"src/git@developer.sourcefind.cn:gaoqiong/migraphx.git" did not exist on "671f24be50c30bec8263f2ce3d22e899ac4ef662"
Commit 86663aa5 authored by Khalique's avatar Khalique
Browse files

add gen files

parent 464b7f5b
This diff is collapsed.
import numpy as np
import tensorflow as tf
def add_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,2,2,3), name = '0')
g2_input = tf.placeholder(tf.float32, shape=(1,2,2,3), name = '1')
tf.add(g1_input, g2_input, name = 'add1')
tf.train.write_graph(g1, '.', 'add_test.pb', as_text=False)
def add_bcast_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(2,3), name = '0')
g2_input = tf.placeholder(tf.float32, shape=(2,1), name = '1')
tf.math.add(g1_input, g2_input, name = 'add_bcast1')
tf.train.write_graph(g1, '.', 'add_bcast_test.pb', as_text=False)
def assert_less_equal_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(2,3), name = '0')
g2_input = tf.placeholder(tf.float32, shape=(2,3), name = '1')
with tf.control_dependencies([tf.assert_less_equal(g1_input, g2_input)]):
tf.add(g1_input, g2_input, name = 'add1')
tf.train.write_graph(g1, '.', 'assert_less_equal_test.pb', as_text=False)
def batchmatmul_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,2,8,4), name = '0')
g2_input = tf.placeholder(tf.float32, shape=(1,2,4,8), name = '1')
tf.matmul(g1_input, g2_input, transpose_a=True, transpose_b=True, name='batchmatmul1')
tf.train.write_graph(g1, '.', 'batchmatmul_test.pb', as_text=False)
def batchnorm_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1, 16, 16, 32), name = '0')
g1_scale = tf.constant(1.0, dtype=tf.float32, shape=[32], name = '1')
g1_offset = tf.placeholder(tf.float32, shape=(32), name = '2')
g1_mean = tf.placeholder(tf.float32, shape=(32), name = '3')
g1_variance = tf.placeholder(tf.float32, shape=(32), name = '4')
tf.nn.fused_batch_norm(
g1_input, g1_scale, g1_offset, g1_mean, g1_variance,
epsilon=0.00001, is_training=False, name='batchnorm1')
tf.train.write_graph(g1, '.', 'batchnorm_test.pb', as_text=False)
def biasadd_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,1,1,500), name = '0')
g2_input = tf.placeholder(tf.float32, shape=(500), name = '1')
tf.nn.bias_add(g1_input, g2_input, name = 'bias_add1')
tf.train.write_graph(g1, '.', 'biasadd_test.pb', as_text=False)
def cast_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,3,16,16), name = '0')
tf.cast(g1_input, dtype=tf.int32, name='cast1')
tf.train.write_graph(g1, '.', 'cast_test.pb', as_text=False)
def concat_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(4,7,3), name = '0')
g2_input = tf.placeholder(tf.float32, shape=(4,2,3), name = '1')
tf.concat([g1_input, g2_input], axis=1, name = 'concat1')
tf.train.write_graph(g1, '.', 'concat_test.pb', as_text=False)
def const_test(g1=tf.Graph()):
with g1.as_default():
tf.constant(1.0, dtype=tf.float32 ,name='constant1')
tf.train.write_graph(g1, '.', 'constant_test.pb', as_text=False)
def conv_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,16,16,3), name = '0')
g1_weights = tf.constant(value=1.0, dtype=tf.float32, shape=(3,3,3,32), name = '1')
tf.nn.conv2d(g1_input, g1_weights, [1,1,1,1], "SAME", name = 'conv1')
tf.train.write_graph(g1, '.', 'conv_test.pb', as_text=False)
def depthwiseconv_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,16,16,3), name = '0')
g1_weights = tf.constant(value=1.0, dtype=tf.float32, shape=(3,3,3,1), name = '1')
tf.nn.depthwise_conv2d_native(g1_input, g1_weights, [1,1,1,1], "SAME", name = 'depthwiseconv1')
tf.train.write_graph(g1, '.', 'depthwise_conv_test.pb', as_text=False)
def expanddims_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(2,3,4), name = '0')
tf.expand_dims(g1_input, axis=-1, name='expanddims_neg')
tf.train.write_graph(g1, '.', 'expanddims_neg_test.pb', as_text=False)
def gather_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(2,4), name = '0')
tf.gather(g1_input, [1,1], axis=1, name='gather1')
tf.train.write_graph(g1, '.', 'gather_test.pb', as_text=False)
def identity_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,3,16,16), name = '0')
tf.identity(g1_input, 'identity')
tf.train.write_graph(g1, '.', 'identity_test.pb', as_text=False)
def matmul_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(8,4), name = '0')
g2_input = tf.placeholder(tf.float32, shape=(4,8), name = '1')
tf.matmul(g1_input, g2_input, transpose_a=True, transpose_b=True, name='matmul1')
tf.train.write_graph(g1, '.', 'matmul_test.pb', as_text=False)
def mean_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,3,16,16), name = '0')
tf.math.reduce_mean(
g1_input,
axis=(2,3),
keepdims=True,
name='mean1'
)
tf.math.reduce_mean(
g1_input,
axis=(2,3),
keepdims=False,
name='mean2'
)
tf.train.write_graph(g1, '.', 'mean_test.pb', as_text=False)
def mean_test_nhwc(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,16,16,3), name = '0')
tf.math.reduce_mean(
g1_input,
axis=(1,2),
keepdims=True,
name='mean1'
)
tf.math.reduce_mean(
g1_input,
axis=(1,2),
keepdims=False,
name='mean2'
)
tf.train.write_graph(g1, '.', 'mean_test_nhwc.pb', as_text=False)
def mul_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,1,1,16), name = '0')
g2_input = tf.placeholder(tf.float32, shape=(1,1,1,16), name = '1')
tf.multiply(g1_input, g2_input, name='mul1')
tf.train.write_graph(g1, '.', 'mul_test.pb', as_text=False)
def pack_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(2), name = '0')
g2_input = tf.placeholder(tf.float32, shape=(2), name = '1')
g3_input = tf.placeholder(tf.float32, shape=(2), name = '2')
tf.stack([g1_input, g2_input, g3_input], axis=1, name = 'pack1')
tf.train.write_graph(g1, '.', 'pack_test.pb', as_text=False)
def pack_test_nhwc(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,1,1,2), name = '0')
g2_input = tf.placeholder(tf.float32, shape=(1,1,1,2), name = '1')
g3_input = tf.placeholder(tf.float32, shape=(1,1,1,2), name = '2')
tf.stack([g1_input, g2_input, g3_input], axis=3, name = 'pack1')
tf.train.write_graph(g1, '.', 'pack_test_nhwc.pb', as_text=False)
def pooling_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,16,16,3), name = '0')
tf.nn.avg_pool(
value=g1_input,
ksize=(1,2,2,1),
strides=(1,2,2,1),
padding='VALID',
data_format='NHWC',
name='avg_pooling'
)
tf.nn.max_pool(
value=g1_input,
ksize=(1,2,2,1),
strides=(1,2,2,1),
padding='VALID',
data_format='NHWC',
name='max_pooling'
)
tf.train.write_graph(g1, '.', 'pooling_test.pb', as_text=False)
def pow_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,2,2,3), name = '0')
g2_input = tf.placeholder(tf.float32, shape=(1,2,2,3), name = '1')
tf.pow(g1_input, g2_input, name = 'pow1')
tf.train.write_graph(g1, '.', 'pow_test.pb', as_text=False)
def relu_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,3,16,16), name = '0')
tf.nn.relu(g1_input, 'relu')
tf.train.write_graph(g1, '.', 'relu_test.pb', as_text=False)
def relu6_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,3,16,16), name = '0')
tf.nn.relu6(g1_input, 'relu6')
tf.train.write_graph(g1, '.', 'relu6_test.pb', as_text=False)
def reshape_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(16), name = '0')
tf.reshape(g1_input, (1,1,1,16), 'reshape')
tf.train.write_graph(g1, '.', 'reshape_test.pb', as_text=False)
def rsqrt_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,3,16,16), name = '0')
tf.math.rsqrt(g1_input, 'rsqrt')
tf.train.write_graph(g1, '.', 'rsqrt_test.pb', as_text=False)
def slice_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(5,10), name = '0')
tf.slice(g1_input, [1, 0], [2, -1], name = 'slice1')
tf.train.write_graph(g1, '.', 'slice_test.pb', as_text=False)
def softmax_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,3), name = '0')
tf.nn.softmax(g1_input, name='softmax')
tf.train.write_graph(g1, '.', 'softmax_test.pb', as_text=False)
def sqdiff_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,2,2,3), name = '0')
g2_input = tf.placeholder(tf.float32, shape=(1,2,2,3), name = '1')
tf.squared_difference(g1_input, g2_input, name = 'sqdiff')
tf.train.write_graph(g1, '.', 'sqdiff_test.pb', as_text=False)
def squeeze_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,2,3,1), name = '0')
tf.squeeze(g1_input, name='squeeze')
tf.train.write_graph(g1, '.', 'squeeze_test.pb', as_text=False)
def stopgradient_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,3,16,16), name = '0')
tf.stop_gradient(g1_input, 'stopgradient')
tf.train.write_graph(g1, '.', 'stopgradient_test.pb', as_text=False)
def stridedslice_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,1,1,10), name = '0')
tf.strided_slice(g1_input, [0, 0, 0, 0], [1, 1, 1, 5], [1,1,1,1], shrink_axis_mask=2, name = 'stridedslice1')
tf.train.write_graph(g1, '.', 'stridedslice_test.pb', as_text=False)
def stridedslice_masks_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,3,3,10), name = '0')
tf.strided_slice(g1_input, [0, 1, 1, 0], [0, 0, 0, 0], [1,1,1,1], begin_mask=9, end_mask=15, name = 'stridedslice1')
tf.train.write_graph(g1, '.', 'stridedslice_masks_test.pb', as_text=False)
def sub_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,2,2,3), name = '0')
g2_input = tf.placeholder(tf.float32, shape=(1,2,2,3), name = '1')
tf.subtract(g1_input, g2_input, name = 'sub1')
tf.train.write_graph(g1, '.', 'sub_test.pb', as_text=False)
def tanh_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,3,16,16), name = '0')
tf.tanh(g1_input, 'tanh')
tf.train.write_graph(g1, '.', 'tanh_test.pb', as_text=False)
def transpose_test(g1=tf.Graph()):
with g1.as_default():
g1_input = tf.placeholder(tf.float32, shape=(1,3,16,16), name = '0')
tf.transpose(g1_input, perm=[0,2,3,1], name = 'transpose')
tf.train.write_graph(g1, '.', 'transpose_test.pb', as_text=False)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment