gen_onnx.py 45.6 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
import numpy as np
import onnx
from onnx import helper
from onnx import numpy_helper
from onnx import AttributeProto, TensorProto, GraphProto

Khalique's avatar
Khalique committed
7

Khalique's avatar
Khalique committed
8
9
def onnx_test(op_test):
    def run_test():
Khalique's avatar
Khalique committed
10
11
        op_info = op_test()
        if len(op_info) > 3:
Khalique's avatar
Khalique committed
12
13
14
15
16
            graph_def = helper.make_graph(op_info[0],
                                          op_test.__name__,
                                          op_info[1],
                                          op_info[2],
                                          initializer=op_info[3])
Khalique's avatar
Khalique committed
17
        else:
Khalique's avatar
Khalique committed
18
19
20
21
            graph_def = helper.make_graph(op_info[0], op_test.__name__,
                                          op_info[1], op_info[2])
        model_def = helper.make_model(graph_def,
                                      producer_name=op_test.__name__)
Khalique's avatar
Khalique committed
22
        onnx.save(model_def, '{}.onnx'.format(op_test.__name__))
Khalique's avatar
Khalique committed
23

Khalique's avatar
Khalique committed
24
25
    return run_test

Khalique's avatar
Khalique committed
26

Khalique's avatar
Khalique committed
27
@onnx_test
Khalique's avatar
Khalique committed
28
29
30
31
32
33
34
35
36
37
def acos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Acos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
38
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
39

Khalique's avatar
Khalique committed
40

Khalique's avatar
Khalique committed
41
@onnx_test
Khalique's avatar
Khalique committed
42
43
44
def add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
45
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
46

Khalique's avatar
Khalique committed
47
48
49
50
51
52
53
    node = onnx.helper.make_node('Add',
                                 inputs=['0', '1'],
                                 broadcast=1,
                                 axis=1,
                                 outputs=['2'])

    return ([node], [x, y], [z])
Khalique's avatar
Khalique committed
54
55


Khalique's avatar
Khalique committed
56
@onnx_test
Khalique's avatar
Khalique committed
57
58
59
60
61
62
63
64
65
66
67
def add_fp16_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
68
    return (
Khalique's avatar
Khalique committed
69
        [node],
Khalique's avatar
Khalique committed
70
        [x, y],
Khalique's avatar
Khalique committed
71
72
        [z],
        # '0' -> 1.5, '1' -> 2.5
Khalique's avatar
Khalique committed
73
74
75
76
        [
            onnx.helper.make_tensor('0', TensorProto.FLOAT16, [1], [15872]),
            onnx.helper.make_tensor('1', TensorProto.FLOAT16, [1], [16640])
        ])
Khalique's avatar
Khalique committed
77
78


Khalique's avatar
Khalique committed
79
@onnx_test
Khalique's avatar
Khalique committed
80
81
82
def add_scalar_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [])
Khalique's avatar
Khalique committed
83
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
84

Khalique's avatar
Khalique committed
85
86
87
88
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z],
            [helper.make_tensor('1', TensorProto.FLOAT, [], [1])])
Khalique's avatar
Khalique committed
89
90


Khalique's avatar
Khalique committed
91
@onnx_test
Khalique's avatar
Khalique committed
92
93
94
95
def argmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 6])

Khalique's avatar
Khalique committed
96
97
98
99
100
    node = onnx.helper.make_node('ArgMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=2,
                                 keepdims=0)
Khalique's avatar
Khalique committed
101

Khalique's avatar
Khalique committed
102
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
103

Khalique's avatar
Khalique committed
104

Khalique's avatar
Khalique committed
105
@onnx_test
Khalique's avatar
Khalique committed
106
107
108
109
def argmin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5])

Khalique's avatar
Khalique committed
110
111
112
113
114
    node = onnx.helper.make_node('ArgMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=3,
                                 keepdims=0)
Khalique's avatar
Khalique committed
115

Khalique's avatar
Khalique committed
116
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
117

Khalique's avatar
Khalique committed
118

Khalique's avatar
Khalique committed
119
@onnx_test
Khalique's avatar
Khalique committed
120
121
122
123
124
125
126
127
128
129
def asin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Asin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
130
131
    return ([node], [x], [y])

Khalique's avatar
Khalique committed
132

Khalique's avatar
Khalique committed
133
@onnx_test
Khalique's avatar
Khalique committed
134
135
136
137
138
139
140
141
142
def atan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Atan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
143

Khalique's avatar
Khalique committed
144
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
145

Khalique's avatar
Khalique committed
146

Khalique's avatar
Khalique committed
147
@onnx_test
Khalique's avatar
Khalique committed
148
149
150
151
def cast_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

Khalique's avatar
Khalique committed
152
153
    node = onnx.helper.make_node('Cast', inputs=['x'], outputs=['y'], to=1)

Khalique's avatar
Khalique committed
154
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
155

kahmed10's avatar
kahmed10 committed
156

Shucai Xiao's avatar
Shucai Xiao committed
157
158
159
160
161
162
163
164
165
166
167
168
@onnx_test
def ceil_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Ceil',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
169

kahmed10's avatar
kahmed10 committed
170

Khalique's avatar
Khalique committed
171
@onnx_test
Khalique's avatar
Khalique committed
172
173
174
175
def clip_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
176
177
178
179
180
    node = onnx.helper.make_node('Clip',
                                 inputs=['0'],
                                 outputs=['1'],
                                 max=6.0,
                                 min=0.0)
Khalique's avatar
Khalique committed
181

Khalique's avatar
Khalique committed
182
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
183

Khalique's avatar
Khalique committed
184

Khalique's avatar
Khalique committed
185
@onnx_test
Khalique's avatar
Khalique committed
186
187
188
189
190
191
192
193
194
195
196
197
def concat_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 4, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7, 4, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [9, 4, 3])

    node = onnx.helper.make_node(
        'Concat',
        inputs=['0', '1'],
        axis=0,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
198
199
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
200

Khalique's avatar
Khalique committed
201
@onnx_test
Khalique's avatar
Khalique committed
202
203
204
def constant_test():
    x = np.array([0, 1, 2])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
Khalique's avatar
Khalique committed
205

Khalique's avatar
Khalique committed
206
207
208
209
210
211
212
213
214
215
216
217
    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.FLOAT,
            dims=x.shape,
            vals=x.flatten().astype(float),
        ),
    )

Khalique's avatar
Khalique committed
218
    return ([node], [], [y])
Khalique's avatar
Khalique committed
219

Khalique's avatar
Khalique committed
220

Khalique's avatar
Khalique committed
221
@onnx_test
Khalique's avatar
Khalique committed
222
def constant_fill_test():
Khalique's avatar
Khalique committed
223
224
225
226
227
228
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=[],
        outputs=['value'],
Khalique's avatar
Khalique committed
229
230
231
232
        dtype=1,
        value=1.0,
        shape=[2, 3],
        input_as_shape=0,
Khalique's avatar
Khalique committed
233
234
    )

Khalique's avatar
Khalique committed
235
    return ([node], [], [value])
Khalique's avatar
Khalique committed
236

Khalique's avatar
Khalique committed
237

Khalique's avatar
Khalique committed
238
@onnx_test
Khalique's avatar
Khalique committed
239
def constant_fill_input_as_shape_test():
Khalique's avatar
Khalique committed
240
    np_shape = np.array([2, 3])
Khalique's avatar
Khalique committed
241
242
243
    shape = helper.make_tensor_value_info('shape', TensorProto.INT32, [2])
    value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])

Khalique's avatar
Khalique committed
244
245
246
247
    ts_shape = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=np_shape.shape,
                                  vals=np_shape.flatten().astype(int))
Khalique's avatar
Khalique committed
248
249
250
251
252
253
254
255
256
257
258
259

    const_shape_node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=ts_shape,
    )

    node = onnx.helper.make_node(
        'ConstantFill',
        inputs=['shape'],
        outputs=['value'],
Khalique's avatar
Khalique committed
260
261
262
        dtype=1,
        value=1.0,
        input_as_shape=1,
Khalique's avatar
Khalique committed
263
264
    )

Khalique's avatar
Khalique committed
265
    return ([const_shape_node, node], [], [value])
Khalique's avatar
Khalique committed
266

Khalique's avatar
Khalique committed
267

Khalique's avatar
Khalique committed
268
@onnx_test
Khalique's avatar
Khalique committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
def constant_scalar_test():
    x = np.array([1])
    y = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['0'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=TensorProto.INT32,
            dims=x.shape,
            vals=x.flatten().astype(int),
        ),
    )

Khalique's avatar
Khalique committed
285
    return ([node], [], [y])
Khalique's avatar
Khalique committed
286

Khalique's avatar
Khalique committed
287

Khalique's avatar
Khalique committed
288
@onnx_test
Khalique's avatar
Khalique committed
289
def const_of_shape_empty_input_test():
Khalique's avatar
Khalique committed
290
291
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
292
293
    shape_val = np.array([2, 3, 4]).astype(np.int64)
    empty_val = np.array([]).astype(np.int64)
Khalique's avatar
Khalique committed
294
295
296
297
    empty_ts = helper.make_tensor(name='empty_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=empty_val.shape,
                                  vals=empty_val.flatten().astype(int))
Khalique's avatar
Khalique committed
298
299
300
301
302
303
304
305
306
307
308
309
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=empty_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
Khalique's avatar
Khalique committed
310
        value=tensor_val,
Khalique's avatar
Khalique committed
311
312
    )

Khalique's avatar
Khalique committed
313
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
314

Khalique's avatar
Khalique committed
315

Khalique's avatar
Khalique committed
316
@onnx_test
Khalique's avatar
Khalique committed
317
def const_of_shape_float_test():
Khalique's avatar
Khalique committed
318
319
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.FLOAT, [1],
                                         [10])
Khalique's avatar
Khalique committed
320
321

    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
322
323
324
325
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
326
327
328
329
330
331
332
333
334

    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])

Khalique's avatar
Khalique committed
335
336
337
338
    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
339

Khalique's avatar
Khalique committed
340
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
341

Khalique's avatar
Khalique committed
342

Khalique's avatar
Khalique committed
343
@onnx_test
Khalique's avatar
Khalique committed
344
def const_of_shape_int64_test():
Khalique's avatar
Khalique committed
345
346
    tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
                                         [10])
Khalique's avatar
Khalique committed
347
    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
348
349
350
351
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
352
    shape_const = helper.make_node(
Khalique's avatar
Khalique committed
353
354
355
356
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
Khalique's avatar
Khalique committed
357
358
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
359
360
361
362
363

    node = onnx.helper.make_node('ConstantOfShape',
                                 inputs=['shape'],
                                 outputs=['y'],
                                 value=tensor_val)
Khalique's avatar
Khalique committed
364

Khalique's avatar
Khalique committed
365
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
366

Khalique's avatar
Khalique committed
367

Khalique's avatar
Khalique committed
368
@onnx_test
Khalique's avatar
Khalique committed
369
370
def const_of_shape_no_value_attr_test():
    shape_val = np.array([2, 3, 4]).astype(np.int64)
Khalique's avatar
Khalique committed
371
372
373
374
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
375
376
377
378
379
380
381
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
382

Khalique's avatar
Khalique committed
383
384
385
386
387
388
    node = onnx.helper.make_node(
        'ConstantOfShape',
        inputs=['shape'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
389
    return ([shape_const, node], [], [y])
Khalique's avatar
Khalique committed
390

Khalique's avatar
Khalique committed
391

Khalique's avatar
Khalique committed
392
@onnx_test
Khalique's avatar
Khalique committed
393
394
395
396
397
def conv_autopad_fail_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
    out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 34, 34])

Khalique's avatar
Khalique committed
398
399
400
401
402
403
404
405
406
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1'],
                                 outputs=['2'],
                                 dilations=[1, 1],
                                 strides=[1, 1],
                                 auto_pad='SAME',
                                 pads=[0, 0, 1, 1, 0, 0, 1, 1])

    return ([node], [x, y], [out])
Khalique's avatar
Khalique committed
407
408


Khalique's avatar
Khalique committed
409
@onnx_test
Khalique's avatar
Khalique committed
410
411
412
413
414
415
def conv_bias_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 2, 28, 28])

Khalique's avatar
Khalique committed
416
417
418
419
420
421
422
    node = onnx.helper.make_node('Conv',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 dilations=[1, 1],
                                 strides=[1, 1])

    return ([node], [x, y, z], [out])
Khalique's avatar
Khalique committed
423
424


Khalique's avatar
Khalique committed
425
@onnx_test
Khalique's avatar
Khalique committed
426
427
428
429
430
431
432
433
def conv_bn_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    k = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1])
    l = helper.make_tensor_value_info('6', TensorProto.FLOAT, [1])
Khalique's avatar
Khalique committed
434
435
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT,
                                        [1, 1, 14, 14])
Khalique's avatar
Khalique committed
436

Khalique's avatar
Khalique committed
437
438
439
440
441
442
    node0 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['7'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
443

Khalique's avatar
Khalique committed
444
445
446
447
448
    node1 = onnx.helper.make_node('BatchNormalization',
                                  inputs=['7', '3', '4', '5', '6'],
                                  outputs=['8'],
                                  epsilon=9.99999974737875e-06,
                                  momentum=0.899999976158142)
Khalique's avatar
Khalique committed
449

Khalique's avatar
Khalique committed
450
451
452
453
454
455
456
457
458
    node2 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node0, node1, node2, node3], [x, y, z, m, n, k, l], [out])
Khalique's avatar
Khalique committed
459
460


Khalique's avatar
Khalique committed
461
@onnx_test
Khalique's avatar
Khalique committed
462
463
464
465
466
467
def conv_relu_maxpool_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('5', TensorProto.FLOAT, [1, 1, 14, 14])

Khalique's avatar
Khalique committed
468
469
470
471
472
473
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['3'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
474

Khalique's avatar
Khalique committed
475
    node2 = onnx.helper.make_node('Relu', inputs=['3'], outputs=['4'])
Khalique's avatar
Khalique committed
476

Khalique's avatar
Khalique committed
477
478
479
480
481
482
483
484
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['4'],
                                  outputs=['5'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node1, node2, node3], [x, y, z], [out])
Khalique's avatar
Khalique committed
485
486


Khalique's avatar
Khalique committed
487
@onnx_test
Khalique's avatar
Khalique committed
488
489
490
491
492
493
494
495
def conv_relu_maxpool_x2_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [5, 3, 5, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5])
    m = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 5, 5, 5])
    n = helper.make_tensor_value_info('4', TensorProto.FLOAT, [1])
    out = helper.make_tensor_value_info('10', TensorProto.FLOAT, [1, 1, 5, 5])

Khalique's avatar
Khalique committed
496
497
498
499
500
501
    node1 = onnx.helper.make_node('Conv',
                                  inputs=['0', '1', '2'],
                                  outputs=['5'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
502

Khalique's avatar
Khalique committed
503
    node2 = onnx.helper.make_node('Relu', inputs=['5'], outputs=['6'])
Khalique's avatar
Khalique committed
504

Khalique's avatar
Khalique committed
505
506
507
508
509
510
    node3 = onnx.helper.make_node('MaxPool',
                                  inputs=['6'],
                                  outputs=['7'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])
Khalique's avatar
Khalique committed
511

Khalique's avatar
Khalique committed
512
513
514
515
516
517
    node4 = onnx.helper.make_node('Conv',
                                  inputs=['7', '3', '4'],
                                  outputs=['8'],
                                  dilations=[1, 1],
                                  strides=[1, 1],
                                  pads=[0, 0, 0, 0])
Khalique's avatar
Khalique committed
518

Khalique's avatar
Khalique committed
519
    node5 = onnx.helper.make_node('Relu', inputs=['8'], outputs=['9'])
Khalique's avatar
Khalique committed
520

Khalique's avatar
Khalique committed
521
522
523
524
525
526
527
528
    node6 = onnx.helper.make_node('MaxPool',
                                  inputs=['9'],
                                  outputs=['10'],
                                  pads=[0, 0, 0, 0],
                                  strides=[2, 2],
                                  kernel_shape=[2, 2])

    return ([node1, node2, node3, node4, node5, node6], [x, y, z, m, n], [out])
Khalique's avatar
Khalique committed
529
530


Khalique's avatar
Khalique committed
531
@onnx_test
Khalique's avatar
Khalique committed
532
533
534
535
536
537
538
539
540
541
def cos_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Cos',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
542
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
543

Khalique's avatar
Khalique committed
544

Khalique's avatar
Khalique committed
545
@onnx_test
Khalique's avatar
Khalique committed
546
547
548
549
550
551
552
553
554
555
def cosh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'Cosh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
556
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
557

Khalique's avatar
Khalique committed
558

Khalique's avatar
Khalique committed
559
@onnx_test
Khalique's avatar
Khalique committed
560
def dropout_test():
Khalique's avatar
Khalique committed
561
562
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])
Khalique's avatar
Khalique committed
563

Khalique's avatar
Khalique committed
564
565
566
567
568
569
570
    node = onnx.helper.make_node(
        'Dropout',
        inputs=['0'],
        outputs=['1'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
571
572


Khalique's avatar
Khalique committed
573
@onnx_test
Khalique's avatar
Khalique committed
574
575
576
577
def elu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
578
579
580
581
    node = onnx.helper.make_node('Elu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
582

Khalique's avatar
Khalique committed
583
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
584

Khalique's avatar
Khalique committed
585

Khalique's avatar
Khalique committed
586
@onnx_test
Khalique's avatar
Khalique committed
587
588
589
590
591
592
593
594
595
596
def erf_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Erf',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
597
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
598

Khalique's avatar
Khalique committed
599

Khalique's avatar
Khalique committed
600
@onnx_test
Khalique's avatar
Khalique committed
601
602
603
604
605
606
607
608
609
610
def exp_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Exp',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
611
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
612

Khalique's avatar
Khalique committed
613

Khalique's avatar
Khalique committed
614
@onnx_test
Khalique's avatar
Khalique committed
615
616
def expand_test():
    shape_val = np.array([2, 3, 4, 5]).astype(np.int64)
Khalique's avatar
Khalique committed
617
618
619
620
    shape_ts = helper.make_tensor(name='shape_tensor',
                                  data_type=TensorProto.INT32,
                                  dims=shape_val.shape,
                                  vals=shape_val.flatten().astype(int))
Khalique's avatar
Khalique committed
621
622
623
624
625
626
627
628
629
    shape_const = helper.make_node(
        'Constant',
        inputs=[],
        outputs=['shape'],
        value=shape_ts,
    )
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 1, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
630
631
632
633
634
635
    node = onnx.helper.make_node('Expand',
                                 inputs=['x', 'shape'],
                                 outputs=['y'])

    return ([shape_const, node], [x], [y])

Khalique's avatar
Khalique committed
636

Khalique's avatar
Khalique committed
637
@onnx_test
Khalique's avatar
Khalique committed
638
639
def flatten_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
640
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [6, 20])
Khalique's avatar
Khalique committed
641
642
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 60])

Khalique's avatar
Khalique committed
643
644
645
646
    node = onnx.helper.make_node('Flatten',
                                 inputs=['0'],
                                 axis=2,
                                 outputs=['2'])
Khalique's avatar
Khalique committed
647

Khalique's avatar
Khalique committed
648
649
650
    node2 = onnx.helper.make_node('Flatten', inputs=['0'], outputs=['3'])

    return ([node, node2], [x], [y, y2])
Khalique's avatar
Khalique committed
651

kahmed10's avatar
kahmed10 committed
652

Shucai Xiao's avatar
Shucai Xiao committed
653
654
655
656
657
658
659
660
661
662
663
664
@onnx_test
def floor_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Floor',
        inputs=['x'],
        outputs=['y'],
    )

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
665

kahmed10's avatar
kahmed10 committed
666

Khalique's avatar
Khalique committed
667
@onnx_test
Khalique's avatar
Khalique committed
668
669
def gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
Khalique's avatar
Khalique committed
670
671
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 3, 4, 5])
Khalique's avatar
Khalique committed
672
673
674
675
676
677
678
679
680
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Gather',
        inputs=['data', 'indices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
681
682
    return ([node], [x, i], [y])

Khalique's avatar
Khalique committed
683

Khalique's avatar
Khalique committed
684
@onnx_test
Khalique's avatar
Khalique committed
685
686
687
688
689
690
def gemm_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 7])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [11, 5])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [])
    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [7, 11])

Khalique's avatar
Khalique committed
691
692
693
694
695
696
697
698
699
    node = onnx.helper.make_node('Gemm',
                                 inputs=['0', '1', '2'],
                                 outputs=['3'],
                                 alpha=2.0,
                                 beta=2.0,
                                 transA=1,
                                 transB=1)

    return ([node], [x, y, z], [a])
Khalique's avatar
Khalique committed
700
701


Khalique's avatar
Khalique committed
702
@onnx_test
Khalique's avatar
Khalique committed
703
704
705
706
707
708
def gemm_ex_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 5, 6])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 7])
    m3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 1, 6, 7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 6, 7])

Khalique's avatar
Khalique committed
709
710
711
712
713
714
715
716
    node = onnx.helper.make_node('Gemm',
                                 inputs=['1', '2', '3'],
                                 outputs=['y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

    return ([node], [m1, m2, m3], [y])
Khalique's avatar
Khalique committed
717
718


Khalique's avatar
Khalique committed
719
@onnx_test
Khalique's avatar
Khalique committed
720
721
722
723
724
725
def gemm_ex_brcst_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 1, 5, 6])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 5, 7])
    m3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1, 1, 6, 1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 6, 7])

Khalique's avatar
Khalique committed
726
727
728
729
730
731
732
733
    node = onnx.helper.make_node('Gemm',
                                 inputs=['1', '2', '3'],
                                 outputs=['y'],
                                 alpha=0.5,
                                 beta=0.8,
                                 transA=1)

    return ([node], [m1, m2, m3], [y])
Khalique's avatar
Khalique committed
734
735


Khalique's avatar
Khalique committed
736
@onnx_test
Khalique's avatar
Khalique committed
737
def globalavgpool_test():
Khalique's avatar
Khalique committed
738
739
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
740
741
742
743
744
745
746

    node = onnx.helper.make_node(
        'GlobalAveragePool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
747
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
748

Khalique's avatar
Khalique committed
749

Khalique's avatar
Khalique committed
750
@onnx_test
Khalique's avatar
Khalique committed
751
def globalmaxpool_test():
Khalique's avatar
Khalique committed
752
753
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
Khalique's avatar
Khalique committed
754
755
756
757
758
759
760

    node = onnx.helper.make_node(
        'GlobalMaxPool',
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
761
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
762

Khalique's avatar
Khalique committed
763

Khalique's avatar
Khalique committed
764
@onnx_test
Khalique's avatar
Khalique committed
765
766
767
768
769
770
771
772
773
774
775
776
def group_conv_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 4, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 1, 3, 3])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 4, 14, 14])

    node = onnx.helper.make_node(
        'Conv',
        inputs=['0', '1'],
        group=4,
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
777
778
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
779

Khalique's avatar
Khalique committed
780
@onnx_test
Khalique's avatar
Khalique committed
781
def imagescaler_test():
Khalique's avatar
Khalique committed
782
783
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 16, 16])
Khalique's avatar
Khalique committed
784

Khalique's avatar
Khalique committed
785
786
787
788
789
    node = onnx.helper.make_node('ImageScaler',
                                 inputs=['0'],
                                 outputs=['1'],
                                 bias=[0.01, 0.02, 0.03],
                                 scale=0.5)
Khalique's avatar
Khalique committed
790

Khalique's avatar
Khalique committed
791
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
792

Khalique's avatar
Khalique committed
793

Khalique's avatar
Khalique committed
794
@onnx_test
Khalique's avatar
Khalique committed
795
796
797
798
799
800
801
802
803
804
805
def implicit_add_bcast_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

    node = onnx.helper.make_node(
        'Add',
        inputs=['0', '1'],
        outputs=['2'],
    )

Khalique's avatar
Khalique committed
806
807
    return ([node], [x, y], [z])

Khalique's avatar
Khalique committed
808

Khalique's avatar
Khalique committed
809
@onnx_test
Khalique's avatar
Khalique committed
810
811
812
def implicit_pow_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4, 1])
Khalique's avatar
Khalique committed
813
814
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
815
816
817
818
819
820
821

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
822
823
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
824

Khalique's avatar
Khalique committed
825
@onnx_test
Khalique's avatar
Khalique committed
826
827
828
def implicit_sub_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])
Khalique's avatar
Khalique committed
829
830
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
831
832
833
834
835
836
837

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
838
839
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
840

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
@onnx_test
def initializer_not_an_input():
    values = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
    w = helper.make_tensor(name='w',
                           data_type=TensorProto.FLOAT,
                           dims=values.shape,
                           vals=values.flatten().astype(np.float))

    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5, 2])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 4])

    node = onnx.helper.make_node(
        'Gemm',
        inputs=['x', 'w'],
        outputs=['y'],
    )

    return ([node], [x], [y], [w])


Khalique's avatar
Khalique committed
861
@onnx_test
Khalique's avatar
Khalique committed
862
863
864
865
def leaky_relu_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])

Khalique's avatar
Khalique committed
866
867
868
869
    node = onnx.helper.make_node('LeakyRelu',
                                 inputs=['0'],
                                 outputs=['1'],
                                 alpha=0.01)
Khalique's avatar
Khalique committed
870

Khalique's avatar
Khalique committed
871
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
872

Khalique's avatar
Khalique committed
873

Khalique's avatar
Khalique committed
874
@onnx_test
Khalique's avatar
Khalique committed
875
876
877
878
879
880
881
882
883
884
def log_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Log',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
885
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
886

Khalique's avatar
Khalique committed
887

Khalique's avatar
Khalique committed
888
@onnx_test
Khalique's avatar
Khalique committed
889
890
891
892
def logsoftmax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])

Khalique's avatar
Khalique committed
893
894
895
896
    node = onnx.helper.make_node('LogSoftmax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axis=1)
Khalique's avatar
Khalique committed
897

Khalique's avatar
Khalique committed
898
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
899

Khalique's avatar
Khalique committed
900

Khalique's avatar
Khalique committed
901
@onnx_test
Khalique's avatar
Khalique committed
902
903
904
905
def lrn_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 28, 24, 24])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 28, 24, 24])

Khalique's avatar
Khalique committed
906
907
908
909
910
911
912
    node = onnx.helper.make_node('LRN',
                                 inputs=['0'],
                                 size=5,
                                 alpha=0.0001,
                                 beta=0.75,
                                 bias=1.0,
                                 outputs=['1'])
Khalique's avatar
Khalique committed
913

Khalique's avatar
Khalique committed
914
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
915

Khalique's avatar
Khalique committed
916

Khalique's avatar
Khalique committed
917
@onnx_test
Khalique's avatar
Khalique committed
918
919
920
921
922
923
924
925
926
927
928
def matmul_bmbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 2, 1, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 2, 3, 6, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
929
930
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
931

Khalique's avatar
Khalique committed
932
@onnx_test
Khalique's avatar
Khalique committed
933
934
935
936
937
938
939
940
941
942
943
def matmul_bmv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
944
945
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
946

Khalique's avatar
Khalique committed
947
@onnx_test
Khalique's avatar
Khalique committed
948
949
950
951
952
953
954
955
956
957
958
def matmul_mv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [6, 7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [6])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
959
960
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
961

Khalique's avatar
Khalique committed
962
@onnx_test
Khalique's avatar
Khalique committed
963
964
965
966
967
968
969
970
971
972
973
def matmul_vbm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [5, 7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5, 8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
974
975
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
976

Khalique's avatar
Khalique committed
977
@onnx_test
Khalique's avatar
Khalique committed
978
979
980
981
982
983
984
985
986
987
988
def matmul_vm_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7, 8])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [8])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
989
990
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
991

Khalique's avatar
Khalique committed
992
@onnx_test
Khalique's avatar
Khalique committed
993
994
995
996
997
998
999
1000
1001
1002
1003
def matmul_vv_test():
    m1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [7])
    m2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [7])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
        'MatMul',
        inputs=['1', '2'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1004
1005
    return ([node], [m1, m2], [y])

Khalique's avatar
Khalique committed
1006

Khalique's avatar
Khalique committed
1007
@onnx_test
Khalique's avatar
Khalique committed
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
def max_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Max',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
1020
1021
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
1022

Khalique's avatar
Khalique committed
1023
@onnx_test
Khalique's avatar
Khalique committed
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
def min_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Min',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
1036
1037
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
1038

Khalique's avatar
Khalique committed
1039
@onnx_test
Khalique's avatar
Khalique committed
1040
1041
1042
1043
def no_pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 2])

Khalique's avatar
Khalique committed
1044
1045
1046
1047
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[0, 0, 0, 0],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
1048

Khalique's avatar
Khalique committed
1049
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1050

Khalique's avatar
Khalique committed
1051

Khalique's avatar
Khalique committed
1052
@onnx_test
Khalique's avatar
Khalique committed
1053
1054
1055
1056
def pad_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 4])

Khalique's avatar
Khalique committed
1057
1058
1059
1060
    node = onnx.helper.make_node('Pad',
                                 inputs=['0'],
                                 pads=[1, 1, 1, 1],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
1061

Khalique's avatar
Khalique committed
1062
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1063

Khalique's avatar
Khalique committed
1064

Khalique's avatar
Khalique committed
1065
@onnx_test
Khalique's avatar
Khalique committed
1066
1067
1068
def pow_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1069
1070
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1071
1072
1073
1074
1075
1076
1077

    node = onnx.helper.make_node(
        'Pow',
        inputs=['0', '1'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
1078
    return ([node], [arg0, arg1], [arg_out])
Khalique's avatar
Khalique committed
1079

kahmed10's avatar
kahmed10 committed
1080

Shucai Xiao's avatar
Shucai Xiao committed
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
@onnx_test
def reducemax_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
    axes = [2]

    node = onnx.helper.make_node('ReduceMax',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)

    return ([node], [x], [y])

Khalique's avatar
Khalique committed
1095

Khalique's avatar
Khalique committed
1096
@onnx_test
Khalique's avatar
Khalique committed
1097
1098
1099
def reducemean_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
1100
    axes = [2, 3]
Khalique's avatar
Khalique committed
1101

Khalique's avatar
Khalique committed
1102
1103
1104
1105
1106
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
1107

Khalique's avatar
Khalique committed
1108
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1109

kahmed10's avatar
kahmed10 committed
1110

Khalique's avatar
Khalique committed
1111
@onnx_test
Khalique's avatar
Khalique committed
1112
1113
1114
def reducemean_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 6])
Khalique's avatar
Khalique committed
1115
    axes = [2]
Khalique's avatar
Khalique committed
1116

Khalique's avatar
Khalique committed
1117
1118
1119
1120
1121
    node = onnx.helper.make_node('ReduceMean',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
1122

Khalique's avatar
Khalique committed
1123
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1124

kahmed10's avatar
kahmed10 committed
1125

Shucai Xiao's avatar
Shucai Xiao committed
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
@onnx_test
def reducemin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 1, 5, 1])
    axes = [1, 3]

    node = onnx.helper.make_node('ReduceMin',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)

    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1139

kahmed10's avatar
kahmed10 committed
1140

Khalique's avatar
Khalique committed
1141
@onnx_test
Khalique's avatar
Khalique committed
1142
def reducesum_test():
Khalique's avatar
Khalique committed
1143
1144
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
Khalique's avatar
Khalique committed
1145
    axes = [2]
Khalique's avatar
Khalique committed
1146

Khalique's avatar
Khalique committed
1147
1148
1149
1150
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
Shucai Xiao's avatar
Shucai Xiao committed
1151
                                 keepdims=1)
Khalique's avatar
Khalique committed
1152

Khalique's avatar
Khalique committed
1153
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1154

Khalique's avatar
Khalique committed
1155

Khalique's avatar
Khalique committed
1156
@onnx_test
Khalique's avatar
Khalique committed
1157
1158
1159
def reducesum_multiaxis_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
Khalique's avatar
Khalique committed
1160
    axes = [2, 3]
Khalique's avatar
Khalique committed
1161

Khalique's avatar
Khalique committed
1162
1163
1164
1165
1166
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=0)
Khalique's avatar
Khalique committed
1167

Khalique's avatar
Khalique committed
1168
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1169

Khalique's avatar
Khalique committed
1170

Khalique's avatar
Khalique committed
1171
@onnx_test
Khalique's avatar
Khalique committed
1172
1173
1174
def reducesum_keepdims_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 1, 1])
Khalique's avatar
Khalique committed
1175
    axes = [2, 3]
Khalique's avatar
Khalique committed
1176

Khalique's avatar
Khalique committed
1177
1178
1179
1180
1181
    node = onnx.helper.make_node('ReduceSum',
                                 inputs=['x'],
                                 outputs=['y'],
                                 axes=axes,
                                 keepdims=1)
Khalique's avatar
Khalique committed
1182

Khalique's avatar
Khalique committed
1183
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1184

Khalique's avatar
Khalique committed
1185

Khalique's avatar
Khalique committed
1186
@onnx_test
Khalique's avatar
Khalique committed
1187
1188
1189
def reshape_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [4, 2, 3])
    x_shape = helper.make_tensor_value_info('1', TensorProto.INT64, [2])
Khalique's avatar
Khalique committed
1190
    x_shape_list = [3, 8]
Khalique's avatar
Khalique committed
1191
1192
1193
    y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 8])
    y2 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3, 8])

Khalique's avatar
Khalique committed
1194
    node = onnx.helper.make_node('Reshape', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
1195

Khalique's avatar
Khalique committed
1196
1197
1198
1199
1200
1201
1202
    node2 = onnx.helper.make_node('Reshape',
                                  inputs=['0'],
                                  shape=x_shape_list,
                                  outputs=['3'])

    return ([node, node2], [x, x_shape], [y, y2],
            [helper.make_tensor('1', TensorProto.INT64, [2], [3, 8])])
Khalique's avatar
Khalique committed
1203
1204


Khalique's avatar
Khalique committed
1205
@onnx_test
Khalique's avatar
Khalique committed
1206
1207
def reshape_non_standard_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
Khalique's avatar
Khalique committed
1208
1209
    trans_x = helper.make_tensor_value_info('trans_x', TensorProto.FLOAT,
                                            [2, 4, 3])
Khalique's avatar
Khalique committed
1210
1211
1212
1213
1214
1215
1216
1217
1218
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 3, 2])

    trans = helper.make_node(
        'Transpose',
        inputs=['x'],
        outputs=['trans_x'],
        perm=[0, 2, 1],
    )

Khalique's avatar
Khalique committed
1219
1220
1221
1222
1223
1224
    res = onnx.helper.make_node('Reshape',
                                inputs=['trans_x'],
                                outputs=['y'],
                                shape=[4, 3, 2])

    return ([trans, res], [x], [y])
Khalique's avatar
Khalique committed
1225
1226


Khalique's avatar
Khalique committed
1227
@onnx_test
Khalique's avatar
Khalique committed
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
def shape_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4, 5, 6])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [4])

    node = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1238
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1239

Khalique's avatar
Khalique committed
1240

Khalique's avatar
Khalique committed
1241
@onnx_test
Khalique's avatar
Khalique committed
1242
1243
1244
1245
1246
1247
1248
def shape_gather_test():
    values = np.array([1])
    value = helper.make_tensor_value_info('value', TensorProto.INT32, [1])
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [7, 3, 10])
    y = helper.make_tensor_value_info('y', TensorProto.INT64, [3])
    z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [1])

Khalique's avatar
Khalique committed
1249
1250
1251
1252
    value_tensor = helper.make_tensor(name='const_tensor',
                                      data_type=TensorProto.INT32,
                                      dims=values.shape,
                                      vals=values.flatten().astype(int))
Khalique's avatar
Khalique committed
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273

    node_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['value'],
        value=value_tensor,
    )

    node_shape = onnx.helper.make_node(
        'Shape',
        inputs=['x'],
        outputs=['y'],
    )

    node_gather = helper.make_node(
        'Gather',
        inputs=['y', 'value'],
        outputs=['z'],
        axis=0,
    )

Khalique's avatar
Khalique committed
1274
1275
    return ([node_const, node_shape, node_gather], [x], [z])

Khalique's avatar
Khalique committed
1276

Khalique's avatar
Khalique committed
1277
@onnx_test
Khalique's avatar
Khalique committed
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
def sign_test():
    x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [10, 5])
    y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [10, 5])

    node = onnx.helper.make_node(
        'Sign',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1288
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1289

Khalique's avatar
Khalique committed
1290

Khalique's avatar
Khalique committed
1291
@onnx_test
Khalique's avatar
Khalique committed
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
def sin_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sin',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1302
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1303

Khalique's avatar
Khalique committed
1304

Khalique's avatar
Khalique committed
1305
@onnx_test
Khalique's avatar
Khalique committed
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
def sinh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
        'Sinh',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1316
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1317

Khalique's avatar
Khalique committed
1318

Khalique's avatar
Khalique committed
1319
@onnx_test
Khalique's avatar
Khalique committed
1320
1321
1322
1323
def slice_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 2])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2])

Khalique's avatar
Khalique committed
1324
1325
1326
1327
1328
1329
    node = onnx.helper.make_node('Slice',
                                 inputs=['0'],
                                 axes=[0, 1],
                                 starts=[1, 0],
                                 ends=[2, 2],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
1330

Khalique's avatar
Khalique committed
1331
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1332

Khalique's avatar
Khalique committed
1333

Khalique's avatar
Khalique committed
1334
@onnx_test
Khalique's avatar
Khalique committed
1335
1336
1337
1338
def softmax_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3])

Khalique's avatar
Khalique committed
1339
    node = onnx.helper.make_node('Softmax', inputs=['0'], outputs=['1'])
Khalique's avatar
Khalique committed
1340

Khalique's avatar
Khalique committed
1341
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1342

Khalique's avatar
Khalique committed
1343

Khalique's avatar
Khalique committed
1344
@onnx_test
Khalique's avatar
Khalique committed
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
def sqrt_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10, 15])

    node = onnx.helper.make_node(
        'Sqrt',
        inputs=['x'],
        outputs=['y'],
    )

Khalique's avatar
Khalique committed
1355
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1356

Khalique's avatar
Khalique committed
1357

Khalique's avatar
Khalique committed
1358
@onnx_test
Khalique's avatar
Khalique committed
1359
def squeeze_unsqueeze_test():
Khalique's avatar
Khalique committed
1360
1361
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [1, 3, 1, 1, 2, 1])
Khalique's avatar
Khalique committed
1362
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 2])
Khalique's avatar
Khalique committed
1363
1364
    z = helper.make_tensor_value_info('2', TensorProto.FLOAT,
                                      [1, 1, 3, 1, 2, 1])
Khalique's avatar
Khalique committed
1365

Khalique's avatar
Khalique committed
1366
1367
1368
1369
    node = onnx.helper.make_node('Squeeze',
                                 inputs=['0'],
                                 axes=[0, 2, 3, 5],
                                 outputs=['1'])
Khalique's avatar
Khalique committed
1370

Khalique's avatar
Khalique committed
1371
1372
1373
1374
1375
1376
    node2 = onnx.helper.make_node('Unsqueeze',
                                  inputs=['1'],
                                  axes=[0, 1, 3, 5],
                                  outputs=['2'])

    return ([node, node2], [x], [z])
Khalique's avatar
Khalique committed
1377
1378


Khalique's avatar
Khalique committed
1379
@onnx_test
Khalique's avatar
Khalique committed
1380
1381
1382
def sub_bcast_test():
    arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
Khalique's avatar
Khalique committed
1383
1384
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])
Khalique's avatar
Khalique committed
1385
1386
1387
1388
1389

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', '1'],
        outputs=['out'],
Khalique's avatar
Khalique committed
1390
1391
        broadcast=1,
        axis=1,
Khalique's avatar
Khalique committed
1392
1393
    )

Khalique's avatar
Khalique committed
1394
1395
    return ([node], [arg0, arg1], [arg_out])

Khalique's avatar
Khalique committed
1396

Khalique's avatar
Khalique committed
1397
@onnx_test
Khalique's avatar
Khalique committed
1398
1399
def sub_scalar_test():
    values = np.array([1])
Khalique's avatar
Khalique committed
1400
1401
1402
1403
1404
1405
1406
1407
1408
    arg_node = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                             [2, 3, 4, 5])
    arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
                                            [2, 3, 4, 5])

    values_tensor = helper.make_tensor(name='const',
                                       data_type=TensorProto.FLOAT,
                                       dims=values.shape,
                                       vals=values.flatten().astype(float))
Khalique's avatar
Khalique committed
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422

    arg_const = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['arg_const'],
        value=values_tensor,
    )

    node = onnx.helper.make_node(
        'Sub',
        inputs=['0', 'arg_const'],
        outputs=['out'],
    )

Khalique's avatar
Khalique committed
1423
1424
    return ([arg_const, node], [arg_node], [arg_out])

Khalique's avatar
Khalique committed
1425

Khalique's avatar
Khalique committed
1426
@onnx_test
Khalique's avatar
Khalique committed
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
def sum_test():
    a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
    b = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3])
    c = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3])
    y = helper.make_tensor_value_info('3', TensorProto.FLOAT, [3])

    node = onnx.helper.make_node(
        'Sum',
        inputs=['0', '1', '2'],
        outputs=['3'],
    )

Khalique's avatar
Khalique committed
1439
1440
    return ([node], [a, b, c], [y])

Khalique's avatar
Khalique committed
1441

Khalique's avatar
Khalique committed
1442
@onnx_test
Khalique's avatar
Khalique committed
1443
1444
1445
1446
1447
def tan_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [10])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
1448
1449
1450
1451
        'Tan',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
1452

Khalique's avatar
Khalique committed
1453
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1454

Khalique's avatar
Khalique committed
1455

Khalique's avatar
Khalique committed
1456
@onnx_test
Khalique's avatar
Khalique committed
1457
1458
1459
1460
1461
def tanh_test():
    x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1])

    node = onnx.helper.make_node(
Khalique's avatar
Khalique committed
1462
1463
1464
1465
        'Tanh',
        inputs=['x'],
        outputs=['y'],
    )
Khalique's avatar
Khalique committed
1466

Khalique's avatar
Khalique committed
1467
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1468

Khalique's avatar
Khalique committed
1469

Khalique's avatar
Khalique committed
1470
@onnx_test
Khalique's avatar
Khalique committed
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
def transpose_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 2, 3])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 2, 2])

    node = onnx.helper.make_node(
        'Transpose',
        perm=[0, 3, 1, 2],
        inputs=['0'],
        outputs=['1'],
    )

Khalique's avatar
Khalique committed
1482
    return ([node], [x], [y])
Khalique's avatar
Khalique committed
1483

Khalique's avatar
Khalique committed
1484

Khalique's avatar
Khalique committed
1485
1486
1487
@onnx_test
def transpose_gather_test():
    x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 5, 4, 6])
Khalique's avatar
Khalique committed
1488
1489
1490
1491
    i = helper.make_tensor_value_info('indices', TensorProto.INT32,
                                      [2, 4, 3, 5])
    y = helper.make_tensor_value_info('y', TensorProto.FLOAT,
                                      [3, 2, 3, 4, 5, 4, 5, 6])
Khalique's avatar
Khalique committed
1492
1493
1494
1495
1496
1497
1498
1499

    td = onnx.helper.make_node(
        'Transpose',
        inputs=['data'],
        outputs=['tdata'],
        perm=[0, 2, 1, 3],
    )

Khalique's avatar
Khalique committed
1500
1501
1502
1503
    ti = onnx.helper.make_node('Transpose',
                               inputs=['indices'],
                               outputs=['tindices'],
                               perm=[0, 2, 1, 3])
Khalique's avatar
Khalique committed
1504
1505
1506
1507
1508
1509
1510
1511

    node = onnx.helper.make_node(
        'Gather',
        inputs=['tdata', 'tindices'],
        outputs=['y'],
        axis=1,
    )

Khalique's avatar
Khalique committed
1512
    return ([td, ti, node], [x, i], [y])
Khalique's avatar
Khalique committed
1513

Khalique's avatar
Khalique committed
1514

Khalique's avatar
Khalique committed
1515
@onnx_test
Khalique's avatar
Khalique committed
1516
1517
1518
def unknown_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
1519
1520
1521

    helper.make_tensor_value_info('2', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
1522
1523
    a = helper.make_tensor_value_info('3', TensorProto.FLOAT, [2, 3, 4, 5])

Khalique's avatar
Khalique committed
1524
    node = onnx.helper.make_node('Unknown', inputs=['0', '1'], outputs=['2'])
Khalique's avatar
Khalique committed
1525

Khalique's avatar
Khalique committed
1526
    node2 = onnx.helper.make_node('Unknown', inputs=['2'], outputs=['3'])
Khalique's avatar
Khalique committed
1527

Khalique's avatar
Khalique committed
1528
    return ([node, node2], [x, y], [a])
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551


@onnx_test
def variable_batch_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
                                      [None, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT,
                                      [None, 3, 16, 16])

    node = onnx.helper.make_node('Identity', inputs=['0'], outputs=['1'])

    return ([node], [x], [y])


@onnx_test
def variable_batch_leq_zero_test():
    x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [0, 3, 16, 16])
    y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [-1, 3, 16, 16])

    z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [-1, 3, 16, 16])
    node = onnx.helper.make_node('Add', inputs=['0', '1'], outputs=['2'])

    return ([node], [x, y], [z])