Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
bac7436b
Unverified
Commit
bac7436b
authored
Nov 22, 2023
by
Zakor Gyula
Committed by
GitHub
Nov 22, 2023
Browse files
Add QLinearSigmoid and QLinearLeakyRelu ops (#2443)
parent
89215595
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
330 additions
and
0 deletions
+330
-0
src/onnx/parse_qlinearunary.cpp
src/onnx/parse_qlinearunary.cpp
+151
-0
test/onnx/gen_onnx.py
test/onnx/gen_onnx.py
+40
-0
test/onnx/onnx_test.cpp
test/onnx/onnx_test.cpp
+80
-0
test/onnx/qlinearleakyrelu_test.onnx
test/onnx/qlinearleakyrelu_test.onnx
+0
-0
test/onnx/qlinearsigmoid_test.onnx
test/onnx/qlinearsigmoid_test.onnx
+0
-0
test/onnx/verify_onnx.cpp
test/onnx/verify_onnx.cpp
+59
-0
No files found.
src/onnx/parse_qlinearunary.cpp
0 → 100644
View file @
bac7436b
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/common.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/broadcast_qdq.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/instruction.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
/*
*********************************************************************************
* Reference: see QLinearSigmoid, QLinearLeakyRelu in *
* https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************
com.microsoft.QLinearSigmoid
QLinearSigmoid takes quantized input data (Tensor), and quantize parameter for output, and produces
one output data (Tensor) where the function f(x) = quantize(Sigmoid(dequantize(x))), is applied to
the data tensor elementwise. Where the function Sigmoid(x) = 1 / (1 + exp(-x))
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator
set.
*****************************************************************************************************
com.microsoft.QLinearLeakyRelu
QLinearLeakyRelu takes quantized input data (Tensor), an argument alpha, and quantize parameter for
output, and produces one output data (Tensor) where the function f(x) = quantize(alpha *
dequantize(x)) for dequantize(x) < 0, f(x) = quantize(dequantize(x)) for dequantize(x) >= 0, is
applied to the data tensor elementwise.
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator set.
Attributes
alpha : float
Coefficient of leakage.
******************************************************************************************************
Generic input layout of QLinear unary operators:
Inputs (4 - 5)
X : T
Input tensor
X_scale : tensor(float)
Input X's scale. It's a scalar, which means a per-tensor/layer quantization.
X_zero_point (optional) : T
Input X's zero point. Default value is 0 if it's not specified. It's a scalar, which means a
per-tensor/layer quantization.
Y_scale : tensor(float) Output Y's scale. It's a scalar, which means
a per-tensor/layer quantization.
Y_zero_point (optional) : T Output Y's zero point. Default value is
0 if it's not specified. It's a scalar, which means a per-tensor/layer quantization.
Outputs
Y : T
Output tensor
Type Constraints
T : tensor(uint8), tensor(int8)
Constrain input and output types to 8 bit tensors.
*/
struct
parse_qlinearunary
:
op_parser
<
parse_qlinearunary
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"QLinearSigmoid"
,
"sigmoid"
},
{
"QLinearLeakyRelu"
,
"leaky_relu"
}};
}
void
check_inputs
(
const
op_desc
&
opd
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
if
(
args
.
size
()
<
4
)
MIGRAPHX_THROW
(
opd
.
op_name
+
": missing inputs"
);
const
auto
&
in_x
=
args
[
0
];
auto
sh_x
=
in_x
->
get_shape
();
auto
type_x
=
sh_x
.
type
();
if
(
type_x
!=
migraphx
::
shape
::
int8_type
and
type_x
!=
migraphx
::
shape
::
uint8_type
)
MIGRAPHX_THROW
(
opd
.
op_name
+
": unsupported input type"
);
}
instruction_ref
parse
(
const
op_desc
&
opd
,
const
onnx_parser
&
parser
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
check_inputs
(
opd
,
args
);
// X
const
auto
&
in_x
=
args
[
0
];
const
auto
&
in_scale_x
=
args
[
1
];
const
auto
&
in_zero_pt_x
=
args
[
2
];
auto
dquant_x
=
bcast_qdq_instr
(
"dequantizelinear"
,
in_x
,
in_scale_x
,
in_zero_pt_x
,
info
);
// Y = (op(dequantizelinear(x))
auto
op
=
parser
.
load
(
opd
.
op_name
,
info
);
auto
y
=
info
.
add_instruction
(
op
,
dquant_x
);
const
auto
&
in_scale_y
=
args
[
3
];
// zero_pt for Y is supplied as the last optional argument..
if
(
args
.
size
()
==
5
)
return
(
bcast_qdq_instr
(
"quantizelinear"
,
y
,
in_scale_y
,
args
[
4
],
info
));
// if no zero_pt: just broadcast the scale..
auto
bcast_scale_sigm
=
bcast_scalar_instr
(
y
->
get_shape
(),
in_scale_y
,
info
);
return
(
info
.
add_instruction
(
migraphx
::
make_op
(
"quantizelinear"
),
y
,
bcast_scale_sigm
));
}
};
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
test/onnx/gen_onnx.py
View file @
bac7436b
...
@@ -6126,6 +6126,26 @@ def qlinearglobalavgpool_test():
...
@@ -6126,6 +6126,26 @@ def qlinearglobalavgpool_test():
return
([
n
],
[
x
],
[
y
],
[
sc_x
,
z_pt_x
,
sc_y
,
z_pt_y
])
return
([
n
],
[
x
],
[
y
],
[
sc_x
,
z_pt_x
,
sc_y
,
z_pt_y
])
@
onnx_test
()
def
qlinearleakyrelu_test
():
x
=
helper
.
make_tensor_value_info
(
'X'
,
TensorProto
.
INT8
,
[
64
])
sc_x
=
helper
.
make_tensor
(
'X_scale'
,
TensorProto
.
FLOAT
,
[],
[
0.05
])
zero_pt_x
=
helper
.
make_tensor
(
'X_zero_point'
,
TensorProto
.
INT8
,
[],
[
0
])
sc_y
=
helper
.
make_tensor
(
'Y_scale'
,
TensorProto
.
FLOAT
,
[],
[
0.05
])
zero_pt_y
=
helper
.
make_tensor
(
'Y_zero_point'
,
TensorProto
.
INT8
,
[],
[
10
])
y
=
helper
.
make_tensor_value_info
(
'Y'
,
TensorProto
.
INT8
,
[
64
])
node
=
onnx
.
helper
.
make_node
(
'QLinearLeakyRelu'
,
inputs
=
[
'X'
,
'X_scale'
,
'X_zero_point'
,
'Y_scale'
,
'Y_zero_point'
],
outputs
=
[
'Y'
],
alpha
=
1.1
,
)
return
([
node
],
[
x
],
[
y
],
[
sc_x
,
zero_pt_x
,
sc_y
,
zero_pt_y
])
def
qlinearmatmul_1D_test
():
def
qlinearmatmul_1D_test
():
a
=
helper
.
make_tensor_value_info
(
'A'
,
TensorProto
.
UINT8
,
[
8
])
a
=
helper
.
make_tensor_value_info
(
'A'
,
TensorProto
.
UINT8
,
[
8
])
sc_a
=
helper
.
make_tensor
(
'A_scale'
,
TensorProto
.
FLOAT
,
[],
[
0.05
])
sc_a
=
helper
.
make_tensor
(
'A_scale'
,
TensorProto
.
FLOAT
,
[],
[
0.05
])
...
@@ -6266,6 +6286,26 @@ def qlinearmul_bcast_test():
...
@@ -6266,6 +6286,26 @@ def qlinearmul_bcast_test():
[
sc_a
,
zero_pt_a
,
sc_b
,
zero_pt_b
,
sc_c
,
zero_pt_c
])
[
sc_a
,
zero_pt_a
,
sc_b
,
zero_pt_b
,
sc_c
,
zero_pt_c
])
@
onnx_test
()
def
qlinearsigmoid_test
():
x
=
helper
.
make_tensor_value_info
(
'X'
,
TensorProto
.
INT8
,
[
64
])
sc_x
=
helper
.
make_tensor
(
'X_scale'
,
TensorProto
.
FLOAT
,
[],
[
0.05
])
zero_pt_x
=
helper
.
make_tensor
(
'X_zero_point'
,
TensorProto
.
INT8
,
[],
[
0
])
sc_y
=
helper
.
make_tensor
(
'Y_scale'
,
TensorProto
.
FLOAT
,
[],
[
0.0035
])
zero_pt_y
=
helper
.
make_tensor
(
'Y_zero_point'
,
TensorProto
.
INT8
,
[],
[
-
128
])
y
=
helper
.
make_tensor_value_info
(
'Y'
,
TensorProto
.
INT8
,
[
64
])
node
=
onnx
.
helper
.
make_node
(
'QLinearSigmoid'
,
inputs
=
[
'X'
,
'X_scale'
,
'X_zero_point'
,
'Y_scale'
,
'Y_zero_point'
],
outputs
=
[
'Y'
],
)
return
([
node
],
[
x
],
[
y
],
[
sc_x
,
zero_pt_x
,
sc_y
,
zero_pt_y
])
@
onnx_test
()
@
onnx_test
()
def
quantizelinear_test
():
def
quantizelinear_test
():
arg0
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
5
])
arg0
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
5
])
...
...
test/onnx/onnx_test.cpp
View file @
bac7436b
...
@@ -5695,6 +5695,46 @@ TEST_CASE(qlinearglobalavgpool_test)
...
@@ -5695,6 +5695,46 @@ TEST_CASE(qlinearglobalavgpool_test)
EXPECT
(
p
.
sort
()
==
prog
.
sort
());
EXPECT
(
p
.
sort
()
==
prog
.
sort
());
}
}
TEST_CASE
(
qlinearleakyrelu_test
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
x
=
mm
->
add_parameter
(
"X"
,
{
migraphx
::
shape
::
int8_type
,
{
64
}});
auto
sc_x
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
0.05
}});
auto
z_pt_x
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
int8_type
,
{
0
}});
auto
sc_y
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
0.05
}});
auto
z_pt_y
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
int8_type
,
{
10
}});
auto
scale_x_bcast
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
{
64
}}}),
sc_x
);
auto
z_pt_x_bcast
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
{
64
}}}),
z_pt_x
);
auto
fp_x
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"dequantizelinear"
),
x
,
scale_x_bcast
,
z_pt_x_bcast
);
auto
fp_y
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"leaky_relu"
,
{{
"alpha"
,
1.1
}}),
fp_x
);
auto
scale_y_bcast
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
{
64
}}}),
sc_y
);
auto
z_pt_y_bcast
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
{
64
}}}),
z_pt_y
);
auto
y
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"quantizelinear"
),
fp_y
,
scale_y_bcast
,
z_pt_y_bcast
);
mm
->
add_return
({
y
});
auto
prog
=
migraphx
::
parse_onnx
(
"qlinearleakyrelu_test.onnx"
);
EXPECT
(
p
.
sort
()
==
prog
.
sort
());
}
TEST_CASE
(
qlinearmatmul_1D_test
)
TEST_CASE
(
qlinearmatmul_1D_test
)
{
{
migraphx
::
program
p
;
migraphx
::
program
p
;
...
@@ -5860,6 +5900,46 @@ TEST_CASE(qlinearmul_test)
...
@@ -5860,6 +5900,46 @@ TEST_CASE(qlinearmul_test)
EXPECT
(
p
.
sort
()
==
prog
.
sort
());
EXPECT
(
p
.
sort
()
==
prog
.
sort
());
}
}
TEST_CASE
(
qlinearsigmoid_test
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
x
=
mm
->
add_parameter
(
"X"
,
{
migraphx
::
shape
::
int8_type
,
{
64
}});
auto
sc_x
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
0.05
}});
auto
z_pt_x
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
int8_type
,
{
0
}});
auto
sc_y
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
0.0035
}});
auto
z_pt_y
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
int8_type
,
{
-
128
}});
auto
scale_x_bcast
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
{
64
}}}),
sc_x
);
auto
z_pt_x_bcast
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
{
64
}}}),
z_pt_x
);
auto
fp_x
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"dequantizelinear"
),
x
,
scale_x_bcast
,
z_pt_x_bcast
);
auto
fp_y
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"sigmoid"
),
fp_x
);
auto
scale_y_bcast
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
{
64
}}}),
sc_y
);
auto
z_pt_y_bcast
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
{
64
}}}),
z_pt_y
);
auto
y
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"quantizelinear"
),
fp_y
,
scale_y_bcast
,
z_pt_y_bcast
);
mm
->
add_return
({
y
});
auto
prog
=
migraphx
::
parse_onnx
(
"qlinearsigmoid_test.onnx"
);
EXPECT
(
p
.
sort
()
==
prog
.
sort
());
}
migraphx
::
instruction_ref
insert_quantizelinear_clip
(
migraphx
::
module
&
m
,
migraphx
::
instruction_ref
insert_quantizelinear_clip
(
migraphx
::
module
&
m
,
const
migraphx
::
instruction_ref
ins
,
const
migraphx
::
instruction_ref
ins
,
const
migraphx
::
instruction_ref
round
,
const
migraphx
::
instruction_ref
round
,
...
...
test/onnx/qlinearleakyrelu_test.onnx
0 → 100644
View file @
bac7436b
File added
test/onnx/qlinearsigmoid_test.onnx
0 → 100644
View file @
bac7436b
File added
test/onnx/verify_onnx.cpp
View file @
bac7436b
...
@@ -1819,6 +1819,35 @@ TEST_CASE(qlinearglobalavgpool_test)
...
@@ -1819,6 +1819,35 @@ TEST_CASE(qlinearglobalavgpool_test)
EXPECT
(
migraphx
::
verify
::
verify_rms_range
(
result_vector
,
gold
));
EXPECT
(
migraphx
::
verify
::
verify_rms_range
(
result_vector
,
gold
));
}
}
TEST_CASE
(
qlinearleakyrelu_test
)
{
// github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md#com.microsoft.QLinearSigmoid
migraphx
::
program
p
=
migraphx
::
parse_onnx
(
"qlinearleakyrelu_test.onnx"
);
p
.
compile
(
migraphx
::
make_target
(
"ref"
));
migraphx
::
shape
x
{
migraphx
::
shape
::
int8_type
,
{
64
}};
std
::
vector
<
int8_t
>
data_x
=
{
-
128
,
-
124
,
-
120
,
-
116
,
-
112
,
-
108
,
-
104
,
-
100
,
-
96
,
-
92
,
-
88
,
-
84
,
-
80
,
-
76
,
-
72
,
-
68
,
-
64
,
-
60
,
-
56
,
-
52
,
-
48
,
-
44
,
-
40
,
-
36
,
-
32
,
-
28
,
-
24
,
-
20
,
-
16
,
-
12
,
-
8
,
-
4
,
0
,
4
,
8
,
12
,
16
,
20
,
24
,
28
,
32
,
36
,
40
,
44
,
48
,
52
,
56
,
60
,
64
,
68
,
72
,
76
,
80
,
84
,
88
,
92
,
96
,
100
,
104
,
108
,
112
,
116
,
120
,
124
};
migraphx
::
parameter_map
pp
;
pp
[
"X"
]
=
migraphx
::
argument
(
x
,
data_x
.
data
());
auto
result
=
p
.
eval
(
pp
).
back
();
std
::
vector
<
int8_t
>
result_vector
;
result
.
visit
([
&
](
auto
output
)
{
result_vector
.
assign
(
output
.
begin
(),
output
.
end
());
});
std
::
vector
<
int8_t
>
gold
=
{
-
128
,
-
126
,
-
122
,
-
118
,
-
113
,
-
109
,
-
104
,
-
100
,
-
96
,
-
91
,
-
87
,
-
82
,
-
78
,
-
74
,
-
69
,
-
65
,
-
60
,
-
56
,
-
52
,
-
47
,
-
43
,
-
38
,
-
34
,
-
30
,
-
25
,
-
21
,
-
16
,
-
12
,
-
8
,
-
3
,
1
,
6
,
10
,
14
,
18
,
22
,
26
,
30
,
34
,
38
,
42
,
46
,
50
,
54
,
58
,
62
,
66
,
70
,
74
,
78
,
82
,
86
,
90
,
94
,
98
,
102
,
106
,
110
,
114
,
118
,
122
,
126
,
127
,
127
};
EXPECT
(
migraphx
::
verify
::
verify_rms_range
(
result_vector
,
gold
));
}
TEST_CASE
(
qlinearmatmul_1D_test
)
TEST_CASE
(
qlinearmatmul_1D_test
)
{
{
migraphx
::
program
p
=
migraphx
::
parse_onnx
(
"qlinearmatmul_1D_test.onnx"
);
migraphx
::
program
p
=
migraphx
::
parse_onnx
(
"qlinearmatmul_1D_test.onnx"
);
...
@@ -1970,6 +1999,36 @@ TEST_CASE(qlinearmul_bcast_test)
...
@@ -1970,6 +1999,36 @@ TEST_CASE(qlinearmul_bcast_test)
EXPECT
(
migraphx
::
verify
::
verify_rms_range
(
result_vector
,
gold
));
EXPECT
(
migraphx
::
verify
::
verify_rms_range
(
result_vector
,
gold
));
}
}
TEST_CASE
(
qlinearsigmoid_test
)
{
// github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md#com.microsoft.QLinearSigmoid
migraphx
::
program
p
=
migraphx
::
parse_onnx
(
"qlinearsigmoid_test.onnx"
);
p
.
compile
(
migraphx
::
make_target
(
"ref"
));
migraphx
::
shape
x
{
migraphx
::
shape
::
int8_type
,
{
64
}};
std
::
vector
<
int8_t
>
data_x
=
{
-
128
,
-
124
,
-
120
,
-
116
,
-
112
,
-
108
,
-
104
,
-
100
,
-
96
,
-
92
,
-
88
,
-
84
,
-
80
,
-
76
,
-
72
,
-
68
,
-
64
,
-
60
,
-
56
,
-
52
,
-
48
,
-
44
,
-
40
,
-
36
,
-
32
,
-
28
,
-
24
,
-
20
,
-
16
,
-
12
,
-
8
,
-
4
,
0
,
4
,
8
,
12
,
16
,
20
,
24
,
28
,
32
,
36
,
40
,
44
,
48
,
52
,
56
,
60
,
64
,
68
,
72
,
76
,
80
,
84
,
88
,
92
,
96
,
100
,
104
,
108
,
112
,
116
,
120
,
124
};
migraphx
::
parameter_map
pp
;
pp
[
"X"
]
=
migraphx
::
argument
(
x
,
data_x
.
data
());
auto
result
=
p
.
eval
(
pp
).
back
();
std
::
vector
<
int8_t
>
result_vector
;
result
.
visit
([
&
](
auto
output
)
{
result_vector
.
assign
(
output
.
begin
(),
output
.
end
());
});
std
::
vector
<
int8_t
>
gold
=
{
-
128
,
-
127
,
-
127
,
-
127
,
-
127
,
-
127
,
-
126
,
-
126
,
-
126
,
-
125
,
-
125
,
-
124
,
-
123
,
-
122
,
-
120
,
-
119
,
-
117
,
-
114
,
-
112
,
-
108
,
-
104
,
-
99
,
-
94
,
-
87
,
-
80
,
-
71
,
-
62
,
-
51
,
-
39
,
-
27
,
-
13
,
1
,
15
,
29
,
43
,
56
,
69
,
81
,
92
,
101
,
110
,
117
,
124
,
127
,
127
,
127
,
127
,
127
,
127
,
127
,
127
,
127
,
127
,
127
,
127
,
127
,
127
,
127
,
127
,
127
,
127
,
127
,
127
,
127
};
EXPECT
(
migraphx
::
verify
::
verify_rms_range
(
result_vector
,
gold
));
}
TEST_CASE
(
resize_downsample_f_test
)
TEST_CASE
(
resize_downsample_f_test
)
{
{
migraphx
::
program
p
=
migraphx
::
parse_onnx
(
"resize_downsample_f_test.onnx"
);
migraphx
::
program
p
=
migraphx
::
parse_onnx
(
"resize_downsample_f_test.onnx"
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment