Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
0102d441
Unverified
Commit
0102d441
authored
Nov 17, 2023
by
Zakor Gyula
Committed by
GitHub
Nov 17, 2023
Browse files
Add QLinearMul operator (#2430)
parent
7f93a818
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
210 additions
and
13 deletions
+210
-13
src/onnx/parse_qlinearbinary.cpp
src/onnx/parse_qlinearbinary.cpp
+27
-13
test/onnx/gen_onnx.py
test/onnx/gen_onnx.py
+55
-0
test/onnx/onnx_test.cpp
test/onnx/onnx_test.cpp
+53
-0
test/onnx/qlinearmul_bcast_test.onnx
test/onnx/qlinearmul_bcast_test.onnx
+0
-0
test/onnx/qlinearmul_test.onnx
test/onnx/qlinearmul_test.onnx
+0
-0
test/onnx/verify_onnx.cpp
test/onnx/verify_onnx.cpp
+75
-0
No files found.
src/onnx/parse_qlinear
add
.cpp
→
src/onnx/parse_qlinear
binary
.cpp
View file @
0102d441
...
...
@@ -36,7 +36,7 @@ namespace onnx {
/*
*********************************************************************************
* Reference: see QLinearAdd
in
*
* Reference: see QLinearAdd
, QLinearMul in
*
* https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************
...
...
@@ -49,6 +49,17 @@ namespace onnx {
This version of the operator has been available since version 1 of the 'com.microsoft' operator
set.
com.microsoft.QLinearMul
Performs element-wise binary multiplication on 8 bit data types (with Numpy-style broadcasting
support).
C = ((A - A_zero_point) * (B - B_zero_point)) * (A_scale * B_scale)/C_scale + C_zero_point
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator
set.
General definition of binary QLinear* ops:
Inputs (7 - 8)
A : T
First operand.
...
...
@@ -88,15 +99,18 @@ namespace onnx {
*/
struct
parse_qlinear
add
:
op_parser
<
parse_qlinear
add
>
struct
parse_qlinear
binary
:
op_parser
<
parse_qlinear
binary
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"QLinearAdd"
}};
}
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"QLinearAdd"
,
"add"
},
{
"QLinearMul"
,
"mul"
}};
}
// basic type checking for QLinear
Add
Operator
void
check_inputs
(
const
std
::
vector
<
instruction_ref
>&
args
)
const
// basic type checking for
binary
QLinear Operator
void
check_inputs
(
const
std
::
vector
<
instruction_ref
>&
args
,
const
std
::
string
&
op_name
)
const
{
if
(
args
.
size
()
<
7
)
MIGRAPHX_THROW
(
"QLINEARADD
: missing inputs"
);
MIGRAPHX_THROW
(
op_name
+
"
: missing inputs"
);
const
auto
&
in_a
=
args
[
0
];
const
auto
&
in_b
=
args
[
3
];
...
...
@@ -107,19 +121,19 @@ struct parse_qlinearadd : op_parser<parse_qlinearadd>
auto
type_a
=
sh_a
.
type
();
auto
type_b
=
sh_b
.
type
();
if
(
type_a
!=
migraphx
::
shape
::
int8_type
and
type_a
!=
migraphx
::
shape
::
uint8_type
)
MIGRAPHX_THROW
(
"QLINEARADD
: unsupported input type"
);
MIGRAPHX_THROW
(
op_name
+
"
: unsupported input type"
);
if
(
type_b
!=
migraphx
::
shape
::
int8_type
and
type_b
!=
migraphx
::
shape
::
uint8_type
)
MIGRAPHX_THROW
(
"QLINEARADD
: unsupported input type"
);
MIGRAPHX_THROW
(
op_name
+
"
: unsupported input type"
);
if
(
type_a
!=
type_b
)
MIGRAPHX_THROW
(
"QLINEARADD
: mismatched input types"
);
MIGRAPHX_THROW
(
op_name
+
"
: mismatched input types"
);
}
instruction_ref
parse
(
const
op_desc
&
/* opd */
,
instruction_ref
parse
(
const
op_desc
&
opd
,
const
onnx_parser
&
/*parser*/
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
check_inputs
(
args
);
check_inputs
(
args
,
opd
.
op_name
);
// A
const
auto
&
in_a
=
args
[
0
];
...
...
@@ -134,8 +148,8 @@ struct parse_qlinearadd : op_parser<parse_qlinearadd>
const
auto
&
in_zero_pt_b
=
args
[
5
];
auto
dquant_b
=
bcast_qdq_instr
(
"dequantizelinear"
,
in_b
,
in_scale_b
,
in_zero_pt_b
,
info
);
// C =
A +
B
auto
out_c
=
info
.
add_common_op
(
"add"
,
dquant_a
,
dquant_b
);
// C =
op(A,
B
)
auto
out_c
=
info
.
add_common_op
(
opd
.
op_name
,
dquant_a
,
dquant_b
);
const
auto
&
in_scale_c
=
args
[
6
];
...
...
test/onnx/gen_onnx.py
View file @
0102d441
...
...
@@ -6179,6 +6179,61 @@ def qlinearmatmul_3D_test():
[
sc_a
,
zero_pt_a
,
sc_b
,
zero_pt_b
,
sc_c
,
zero_pt_c
])
@
onnx_test
()
def
qlinearmul_test
():
a
=
helper
.
make_tensor_value_info
(
'A'
,
TensorProto
.
UINT8
,
[
64
])
sc_a
=
helper
.
make_tensor
(
'A_scale'
,
TensorProto
.
FLOAT
,
[],
[
0.05
])
zero_pt_a
=
helper
.
make_tensor
(
'A_zero_point'
,
TensorProto
.
UINT8
,
[],
[
0
])
b
=
helper
.
make_tensor_value_info
(
'B'
,
TensorProto
.
UINT8
,
[
64
])
sc_b
=
helper
.
make_tensor
(
'B_scale'
,
TensorProto
.
FLOAT
,
[],
[
0.05
])
zero_pt_b
=
helper
.
make_tensor
(
'B_zero_point'
,
TensorProto
.
UINT8
,
[],
[
16
])
sc_c
=
helper
.
make_tensor
(
'C_scale'
,
TensorProto
.
FLOAT
,
[],
[
0.05
])
zero_pt_c
=
helper
.
make_tensor
(
'C_zero_point'
,
TensorProto
.
UINT8
,
[],
[
100
])
c
=
helper
.
make_tensor_value_info
(
'C'
,
TensorProto
.
UINT8
,
[
64
])
node
=
onnx
.
helper
.
make_node
(
'QLinearMul'
,
inputs
=
[
'A'
,
'A_scale'
,
'A_zero_point'
,
'B'
,
'B_scale'
,
'B_zero_point'
,
'C_scale'
,
'C_zero_point'
],
outputs
=
[
'C'
],
)
return
([
node
],
[
a
,
b
],
[
c
],
[
sc_a
,
zero_pt_a
,
sc_b
,
zero_pt_b
,
sc_c
,
zero_pt_c
])
@
onnx_test
()
def
qlinearmul_bcast_test
():
a
=
helper
.
make_tensor_value_info
(
'A'
,
TensorProto
.
INT8
,
[
64
])
sc_a
=
helper
.
make_tensor
(
'A_scale'
,
TensorProto
.
FLOAT
,
[],
[
0.05
])
zero_pt_a
=
helper
.
make_tensor
(
'A_zero_point'
,
TensorProto
.
INT8
,
[],
[
0
])
b
=
helper
.
make_tensor_value_info
(
'B'
,
TensorProto
.
INT8
,
[
1
,
1
,
64
])
sc_b
=
helper
.
make_tensor
(
'B_scale'
,
TensorProto
.
FLOAT
,
[],
[
0.05
])
zero_pt_b
=
helper
.
make_tensor
(
'B_zero_point'
,
TensorProto
.
INT8
,
[],
[
128
])
sc_c
=
helper
.
make_tensor
(
'C_scale'
,
TensorProto
.
FLOAT
,
[],
[
0.15
])
zero_pt_c
=
helper
.
make_tensor
(
'C_zero_point'
,
TensorProto
.
INT8
,
[],
[
32
])
c
=
helper
.
make_tensor_value_info
(
'C'
,
TensorProto
.
INT8
,
[
1
,
1
,
64
])
node
=
onnx
.
helper
.
make_node
(
'QLinearMul'
,
inputs
=
[
'A'
,
'A_scale'
,
'A_zero_point'
,
'B'
,
'B_scale'
,
'B_zero_point'
,
'C_scale'
,
'C_zero_point'
],
outputs
=
[
'C'
],
)
return
([
node
],
[
a
,
b
],
[
c
],
[
sc_a
,
zero_pt_a
,
sc_b
,
zero_pt_b
,
sc_c
,
zero_pt_c
])
@
onnx_test
()
def
quantizelinear_test
():
arg0
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
5
])
...
...
test/onnx/onnx_test.cpp
View file @
0102d441
...
...
@@ -5754,6 +5754,59 @@ TEST_CASE(qlinearmatmul_2D_test)
EXPECT(p.sort() == prog.sort());
}
TEST_CASE(qlinearmul_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto a = mm->add_parameter("A", {migraphx::shape::uint8_type, {64}});
auto b = mm->add_parameter("B", {migraphx::shape::uint8_type, {64}});
auto sc_a = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_a = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {0}});
auto sc_b = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_b = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {16}});
auto sc_c = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_c = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {100}});
auto scale_a_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), sc_a);
auto z_pt_a_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), z_pt_a);
auto fp_a =
mm->add_instruction(migraphx::make_op("dequantizelinear"), a, scale_a_bcast, z_pt_a_bcast);
auto scale_b_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), sc_b);
auto z_pt_b_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), z_pt_b);
auto fp_b =
mm->add_instruction(migraphx::make_op("dequantizelinear"), b, scale_b_bcast, z_pt_b_bcast);
auto fp_c = mm->add_instruction(migraphx::make_op("mul"), fp_a, fp_b);
auto scale_c_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), sc_c);
auto z_pt_c_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), z_pt_c);
auto c =
mm->add_instruction(migraphx::make_op("quantizelinear"), fp_c, scale_c_bcast, z_pt_c_bcast);
mm->add_return({c});
auto prog = migraphx::parse_onnx("qlinearmul_test.onnx");
EXPECT(p.sort() == prog.sort());
}
migraphx::instruction_ref insert_quantizelinear_clip(migraphx::module& m,
const migraphx::instruction_ref ins,
const migraphx::instruction_ref round,
...
...
test/onnx/qlinearmul_bcast_test.onnx
0 → 100644
View file @
0102d441
File added
test/onnx/qlinearmul_test.onnx
0 → 100644
View file @
0102d441
File added
test/onnx/verify_onnx.cpp
View file @
0102d441
...
...
@@ -1895,6 +1895,81 @@ TEST_CASE(qlinearmatmul_3D_test)
EXPECT
(
migraphx
::
verify
::
verify_rms_range
(
result_vector
,
gold
));
}
TEST_CASE
(
qlinearmul_test
)
{
// github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md#com.microsoft.QLinearMul
migraphx
::
program
p
=
migraphx
::
parse_onnx
(
"qlinearmul_test.onnx"
);
p
.
compile
(
migraphx
::
make_target
(
"ref"
));
migraphx
::
shape
a
{
migraphx
::
shape
::
uint8_type
,
{
64
}};
std
::
vector
<
uint8_t
>
data_a
=
{
0
,
2
,
4
,
6
,
8
,
10
,
12
,
14
,
16
,
18
,
20
,
22
,
24
,
26
,
28
,
30
,
32
,
34
,
36
,
38
,
40
,
42
,
44
,
46
,
48
,
50
,
52
,
54
,
56
,
58
,
60
,
62
,
64
,
66
,
68
,
70
,
72
,
74
,
76
,
78
,
80
,
82
,
84
,
86
,
88
,
90
,
92
,
94
,
96
,
98
,
100
,
102
,
104
,
106
,
108
,
110
,
112
,
114
,
116
,
118
,
120
,
122
,
124
,
126
};
migraphx
::
shape
b
{
migraphx
::
shape
::
uint8_type
,
{
64
}};
std
::
vector
<
uint8_t
>
data_b
=
{
128
,
126
,
124
,
122
,
120
,
118
,
116
,
114
,
112
,
110
,
108
,
106
,
104
,
102
,
100
,
98
,
96
,
94
,
92
,
90
,
88
,
86
,
84
,
82
,
80
,
78
,
76
,
74
,
72
,
70
,
68
,
66
,
64
,
62
,
60
,
58
,
56
,
54
,
52
,
50
,
48
,
46
,
44
,
42
,
40
,
38
,
36
,
34
,
32
,
30
,
28
,
26
,
24
,
22
,
20
,
18
,
16
,
14
,
12
,
10
,
8
,
6
,
4
,
2
};
migraphx
::
parameter_map
pp
;
pp
[
"A"
]
=
migraphx
::
argument
(
a
,
data_a
.
data
());
pp
[
"B"
]
=
migraphx
::
argument
(
b
,
data_b
.
data
());
auto
result
=
p
.
eval
(
pp
).
back
();
std
::
vector
<
uint8_t
>
result_vector
;
result
.
visit
([
&
](
auto
output
)
{
result_vector
.
assign
(
output
.
begin
(),
output
.
end
());
});
std
::
vector
<
uint8_t
>
gold
=
{
100
,
111
,
122
,
132
,
142
,
151
,
160
,
169
,
177
,
185
,
192
,
199
,
206
,
212
,
218
,
223
,
228
,
233
,
237
,
241
,
244
,
247
,
250
,
252
,
254
,
255
,
255
,
255
,
255
,
255
,
255
,
255
,
254
,
252
,
250
,
247
,
244
,
241
,
237
,
233
,
228
,
223
,
218
,
212
,
206
,
199
,
192
,
185
,
177
,
169
,
160
,
151
,
142
,
132
,
122
,
111
,
100
,
89
,
77
,
65
,
52
,
39
,
26
,
12
};
EXPECT
(
migraphx
::
verify
::
verify_rms_range
(
result_vector
,
gold
));
}
TEST_CASE
(
qlinearmul_bcast_test
)
{
// github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md#com.microsoft.QLinearMul
migraphx
::
program
p
=
migraphx
::
parse_onnx
(
"qlinearmul_bcast_test.onnx"
);
p
.
compile
(
migraphx
::
make_target
(
"ref"
));
migraphx
::
shape
a
{
migraphx
::
shape
::
int8_type
,
{
64
}};
std
::
vector
<
int8_t
>
data_a
=
{
-
64
,
-
62
,
-
60
,
-
58
,
-
56
,
-
54
,
-
52
,
-
50
,
-
48
,
-
46
,
-
44
,
-
42
,
-
40
,
-
38
,
-
36
,
-
34
,
-
32
,
-
30
,
-
28
,
-
26
,
-
24
,
-
22
,
-
20
,
-
18
,
-
16
,
-
14
,
-
12
,
-
10
,
-
8
,
-
6
,
-
4
,
-
2
,
0
,
2
,
4
,
6
,
8
,
10
,
12
,
14
,
16
,
18
,
20
,
22
,
24
,
26
,
28
,
30
,
32
,
34
,
36
,
38
,
40
,
42
,
44
,
46
,
48
,
50
,
52
,
54
,
56
,
58
,
60
,
62
};
migraphx
::
shape
b
{
migraphx
::
shape
::
int8_type
,
{
1
,
1
,
64
}};
std
::
vector
<
int8_t
>
data_b
=
{
96
,
94
,
92
,
90
,
88
,
86
,
84
,
82
,
80
,
78
,
76
,
74
,
72
,
70
,
68
,
66
,
64
,
62
,
60
,
58
,
56
,
54
,
52
,
50
,
48
,
46
,
44
,
42
,
40
,
38
,
36
,
34
,
32
,
30
,
28
,
26
,
24
,
22
,
20
,
18
,
16
,
14
,
12
,
10
,
8
,
6
,
4
,
2
,
0
,
-
2
,
-
4
,
-
6
,
-
8
,
-
10
,
-
12
,
-
14
,
-
16
,
-
18
,
-
20
,
-
22
,
-
24
,
-
26
,
-
28
,
-
30
};
migraphx
::
parameter_map
pp
;
pp
[
"A"
]
=
migraphx
::
argument
(
a
,
data_a
.
data
());
pp
[
"B"
]
=
migraphx
::
argument
(
b
,
data_b
.
data
());
auto
result
=
p
.
eval
(
pp
).
back
();
std
::
vector
<
int8_t
>
result_vector
;
result
.
visit
([
&
](
auto
output
)
{
result_vector
.
assign
(
output
.
begin
(),
output
.
end
());
});
std
::
vector
<
int8_t
>
gold
=
{
-
128
,
-
128
,
-
128
,
-
128
,
-
128
,
-
128
,
-
128
,
-
128
,
-
128
,
-
126
,
-
118
,
-
109
,
-
101
,
-
93
,
-
86
,
-
78
,
-
70
,
-
63
,
-
56
,
-
49
,
-
42
,
-
35
,
-
28
,
-
21
,
-
15
,
-
9
,
-
2
,
4
,
10
,
15
,
21
,
27
,
32
,
37
,
42
,
47
,
52
,
57
,
62
,
66
,
70
,
75
,
79
,
83
,
86
,
90
,
94
,
97
,
100
,
103
,
106
,
109
,
112
,
115
,
117
,
119
,
122
,
124
,
126
,
127
,
127
,
127
,
127
,
127
};
EXPECT
(
migraphx
::
verify
::
verify_rms_range
(
result_vector
,
gold
));
}
TEST_CASE
(
resize_downsample_f_test
)
{
migraphx
::
program
p
=
migraphx
::
parse_onnx
(
"resize_downsample_f_test.onnx"
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment