn, node], [X], [Y], [scale_tensor])


5733
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
def resize_outsize_test():
    out_lens = np.array([1, 1, 4, 6], dtype=np.int64)
    out_lens_tensor = helper.make_tensor(name='out_lens',
                                         data_type=TensorProto.INT64,
                                         dims=out_lens.shape,
                                         vals=out_lens.flatten().astype(
                                             np.int64))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', '', 'out_lens'],
        outputs=['Y'],
        coordinate_transformation_mode='tf_half_pixel_for_nn',
        mode='nearest',
        nearest_mode='round_prefer_floor')

    return ([node], [X], [Y], [out_lens_tensor])


5756
@onnx_test()
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
def resize_upsample_linear_ac_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
    scales_tensor = helper.make_tensor(name='scales',
                                       data_type=TensorProto.FLOAT,
                                       dims=scales.shape,
                                       vals=scales.flatten().astype(
                                           np.float32))
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        mode='linear',
        coordinate_transformation_mode='align_corners')

    return ([node], [X], [Y], [scales_tensor])


5777
@onnx_test()
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
def resize_upsample_linear_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
    scales_tensor = helper.make_tensor(name='scales',
                                       data_type=TensorProto.FLOAT,
                                       dims=scales.shape,
                                       vals=scales.flatten().astype(
                                           np.float32))
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='linear')

    return ([node], [X], [Y], [scales_tensor])


5796
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
def resize_upsample_pf_test():
    scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node('Resize',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='nearest')

    return ([node], [X], [Y], [scale_tensor])


5815
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
def resize_upsample_pc_test():
    scales = np.array([1.0, 1.0, 2.0, 1.5], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 4])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Resize',
        inputs=['X', '', 'scales'],
        outputs=['Y'],
        coordinate_transformation_mode='pytorch_half_pixel',
        mode='nearest',
        exclude_outside=0,
        nearest_mode='round_prefer_ceil')

    return ([node], [X], [Y], [scale_tensor])


5838
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
def reversesequence_4D_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 2, 2])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        time_axis=0,
        batch_axis=1,
        sequence_lens=[2, 1],
    )
    return ([node], [x], [y])


5854
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
def reversesequence_batch_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4])
    seq_lens = np.array([1, 2, 3, 4])
    seq_lens_tensor = helper.make_tensor(
        name="sequence_lens",
        data_type=TensorProto.INT64,
        dims=seq_lens.shape,
        vals=seq_lens.astype(np.int64),
    )
    arg_seq_lens = helper.make_node(
        "Constant",
        inputs=[],
        outputs=['arg_seq_lens'],
        value=seq_lens_tensor,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x', 'arg_seq_lens'],
        outputs=['y'],
        time_axis=1,
        batch_axis=0,
    )
    return ([arg_seq_lens, node], [x], [y])


5882
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
def reversesequence_batch_axis_err_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4, 2])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        time_axis=0,
        batch_axis=2,
        sequence_lens=[4, 3, 2, 1],
    )
    return ([node], [x], [y])


5898
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
def reversesequence_rank_err_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        sequence_lens=[4, 3, 2, 1],
    )
    return ([node], [x], [y])


5912
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
def reversesequence_sequence_lens_shape_err_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        sequence_lens=[4, 3, 2],
    )
    return ([node], [x], [y])


5926
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
def reversesequence_same_axis_err_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        time_axis=1,
        batch_axis=1,
        sequence_lens=[4, 3, 2, 1],
    )
    return ([node], [x], [y])


5942
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
def reversesequence_time_axis_err_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4, 2, 3])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        time_axis=3,
        batch_axis=0,
        sequence_lens=[4, 3, 2, 1],
    )
    return ([node], [x], [y])


5958
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
def reversesequence_time_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4])

    node = onnx.helper.make_node(
        'ReverseSequence',
        inputs=['x'],
        outputs=['y'],
        time_axis=0,
        batch_axis=1,
        sequence_lens=[4, 3, 2, 1],
    )
    return ([node], [x], [y])


5974
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
def roialign_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 4, 7, 8])
    roi = helper.make_tensor_value_info('rois', TensorProto.FLOAT, [8, 4])
    bi = helper.make_tensor_value_info('batch_ind', TensorProto.INT64, [8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8, 4, 1, 1])

    node = onnx.helper.make_node('RoiAlign',
                                 inputs=['x', 'rois', 'batch_ind'],
                                 outputs=['y'])

    return ([node], [x, roi, bi], [y])


5988
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
def roialign_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 5, 4, 7])
    roi = helper.make_tensor_value_info('rois', TensorProto.FLOAT, [8, 4])
    bi = helper.make_tensor_value_info('batch_ind', TensorProto.INT64, [8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8, 4, 5, 5])

    node = onnx.helper.make_node(
        'RoiAlign',
        inputs=['x', 'rois', 'batch_ind'],
        outputs=['y'],
        spatial_scale=2.0,
        output_height=5,
        output_width=5,
        sampling_ratio=3,
        mode="avg",
        coordinate_transformation_mode="output_half_pixel")

    return ([node], [x, roi, bi], [y])


6009
@onnx_test()
6010
def scatter_add_test():
Shucai Xiao's avatar
Shucai Xiao committed
6011
6012
6013
6014
6015
6016
6017
6018
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
    u = helper.make_tensor_value_info('update', TensorProto.FLOAT,
                                      [2, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

    node = onnx.helper.make_node(
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
        'ScatterElements',
        reduction='add',
        inputs=['data', 'indices', 'update'],
        outputs=['y'],
        axis=-2,
    )

    return ([node], [x, i, u], [y])


6029
@onnx_test()
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
def scatter_mul_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
    u = helper.make_tensor_value_info('update', TensorProto.FLOAT,
                                      [2, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

    node = onnx.helper.make_node(
        'ScatterElements',
        reduction='mul',
        inputs=['data', 'indices', 'update'],
        outputs=['y'],
        axis=-2,
    )

    return ([node], [x, i, u], [y])


6049
@onnx_test()
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
def scatter_none_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
    u = helper.make_tensor_value_info('update', TensorProto.FLOAT,
                                      [2, 3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

    node = onnx.helper.make_node(
        'ScatterElements',
        reduction='none',
Shucai Xiao's avatar
Shucai Xiao committed
6061
6062
6063
6064
6065
6066
6067
6068
        inputs=['data', 'indices', 'update'],
        outputs=['y'],
        axis=-2,
    )

    return ([node], [x, i, u], [y])


6069
@onnx_test()
turneram's avatar
turneram committed
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
def scatternd_add_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [2, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [2, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 2, 2])

    node = onnx.helper.make_node('ScatterND',
                                 inputs=['data', 'indices', 'updates'],
                                 outputs=['output'],
                                 reduction="add")

    return ([node], [data, indices, updates], [output])


6087
@onnx_test()
turneram's avatar
turneram committed
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
def scatternd_mul_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [2, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [2, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 2, 2])

    node = onnx.helper.make_node('ScatterND',
                                 inputs=['data', 'indices', 'updates'],
                                 outputs=['output'],
                                 reduction="mul")

    return ([node], [data, indices, updates], [output])


6105
@onnx_test()
turneram's avatar
turneram committed
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
def scatternd_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [2, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [2, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [2, 2, 2])

    node = onnx.helper.make_node('ScatterND',
                                 inputs=['data', 'indices', 'updates'],
                                 outputs=['output'])

    return ([node], [data, indices, updates], [output])


6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
@onnx_test()
def scatternd_dyn_test():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT,
                                         [None, 2, 2])
    indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                            [None, 1, 2])
    updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
                                            [None, 1, 2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
                                           [None, 2, 2])

    node = onnx.helper.make_node('ScatterND',
                                 inputs=['data', 'indices', 'updates'],
                                 outputs=['output'])

    return ([node], [data, indices, updates], [output])


6140
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
def selu_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [2, 3])

    node = onnx.helper.make_node('Selu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=0.3,
                                 gamma=0.5)

    return ([node], [x], [y])


6154
@onnx_test()
Khalique's avatar
Khalique committed
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
def shape_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [4])

    node = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
6165
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
6166

Khalique's avatar
Khalique committed
6167

6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
@onnx_test()
def shape_dyn_test0():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT,
                                      [None, 4, None, None])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [4])

    node = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


@onnx_test()
def shape_dyn_test1():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT,
                                      [None, 4, None, None])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])

    node = onnx.helper.make_node('Shape', inputs=['x'], outputs=['y'], start=2)

    return ([node], [x], [y])


@onnx_test()
def shape_dyn_test2():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT,
                                      [None, 4, None, None])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])

    node = onnx.helper.make_node('Shape',
                                 inputs=['x'],
                                 outputs=['y'],
                                 start=-2)

    return ([node], [x], [y])


@onnx_test()
def shape_dyn_test3():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT,
                                      [None, 4, None, None])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])

    node = onnx.helper.make_node('Shape',
                                 inputs=['x'],
                                 outputs=['y'],
                                 start=1,
                                 end=2)

    return ([node], [x], [y])


@onnx_test()
def shape_end_oob_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT,
                                      [None, 4, None, None])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])

    node = onnx.helper.make_node('Shape', inputs=['x'], outputs=['y'], end=5)

    return ([node], [x], [y])


@onnx_test()
def shape_start_oob_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT,
                                      [None, 4, None, None])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])

    node = onnx.helper.make_node('Shape',
                                 inputs=['x'],
                                 outputs=['y'],
                                 start=-6)

    return ([node], [x], [y])


@onnx_test()
def shape_end_less_start_error():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT,
                                      [None, 4, None, None])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])

    node = onnx.helper.make_node('Shape',
                                 inputs=['x'],
                                 outputs=['y'],
                                 start=3,
                                 end=1)

    return ([node], [x], [y])


6263
@onnx_test()
Khalique's avatar
Khalique committed
6264
6265
def shape_gather_test():
    values = np.array([1])
kahmed10's avatar
kahmed10 committed
6266
    # value = helper.make_tensor_value_info('value', TensorProto.INT32, [1])
Khalique's avatar
Khalique committed
6267
6268
6269
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [7, 3, 10])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [1])

Khalique's avatar
Khalique committed
6270
6271
6272
6273
    value_tensor = helper.make_tensor(name='const_tensor',
                                      data_type=TensorProto.INT32,
                                      dims=values.shape,
                                      vals=values.flatten().astype(int))
Khalique's avatar
Khalique committed
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294

    node_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['value'],
        value=value_tensor,
    )

    node_shape = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

    node_gather = helper.make_node(
        'Gather',
        inputs=['y', 'value'],
        outputs=['z'],
        axis=0,
    )

Khalique's avatar
Khalique committed
6295
6296
    return ([node_const, node_shape, node_gather], [x], [z])

Khalique's avatar
Khalique committed
6297

6298
@onnx_test()
Khalique's avatar
Khalique committed
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
def sign_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [10, 5])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [10, 5])

    node = onnx.helper.make_node(
        'Sign',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
6309
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
6310

Khalique's avatar
Khalique committed
6311

6312
@onnx_test()
Khalique's avatar
Khalique committed
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
def sin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
6323
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
6324

Khalique's avatar
Khalique committed
6325

6326
@onnx_test()
Khalique's avatar
Khalique committed
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
def sinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sinh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
6337
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
6338

Khalique's avatar
Khalique committed
6339

6340
@onnx_test()
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
def sinh_dynamic_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None])

    node = onnx.helper.make_node(
        'Sinh',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])


6354
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
def size_float_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


6366
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
def size_half_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 1])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


6378
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
def size_int_test():
    x = helper.make_tensor_value_info('x', TensorProto.INT32, [8, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


6390
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
def size_verify_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5, 3])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
    node = onnx.helper.make_node(
        'Size',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


6402
@onnx_test()
kahmed10's avatar
kahmed10 committed
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
def slice_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0, 1],
                                 starts=[1, 0],
                                 ends=[2, 2],
                                 outputs=['1'])

    return ([node], [x], [y])


Brian Pickrell's avatar
Brian Pickrell committed
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
@onnx_test()
def slice_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, None, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, None, 2])

    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0],
                                 starts=[1],
                                 ends=[2],
                                 outputs=['1'])

    return ([node], [x], [y])


@onnx_test
def slice_step_dyn_test():
    # A slice command with non - default steps will have a "Step"
    # instruction added in parsing.
    step = np.array([2, 1])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    axis = np.array([-1, -2])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)

    end = np.array([-1, -1])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    start = np.array([-5, -3])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


@onnx_test
def slice_reverse_dyn_test():
    # A slice command with negative step on any axis will have
    # a "Reverse" instruction added in parsing.

    step = np.array([-1, 1])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    axis = np.array([-1, -2])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)

    end = np.array([-1, -1])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    start = np.array([-5, -3])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


6543
@onnx_test()
kahmed10's avatar
kahmed10 committed
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
def slice_3arg_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 5])
    start = np.array([0, 0])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))

    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    end = np.array([2, 5])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    node = onnx.helper.make_node('Slice',
                                 inputs=['0', 'arg_start', 'arg_end'],
                                 outputs=['1'])

    return ([arg_start, arg_end, node], [x], [y])


6575
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
6576
6577
6578
6579
6580
6581
def slice_5arg_test():
    step = np.array([1, 1])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    axis = np.array([-1, -2])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)

    end = np.array([-1, -1])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    start = np.array([-5, -3])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


6628
@onnx_test()
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
6629
6630
6631
6632
6633
6634
def slice_5arg_reverse_test():
    step = np.array([-1, 1])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
Shucai Xiao's avatar
Shucai Xiao committed
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    axis = np.array([-1, -2])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)

6650
    end = np.array([-5, -1])
Shucai Xiao's avatar
Shucai Xiao committed
6651
6652
6653
6654
6655
6656
6657
6658
6659
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
    start = np.array([-1, -3])
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


6681
@onnx_test()
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
def slice_5arg_step_test():
    step = np.array([-2, 2])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    axis = np.array([-1, -2])
    axis_tensor = helper.make_tensor(name="axis",
                                     data_type=TensorProto.INT32,
                                     dims=axis.shape,
                                     vals=axis.astype(int))
    arg_axis = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_axis'],
                                value=axis_tensor)

    end = np.array([-5, -1])
    end_tensor = helper.make_tensor(name="end",
                                    data_type=TensorProto.INT32,
                                    dims=end.shape,
                                    vals=end.astype(int))
    arg_end = helper.make_node("Constant",
                               inputs=[],
                               outputs=['arg_end'],
                               value=end_tensor)

    start = np.array([-1, -3])
Shucai Xiao's avatar
Shucai Xiao committed
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
    start_tensor = helper.make_tensor(name="start",
                                      data_type=TensorProto.INT32,
                                      dims=start.shape,
                                      vals=start.astype(int))
    arg_start = helper.make_node("Constant",
                                 inputs=[],
                                 outputs=['arg_start'],
                                 value=start_tensor)

    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['0', 'arg_start', 'arg_end', 'arg_axis', 'arg_step'],
        outputs=['1'])

    return ([arg_step, arg_axis, arg_end, arg_start, node], [x], [y])


6734
@onnx_test()
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
def slice_max_end_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [10, 20])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [9, 17])

    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0, 1],
                                 starts=[1, 2],
                                 ends=[3000000000, -1],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
6745

Khalique's avatar
Khalique committed
6746
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
6747

Khalique's avatar
Khalique committed
6748

Charlie Lin's avatar
Charlie Lin committed
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
@onnx_test()
def slice_var_input_static0():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 2])
    starts = helper.make_tensor_value_info('starts', TensorProto.INT32, [2])
    ends = helper.make_tensor_value_info('ends', TensorProto.INT32, [2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node('Slice',
                                 inputs=['data', 'starts', 'ends'],
                                 axes=[0, 1],
                                 outputs=['output'])

    return ([node], [data, starts, ends], [output])


@onnx_test()
def slice_var_input_static1():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 2])
    starts = helper.make_tensor_value_info('starts', TensorProto.INT64, [2])
    ends = helper.make_tensor_value_info('ends', TensorProto.INT64, [2])
    axes = helper.make_tensor_value_info('axes', TensorProto.INT64, [2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node('Slice',
                                 inputs=['data', 'starts', 'ends', 'axes'],
                                 outputs=['output'])

    return ([node], [data, starts, ends, axes], [output])


@onnx_test()
def slice_var_input_dyn0():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [None, 2])
    starts = helper.make_tensor_value_info('starts', TensorProto.INT32, [2])
    ends = helper.make_tensor_value_info('ends', TensorProto.INT32, [2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node('Slice',
                                 inputs=['data', 'starts', 'ends'],
                                 axes=[0, 1],
                                 outputs=['output'])

    return ([node], [data, starts, ends], [output])


@onnx_test()
def slice_var_input_dyn1():
    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [None, 2])
    starts = helper.make_tensor_value_info('starts', TensorProto.INT32, [2])
    ends = helper.make_tensor_value_info('ends', TensorProto.INT32, [2])
    axes = helper.make_tensor_value_info('axes', TensorProto.INT32, [2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node('Slice',
                                 inputs=['data', 'starts', 'ends', 'axes'],
                                 outputs=['output'])

    return ([node], [data, starts, ends, axes], [output])


@onnx_test()
def slice_var_input_steps_error():
    step = np.array([2, 1])
    step_tensor = helper.make_tensor(name="step",
                                     data_type=TensorProto.INT32,
                                     dims=step.shape,
                                     vals=step.astype(int))
    arg_step = helper.make_node("Constant",
                                inputs=[],
                                outputs=['arg_step'],
                                value=step_tensor)

    data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 2])
    starts = helper.make_tensor_value_info('starts', TensorProto.FLOAT, [2])
    ends = helper.make_tensor_value_info('ends', TensorProto.FLOAT, [2])
    axes = helper.make_tensor_value_info('axes', TensorProto.FLOAT, [2])
    output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])

    node = onnx.helper.make_node(
        'Slice',
        inputs=['data', 'starts', 'ends', 'axes', 'arg_step'],
        outputs=['output'])

    return ([arg_step, node], [data, starts, ends, axes], [output])


6835
@onnx_test()
Khalique's avatar
Khalique committed
6836
6837
6838
6839
def softmax_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3])

Khalique's avatar
Khalique committed
6840
    node = onnx.helper.make_node('Softmax', inputs=['0'], outputs=['1'])
Khalique's avatar
Khalique committed
6841

Khalique's avatar
Khalique committed
6842
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
6843

Khalique's avatar
Khalique committed
6844

6845
@onnx_test()
6846
6847
def softmax_nonstd_input_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [6, 8])
6848
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 4])
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858

    node0 = onnx.helper.make_node('Slice',
                                  inputs=['0'],
                                  axes=[0, 1],
                                  starts=[1, 0],
                                  ends=[4, 4],
                                  outputs=['1'])

    node1 = onnx.helper.make_node('Softmax', inputs=['1'], outputs=['2'])

6859
    return ([node0, node1], [x], [y])
6860
6861


6862
@onnx_test()
6863
6864
6865
6866
6867
6868
6869
6870
6871
def softmax_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 3, 4, 4])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 3, 4, 4])

    node = onnx.helper.make_node('Softmax', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


6872
@onnx_test()
turneram's avatar
turneram committed
6873
6874
6875
6876
6877
6878
6879
6880
6881
def softsign_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node('Softsign', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


turneram's avatar
turneram committed
6882
6883
6884
6885
6886
6887
6888
6889
6890
def softplus_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5])

    node = onnx.helper.make_node('Softplus', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


6891
@onnx_test()
turneram's avatar
turneram committed
6892
6893
6894
6895
6896
6897
6898
6899
6900
def softsign_nd_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 4, 5])

    node = onnx.helper.make_node('Softsign', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


turneram's avatar
turneram committed
6901
6902
6903
6904
6905
6906
6907
6908
6909
def softplus_nd_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 4, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 4, 5])

    node = onnx.helper.make_node('Softplus', inputs=['x'], outputs=['y'])

    return ([node], [x], [y])


6910
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
def split_minus_axis_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 5])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 5])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 5])

    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2', 'y3'],
        axis=-1,
    )

    return ([node], [x], [y1, y2, y3])


6927
@onnx_test()
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
def split_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 7])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 4])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 4])

    node = onnx.helper.make_node('Split',
                                 inputs=['x'],
                                 outputs=['y1', 'y2', 'y3'],
                                 axis=1,
                                 split=[7, 4, 4])

    return ([node], [x], [y1, y2, y3])


6943
@onnx_test()
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
def split_test_default():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [5, 15])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [5, 15])

    node = onnx.helper.make_node(
        'Split',
        inputs=['x'],
        outputs=['y1', 'y2'],
    )

    return ([node], [x], [y1, y2])


6958
@onnx_test()
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
def split_test_no_attribute():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [300, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [75, 15])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [75, 15])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [75, 15])
    y4 = helper.make_tensor_value_info('y4', TensorProto.FLOAT, [75, 15])

    split = np.ones(4) * 75
    split_tensor = helper.make_tensor(name="split",
                                      data_type=TensorProto.INT64,
                                      dims=split.shape,
                                      vals=split.astype(np.int64))
    const_node = helper.make_node("Constant",
                                  inputs=[],
                                  outputs=['split'],
                                  value=split_tensor)

    node = onnx.helper.make_node(
        'Split',
        inputs=['x', 'split'],
        outputs=['y1', 'y2', 'y3', 'y4'],
    )

    return ([const_node, node], [x], [y1, y2, y3, y4])


6985
@onnx_test()
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
def split_test_no_attribute_invalid_split():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [300, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [75, 15])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [75, 15])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [75, 15])
    y4 = helper.make_tensor_value_info('y4', TensorProto.FLOAT, [75, 15])

    split = np.ones(4)
    split_tensor = helper.make_tensor(name="split",
                                      data_type=TensorProto.INT64,
                                      dims=split.shape,
                                      vals=split.astype(np.int64))
    const_node = helper.make_node("Constant",
                                  inputs=[],
                                  outputs=['split'],
                                  value=split_tensor)

    node = onnx.helper.make_node(
        'Split',
        inputs=['x', 'split'],
        outputs=['y1', 'y2', 'y3', 'y4'],
    )

    return ([const_node, node], [x], [y1, y2, y3, y4])


7012
@onnx_test()
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
def split_test_invalid_split():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 7])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 4])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 4])

    node = onnx.helper.make_node('Split',
                                 inputs=['x'],
                                 outputs=['y1', 'y2', 'y3'],
                                 axis=1,
                                 split=[1, 1, 1])

    return ([node], [x], [y1, y2, y3])


7028
@onnx_test()
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
def split_test_no_attribute_invalid_input_split():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [10, 7])
    y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [10, 4])
    y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [10, 4])

    node = onnx.helper.make_node('Split',
                                 inputs=['x'],
                                 outputs=['y1', 'y2', 'y3'],
                                 axis=1,
                                 split=[])

    return ([node], [x], [y1, y2, y3])


7044
@onnx_test()
Khalique's avatar
Khalique committed
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
def sqrt_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Sqrt',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
7055
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
7056

Khalique's avatar
Khalique committed
7057

7058
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
def squeeze_axes_input_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 5, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 5])
    axes = np.array([1, 3], dtype=np.int64)
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))

    node = onnx.helper.make_node('Squeeze',
                                 inputs=['x', 'axes'],
                                 outputs=['y'])

    return ([node], [x], [y], [axes_tensor])


7075
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
def squeeze_empty_axes_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 5, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 5])
    axes = np.array([], dtype=np.int64)
    axes_tensor = helper.make_tensor(name="axes",
                                     data_type=TensorProto.INT64,
                                     dims=axes.shape,
                                     vals=axes.astype(np.int64))

    node = onnx.helper.make_node('Squeeze',
                                 inputs=['x', 'axes'],
                                 outputs=['y'])

    return ([node], [x], [y], [axes_tensor])


7092
@onnx_test()
Khalique's avatar
Khalique committed
7093
def squeeze_unsqueeze_test():
Khalique's avatar
Khalique committed
7094
7095
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, 1, 1, 2, 1])
7096
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT,
Khalique's avatar
Khalique committed
7097
                                      [1, 1, 3, 1, 2, 1])
Khalique's avatar
Khalique committed
7098

Khalique's avatar
Khalique committed
7099
7100
7101
7102
    node = onnx.helper.make_node('Squeeze',
                                 inputs=['0'],
                                 axes=[0, 2, 3, 5],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
7103

Khalique's avatar
Khalique committed
7104
7105
7106
7107
7108
    node2 = onnx.helper.make_node('Unsqueeze',
                                  inputs=['1'],
                                  axes=[0, 1, 3, 5],
                                  outputs=['2'])

7109
    return ([node, node2], [x], [y])
Khalique's avatar
Khalique committed
7110
7111


7112
@onnx_test()
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
def squeeze_unsqueeze_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, None, 1, 1, None, 1])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                      [1, 1, None, 1, None, 1])

    node = onnx.helper.make_node('Squeeze',
                                 inputs=['0'],
                                 axes=[0, 2, 3, 5],
                                 outputs=['1'])

    node2 = onnx.helper.make_node('Unsqueeze',
                                  inputs=['1'],
                                  axes=[0, 1, 3, 5],
                                  outputs=['2'])

    return ([node, node2], [x], [y])


7132
@onnx_test()
Khalique's avatar
Khalique committed
7133
7134
7135
def sub_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
7136
7137
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
7138
7139
7140
7141
7142

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
Khalique's avatar
Khalique committed
7143
7144
        broadcast=1,
        axis=1,
Khalique's avatar
Khalique committed
7145
7146
    )

Khalique's avatar
Khalique committed
7147
7148
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
7149

7150
@onnx_test()
Khalique's avatar
Khalique committed
7151
7152
def sub_scalar_test():
    values = np.array([1])
Khalique's avatar
Khalique committed
7153
7154
7155
7156
7157
7158
7159
    arg_node = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                             [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    values_tensor = helper.make_tensor(name='const',
                                       data_type=TensorProto.FLOAT,
7160
                                       dims=values.reshape(()).shape,
Khalique's avatar
Khalique committed
7161
                                       vals=values.flatten().astype(float))
Khalique's avatar
Khalique committed
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175

    arg_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['arg_const'],
        value=values_tensor,
    )

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', 'arg_const'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
7176
7177
    return ([arg_const, node], [arg_node], [arg_out])

Khalique's avatar
Khalique committed
7178

7179
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
def sum_int_test():
    a = helper.make_tensor_value_info('0', TensorProto.INT16, [3])
    b = helper.make_tensor_value_info('1', TensorProto.UINT16, [3])
    c = helper.make_tensor_value_info('2', TensorProto.UINT32, [3])
    y = helper.make_tensor_value_info('3', TensorProto.UINT32, [3])

    cnode1 = onnx.helper.make_node('Cast', inputs=['0'], outputs=['c0'], to=12)

    cnode2 = onnx.helper.make_node('Cast', inputs=['1'], outputs=['c1'], to=12)

    node = onnx.helper.make_node(
        'Sum',
        inputs=['c0', 'c1', '2'],
        outputs=['3'],
    )

    return ([cnode1, cnode2, node], [a, b, c], [y])


7199
@onnx_test()
Khalique's avatar
Khalique committed
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
def sum_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Sum',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
7212
7213
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
7214

7215
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7216
7217
7218
7219
7220
def sum_type_test():
    valb = np.array([1, 0])
    t_bool = helper.make_tensor(name="bool",
                                data_type=TensorProto.BOOL,
                                dims=valb.shape,
7221
                                vals=valb.astype(bool))
Shucai Xiao's avatar
Shucai Xiao committed
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308

    val = np.array([1, 1])
    t_int8 = helper.make_tensor(name="int8",
                                data_type=TensorProto.INT8,
                                dims=val.shape,
                                vals=val.astype(np.int8))

    t_uint8 = helper.make_tensor(name="uint8",
                                 data_type=TensorProto.UINT8,
                                 dims=val.shape,
                                 vals=val.astype(np.uint8))

    t_uint16 = helper.make_tensor(name="uint16",
                                  data_type=TensorProto.UINT16,
                                  dims=val.shape,
                                  vals=val.astype(np.uint16))

    t_uint32 = helper.make_tensor(name="uint32",
                                  data_type=TensorProto.UINT32,
                                  dims=val.shape,
                                  vals=val.astype(np.uint32))

    t_uint64 = helper.make_tensor(name="uint64",
                                  data_type=TensorProto.UINT64,
                                  dims=val.shape,
                                  vals=val.astype(np.uint64))

    t_double = helper.make_tensor(name="double",
                                  data_type=TensorProto.DOUBLE,
                                  dims=val.shape,
                                  vals=val.astype(np.float64))

    valr = np.array([1.5, 2.0])
    t_raw = helper.make_tensor(name="raw",
                               data_type=TensorProto.DOUBLE,
                               dims=valr.shape,
                               vals=valr.tobytes(),
                               raw=True)

    n_bool = onnx.helper.make_node('Cast',
                                   inputs=['bool'],
                                   outputs=['o_bool'],
                                   to=11)

    n_int8 = onnx.helper.make_node('Cast',
                                   inputs=['int8'],
                                   outputs=['o_int8'],
                                   to=11)

    n_uint8 = onnx.helper.make_node('Cast',
                                    inputs=['uint8'],
                                    outputs=['o_uint8'],
                                    to=11)

    n_uint16 = onnx.helper.make_node('Cast',
                                     inputs=['uint16'],
                                     outputs=['o_uint16'],
                                     to=11)

    n_uint32 = onnx.helper.make_node('Cast',
                                     inputs=['uint32'],
                                     outputs=['o_uint32'],
                                     to=11)

    n_uint64 = onnx.helper.make_node('Cast',
                                     inputs=['uint64'],
                                     outputs=['o_uint64'],
                                     to=11)

    node = onnx.helper.make_node(
        'Sum',
        inputs=[
            'o_bool', 'o_int8', 'o_uint8', 'o_uint16', 'o_uint32', 'o_uint64',
            'double', 'raw'
        ],
        outputs=['out'],
    )

    y = helper.make_tensor_value_info('out', TensorProto.DOUBLE, [2])

    return ([n_bool, n_int8, n_uint8, n_uint16, n_uint32, n_uint64,
             node], [], [y], [
                 t_bool, t_int8, t_uint8, t_uint16, t_uint32, t_uint64,
                 t_double, t_raw
             ])


7309
@onnx_test()
Khalique's avatar
Khalique committed
7310
7311
7312
7313
7314
def tan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
7315
7316
7317
7318
        'Tan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
7319

Khalique's avatar
Khalique committed
7320
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
7321

Khalique's avatar
Khalique committed
7322

7323
@onnx_test()
Khalique's avatar
Khalique committed
7324
7325
7326
7327
7328
def tanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
7329
7330
7331
7332
        'Tanh',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
7333

Khalique's avatar
Khalique committed
7334
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
7335

Khalique's avatar
Khalique committed
7336

7337
@onnx_test()
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
def thresholdedrelu_default_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3])

    node = onnx.helper.make_node('ThresholdedRelu',
                                 inputs=['x'],
                                 outputs=['y'])

    return ([node], [x], [y])


7349
@onnx_test()
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
def thresholdedrelu_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3])
    alpha = 3.0

    node = onnx.helper.make_node('ThresholdedRelu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=alpha)

    return ([node], [x], [y])


7363
@onnx_test()
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
def thresholdedrelu_int_test():
    x = helper.make_tensor_value_info('x', TensorProto.INT32, [2, 2, 3])
    y = helper.make_tensor_value_info('y', TensorProto.INT32, [2, 2, 3])
    alpha = 3.0

    node = onnx.helper.make_node('ThresholdedRelu',
                                 inputs=['x'],
                                 outputs=['y'],
                                 alpha=alpha)

    return ([node], [x], [y])


7377
@onnx_test()
kahmed10's avatar
kahmed10 committed
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
def tile_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [2, 4])

    node = onnx.helper.make_node('Tile', inputs=['x', 'y'], outputs=['z'])

    return ([node], [x, y], [z],
            [helper.make_tensor('y', TensorProto.INT64, [2], [1, 2])])


7389
@onnx_test()
kahmed10's avatar
kahmed10 committed
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
def tile_test_3x2():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [2])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [6, 4])

    node = onnx.helper.make_node('Tile', inputs=['x', 'y'], outputs=['z'])

    return ([node], [x, y], [z],
            [helper.make_tensor('y', TensorProto.INT64, [2], [3, 2])])


7401
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
def topk_attrk_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 5, 3, 2])
    val = helper.make_tensor_value_info('val', TensorProto.FLOAT, [2, 2, 3, 2])
    ind = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                        [2, 2, 3, 2])

    node = onnx.helper.make_node('TopK',
                                 inputs=['data'],
                                 outputs=['val', 'indices'],
                                 k=2)
    return ([node], [x], [val, ind])


7415
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
def topk_neg_axis_test():
    k = np.array([3])
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
    val = helper.make_tensor_value_info('val', TensorProto.FLOAT, [3, 3, 5, 6])
    ind = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                        [3, 3, 5, 6])

    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node('TopK',
                                 inputs=['data', 'k'],
                                 outputs=['val', 'indices'],
                                 axis=-2,
                                 sorted=0)
    return ([node], [x], [val, ind], [k_tensor])


7436
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
def topk_test():
    k = np.array([4])
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 5, 3, 2])
    val = helper.make_tensor_value_info('val', TensorProto.FLOAT, [2, 4, 3, 2])
    ind = helper.make_tensor_value_info('indices', TensorProto.INT64,
                                        [2, 4, 3, 2])

    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node('TopK',
                                 inputs=['data', 'k'],
                                 outputs=['val', 'indices'],
                                 largest=0,
                                 axis=1)
    return ([node], [x], [val, ind], [k_tensor])


Shucai Xiao's avatar
Shucai Xiao committed
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
def transpose_default_perm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 5, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 2, 5, 1])

    node = onnx.helper.make_node(
        'Transpose',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


7470
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
def transpose_invalid_perm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 4, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 2, 1],
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])


7485
@onnx_test()
Khalique's avatar
Khalique committed
7486
7487
7488
7489
7490
7491
7492
7493
def transpose_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 3, 1, 2],
        inputs=['0'],
Charlie Lin's avatar
Charlie Lin committed
7494
7495
7496
7497
7498
7499
        outputs=['1'],
    )

    return ([node], [x], [y])


7500
@onnx_test()
Charlie Lin's avatar
Charlie Lin committed
7501
7502
7503
7504
7505
7506
7507
7508
def transpose_dyn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, 2, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [None, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 3, 1, 2],
        inputs=['0'],
Khalique's avatar
Khalique committed
7509
7510
7511
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
7512
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
7513

Khalique's avatar
Khalique committed
7514

Khalique's avatar
Khalique committed
7515
7516
7517
@onnx_test
def transpose_gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 5, 4, 6])
Khalique's avatar
Khalique committed
7518
7519
7520
7521
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 4, 3, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT,
                                      [3, 2, 3, 4, 5, 4, 5, 6])
Khalique's avatar
Khalique committed
7522
7523
7524
7525
7526
7527
7528
7529

    td = onnx.helper.make_node(
        'Transpose',
        inputs=['data'],
        outputs=['tdata'],
        perm=[0, 2, 1, 3],
    )

Khalique's avatar
Khalique committed
7530
7531
7532
7533
    ti = onnx.helper.make_node('Transpose',
                               inputs=['indices'],
                               outputs=['tindices'],
                               perm=[0, 2, 1, 3])
Khalique's avatar
Khalique committed
7534
7535
7536
7537
7538
7539
7540
7541

    node = onnx.helper.make_node(
        'Gather',
        inputs=['tdata', 'tindices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
7542
    return ([td, ti, node], [x, i], [y])
Khalique's avatar
Khalique committed
7543

Khalique's avatar
Khalique committed
7544

kahmed10's avatar
kahmed10 committed
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
@onnx_test()
def trilu_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node(
        'Trilu',
        inputs=['x'],
        outputs=['y'],
    )
    return ([node], [x], [y])


@onnx_test()
def trilu_batch_diff_k_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 3])
    k = np.array([2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3])
    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node(
        'Trilu',
        inputs=['x', 'k'],
        outputs=['y'],
    )
    return ([node], [x], [y], [k_tensor])


@onnx_test()
def trilu_lower_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])

    node = onnx.helper.make_node('Trilu', inputs=['x'], outputs=['y'], upper=0)
    return ([node], [x], [y])


@onnx_test()
def trilu_neg_k_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    k = np.array([-1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node('Trilu', inputs=['x', 'k'], outputs=['y'])
    return ([node], [x], [y], [k_tensor])


@onnx_test()
def trilu_out_k_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
    k = np.array([5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node('Trilu', inputs=['x', 'k'], outputs=['y'])
    return ([node], [x], [y], [k_tensor])


@onnx_test()
def trilu_row_one_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 4])
    k = np.array([1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 4])
    k_tensor = helper.make_tensor(name='k',
                                  data_type=TensorProto.INT64,
                                  dims=k.shape,
                                  vals=k.astype(np.int64))

    node = onnx.helper.make_node(
        'Trilu',
        inputs=['x', 'k'],
        outputs=['y'],
    )
    return ([node], [x], [y], [k_tensor])


7631
@onnx_test()
7632
7633
7634
7635
7636
7637
7638
7639
7640
def undefined_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node('Identity', inputs=[''], outputs=['1'])

    return ([node], [x], [y])


7641
@onnx_test()
Khalique's avatar
Khalique committed
7642
7643
7644
def unknown_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
7645
7646
7647

    helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
7648
7649
    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
7650
    node = onnx.helper.make_node('Unknown', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
7651

Khalique's avatar
Khalique committed
7652
    node2 = onnx.helper.make_node('Unknown', inputs=['2'], outputs=['3'])
Khalique's avatar
Khalique committed
7653

Khalique's avatar
Khalique committed
7654
    return ([node, node2], [x, y], [a])
7655
7656


7657
@onnx_test()
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
def unknown_aten_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])

    helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node('ATen',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 operator='unknown')

    return ([node], [x, y], [a])


7674
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
def upsample_linear_test():
    scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
    scales_tensor = helper.make_tensor(name='scales',
                                       data_type=TensorProto.FLOAT,
                                       dims=scales.shape,
                                       vals=scales.flatten().astype(
                                           np.float32))
    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])

    node = onnx.helper.make_node('Upsample',
                                 inputs=['X', '', 'scales'],
                                 outputs=['Y'],
                                 mode='linear')

    return ([node], [X], [Y], [scales_tensor])


7693
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
def upsample_test():
    scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32)
    scale_tensor = helper.make_tensor(name='scales',
                                      data_type=TensorProto.FLOAT,
                                      dims=scales.shape,
                                      vals=scales.flatten().astype(np.float32))

    X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
    Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [1, 1, 4, 6])

    node = onnx.helper.make_node(
        'Upsample',
        inputs=['X', 'scales'],
        outputs=['Y'],
        mode='nearest',
    )

    return ([node], [X], [Y], [scale_tensor])


7714
@onnx_test()
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
def variable_batch_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [None, 3, 16, 16])

    node = onnx.helper.make_node('Identity', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


7726
@onnx_test()
7727
7728
7729
7730
7731
7732
7733
7734
def variable_batch_leq_zero_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [0, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [-1, 3, 16, 16])

    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [-1, 3, 16, 16])
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])
Shucai Xiao's avatar
Shucai Xiao committed
7735
7736


7737
@onnx_test()
Shucai Xiao's avatar
Shucai Xiao committed
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
def where_test():
    c = helper.make_tensor_value_info('c', TensorProto.BOOL, [2])
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 1, 2, 2])

    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [2, 2, 2, 2])
    node = onnx.helper.make_node('Where',
                                 inputs=['c', 'x', 'y'],
                                 outputs=['z'])

    return ([node], [c, x, y], [z])
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777


@onnx_test()
def where_dyn_test():
    c = helper.make_tensor_value_info('c', TensorProto.BOOL, [None, 2, 2])
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 2, 2])

    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [None, 2, 2])
    node = onnx.helper.make_node('Where',
                                 inputs=['c', 'x', 'y'],
                                 outputs=['z'])

    return ([node], [c, x, y], [z])


@onnx_test()
def where_mixed_test():
    # mixture of static and dynamic input shapes is not supported
    c = helper.make_tensor_value_info('c', TensorProto.BOOL, [None, 2, 2])
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 2, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 2, 2])

    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [None, 2, 2])
    node = onnx.helper.make_node('Where',
                                 inputs=['c', 'x', 'y'],
                                 outputs=['z'])

    return ([node], [c, x, y], [z])