tf.cpp 45.3 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>
Khalique's avatar
Khalique committed
20
#include <migraphx/pad_calc.hpp>
Khalique's avatar
Khalique committed
21
22
23
24
25
26
27

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Paul's avatar
Paul committed
28
    using node_map      = std::map<std::string, tensorflow::NodeDef>;
Khalique's avatar
Khalique committed
29
30
    // using input_node_map = std::unordered_map<std::string, std::unordered_set<std::string>>;
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
31

Khalique's avatar
Khalique committed
32
33
34
35
36
37
38
39
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

Paul's avatar
Paul committed
40
    bool should_transpose(instruction_ref ins) const
Paul's avatar
Paul committed
41
42
43
44
45
46
    {
        return is_nhwc and ins->get_shape().lens().size() == 4;
    }

    instruction_ref to_nhwc(instruction_ref ins)
    {
Paul's avatar
Paul committed
47
        if(should_transpose(ins))
Paul's avatar
Paul committed
48
49
50
51
52
53
            return prog.add_instruction(op::transpose{{0, 2, 3, 1}}, ins);
        return ins;
    }

    instruction_ref to_nchw(instruction_ref ins)
    {
Paul's avatar
Paul committed
54
        if(should_transpose(ins))
Paul's avatar
Paul committed
55
56
57
58
59
60
            return prog.add_instruction(op::transpose{{0, 3, 1, 2}}, ins);
        return ins;
    }

    instruction_ref to_kcxy(instruction_ref ins)
    {
Paul's avatar
Paul committed
61
        if(should_transpose(ins))
Paul's avatar
Paul committed
62
63
64
65
66
67
            return prog.add_instruction(op::transpose{{3, 2, 0, 1}}, ins);
        return ins;
    }

    instruction_ref make_contiguous(instruction_ref ins)
    {
Paul's avatar
Paul committed
68
        if(ins->get_shape().standard())
Paul's avatar
Paul committed
69
70
71
72
73
74
75
76
            return ins;
        else
            return prog.add_instruction(op::contiguous{}, ins);
    }

    std::vector<instruction_ref> to_nchw(const std::vector<instruction_ref>& args)
    {
        std::vector<instruction_ref> result(args.size());
Paul's avatar
Paul committed
77
        std::transform(
Paul's avatar
Paul committed
78
            args.begin(), args.end(), result.begin(), [&](auto ins) { return this->to_nchw(ins); });
Paul's avatar
Paul committed
79
80
81
        return result;
    }

Khalique's avatar
Khalique committed
82
    std::vector<size_t>
83
    parse_axes(const attribute_map& attributes, const std::string& s, const size_t num_dims) const
84
    {
85
86
87
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
88
        if(is_nhwc)
89
        {
Khalique's avatar
Khalique committed
90
            std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
Khalique's avatar
Khalique committed
91
                return parse_axis(axis, num_dims);
Khalique's avatar
Khalique committed
92
            });
93
94
95
96
        }
        return axes;
    }

Khalique's avatar
Khalique committed
97
    template <class T>
98
    std::vector<T> parse_axes(std::vector<T> axes, const size_t num_dims) const
Khalique's avatar
Khalique committed
99
100
101
    {
        if(is_nhwc)
        {
102
            std::vector<T> new_axes;
Khalique's avatar
Khalique committed
103
104
105
            std::transform(axes.begin(),
                           axes.end(),
                           std::back_inserter(new_axes),
Khalique's avatar
Khalique committed
106
                           [&](size_t axis) { return parse_axis(axis, num_dims); });
107
            return new_axes;
Khalique's avatar
Khalique committed
108
        }
109
        return axes;
Khalique's avatar
Khalique committed
110
111
    }

Khalique's avatar
Khalique committed
112
113
114
    // tf stores certain attributes such as strides, dilations, as a 4D input.
    // The first and last dims are equal to 1, and the relevant data is in dims 2 and 3.
    // This helper function reorders the data to store for the respective operator member variables.
115
    template <class T>
116
    void reorder_data(std::vector<T>& prev_data) const
117
118
    {
        std::vector<T> new_data(prev_data.size());
119
        for(size_t i = 0; i < new_data.size(); i++)
120
        {
Khalique's avatar
Khalique committed
121
            auto new_idx         = parse_axis(i, new_data.size());
122
            new_data.at(new_idx) = prev_data.at(i);
123
        }
124
125
126
127
        prev_data = new_data;
    }

    template <class T>
128
    T parse_axis(const T& dim, const size_t num_dims) const
129
    {
Khalique's avatar
Khalique committed
130
        T new_dim = dim;
Khalique's avatar
Khalique committed
131
        if(is_nhwc and num_dims >= 4)
132
133
134
        {
            switch(dim)
            {
Khalique's avatar
Khalique committed
135
136
137
138
139
            case 0: new_dim = 0; break;
            case 1: new_dim = 2; break;
            case 2: new_dim = 3; break;
            case 3: new_dim = 1; break;
            default: break;
140
141
            }
        }
Khalique's avatar
Khalique committed
142
        return new_dim;
143
144
    }

145
146
147
148
149
150
151
    std::vector<int64_t> get_axes(size_t num_axes) const
    {
        std::vector<int64_t> axes(num_axes);
        std::iota(axes.begin(), axes.end(), 0);
        return axes;
    }

Khalique's avatar
Khalique committed
152
153
154
155
    tf_parser()
    {
        add_generic_op("Identity", op::identity{});
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
156
        add_generic_op("Relu6", op::clip{6.0, 0.0});
Khalique's avatar
Khalique committed
157
        add_generic_op("Rsqrt", op::rsqrt{});
Khalique's avatar
Khalique committed
158
        add_generic_op("Tanh", op::tanh{});
Khalique's avatar
Khalique committed
159
        add_generic_op("StopGradient", op::identity{});
Khalique's avatar
Khalique committed
160

161
        add_binary_op("Add", op::add{});
Khalique's avatar
Khalique committed
162
        add_binary_op("Mul", op::mul{});
Khalique's avatar
Khalique committed
163
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
164
        add_binary_op("SquaredDifference", op::sqdiff{});
Khalique's avatar
Khalique committed
165
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
166

167
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
168
        add_mem_op("BatchMatMul", &tf_parser::parse_matmul, false);
169
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
Khalique's avatar
Khalique committed
170
        add_mem_op("Cast", &tf_parser::parse_cast, false);
Paul's avatar
Paul committed
171
        add_mem_op("ConcatV2", &tf_parser::parse_concat, false);
Khalique's avatar
Khalique committed
172
        add_mem_op("Const", &tf_parser::parse_constant);
Paul's avatar
Paul committed
173
        add_mem_op("Conv2D", &tf_parser::parse_conv);
Paul's avatar
Paul committed
174
        add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv);
175
        add_mem_op("ExpandDims", &tf_parser::parse_expanddims, false);
Khalique's avatar
Khalique committed
176
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
Khalique's avatar
Khalique committed
177
        add_mem_op("GatherV2", &tf_parser::parse_gather, false);
Paul's avatar
Paul committed
178
        add_mem_op("MatMul", &tf_parser::parse_matmul, false);
179
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
180
        add_mem_op("Mean", &tf_parser::parse_mean);
Paul's avatar
Paul committed
181
        add_mem_op("Pack", &tf_parser::parse_pack, false);
Paul's avatar
Paul committed
182
        add_mem_op("Pad", &tf_parser::parse_pad);
Paul's avatar
Paul committed
183
        add_mem_op("Reshape", &tf_parser::parse_reshape, false);
Khalique's avatar
Khalique committed
184
        add_mem_op("Slice", &tf_parser::parse_slice, false);
185
        add_mem_op("Softmax", &tf_parser::parse_softmax<op::softmax>);
Paul's avatar
Paul committed
186
        add_mem_op("Squeeze", &tf_parser::parse_squeeze, false);
187
        add_mem_op("StridedSlice", &tf_parser::parse_stridedslice);
Khalique's avatar
Khalique committed
188
        add_mem_op("Transpose", &tf_parser::parse_transpose, false);
Khalique's avatar
Khalique committed
189
190
    }

191
    template <class F>
Paul's avatar
Paul committed
192
    void add_op(std::string name, F f, bool transpose = true)
193
    {
Paul's avatar
Paul committed
194
        if(transpose)
Paul's avatar
Paul committed
195
        {
Paul's avatar
Paul committed
196
197
            ops.emplace(name,
                        op_func{[=](const attribute_map& attributes,
Paul's avatar
Paul committed
198
                                    const std::vector<instruction_ref>& args) -> instruction_ref {
Paul's avatar
Paul committed
199
200
                            return to_nhwc(f(attributes, to_nchw(args)));
                        }});
Paul's avatar
Paul committed
201
202
203
204
205
        }
        else
        {
            ops.emplace(name, f);
        }
206
207
    }

Khalique's avatar
Khalique committed
208
    template <class F>
Paul's avatar
Paul committed
209
    void add_mem_op(std::string name, F f, bool transpose = true)
Khalique's avatar
Khalique committed
210
    {
Paul's avatar
Paul committed
211
212
213
214
215
        add_op(name,
               [=](auto&&... xs) {
                   return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
               },
               transpose);
Khalique's avatar
Khalique committed
216
217
218
219
220
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Paul's avatar
Paul committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   if(args.size() != 2)
                       MIGRAPHX_THROW("binary operators should have 2 operands");
                   // TODO
                   // if(contains(attributes, "data_format"))
                   // {
                   //     if(is_nhwc)
                   //     {
                   //         l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
                   //     }
                   // }
                   return add_broadcastable_binary_op(args[0], args[1], x);
               },
               false);
Khalique's avatar
Khalique committed
236
237
238
239
240
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
241
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
257
258
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
259
260
261
262
263

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

264
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
265
266
267
268
269
270
271
272
273
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
Paul's avatar
Paul committed
274
            return to_nhwc(prog.add_instruction(x, to_nchw(l0), to_nchw(l1)));
Khalique's avatar
Khalique committed
275
276
277
        }
        else
        {
Paul's avatar
Paul committed
278
            return to_nhwc(prog.add_instruction(x, {to_nchw(arg0), to_nchw(arg1)}));
Khalique's avatar
Khalique committed
279
280
281
282
        }
    }

    template <class T>
Paul's avatar
Paul committed
283
    void add_generic_op(std::string name, T x, bool transpose = true)
Khalique's avatar
Khalique committed
284
    {
Paul's avatar
Paul committed
285
286
287
288
289
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   return prog.add_instruction(x, args);
               },
               transpose);
Khalique's avatar
Khalique committed
290
291
292
293
294
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
295
296
297
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
298
299
300
301
302
303
304
305
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

306
    instruction_ref
Khalique's avatar
Khalique committed
307
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
308
    {
309
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
Shucai Xiao's avatar
Shucai Xiao committed
310
        auto l0 = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()}, args[1]);
311
        return prog.add_instruction(op::add{}, args[0], l0);
312
313
    }

Khalique's avatar
Khalique committed
314
315
316
317
318
319
320
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        shape::type_t type = parse_type(attributes.at("DstT").type());
        return prog.add_instruction(op::convert{type}, std::move(args));
    }

Khalique's avatar
Khalique committed
321
322
323
324
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
325
        size_t axis_idx = attributes.at("N").i();
Paul's avatar
Paul committed
326
        size_t axis     = args[axis_idx]->eval().at<int64_t>();
Khalique's avatar
Khalique committed
327
        op::concat op{axis};
328
        // return only first N arguments (assuming last index is the axis value)
Paul's avatar
Paul committed
329
330
        return prog.add_instruction(
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
331
332
333
334
335
336
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
Paul's avatar
Paul committed
337
        literal v = parse_tensor(attributes.at("value").tensor());
Paul's avatar
Paul committed
338
        return prog.add_literal(v);
Khalique's avatar
Khalique committed
339
340
341
342
343
344
345
346
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::convolution op;
        if(contains(attributes, "strides"))
        {
347
            std::vector<size_t> stride;
348
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
349
            reorder_data(stride);
350
351
            if(stride.size() != 4)
            {
352
                MIGRAPHX_THROW("strides should have 4 values");
353
            }
354
355
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
356
357
358
        }
        if(contains(attributes, "dilations"))
        {
359
            std::vector<size_t> dilation;
360
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
361
            reorder_data(dilation);
362
363
364
365
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
366
367
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
368
        }
Khalique's avatar
Khalique committed
369

Paul's avatar
Paul committed
370
        auto weights = to_kcxy(args[1]);
Paul's avatar
Paul committed
371
        auto l0      = args[0];
Khalique's avatar
Khalique committed
372
373
374
375
376
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
377
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
378
379
380
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];
Khalique's avatar
Khalique committed
381
382

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
383
384
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
385
386
387
388
389
390
391
392
393
394
395
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
396
397
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
398
                }
399
400
401
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
402
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
403
            }
Khalique's avatar
Khalique committed
404
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
Khalique's avatar
Khalique committed
405
            {
406
                std::vector<size_t> padding;
407
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
Khalique's avatar
Khalique committed
408
409
410
411
412
413
414
415
416
417
418
419
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
Paul's avatar
Paul committed
420
        return prog.add_instruction(op, {l0, to_kcxy(args[1])});
Khalique's avatar
Khalique committed
421
422
    }

Khalique's avatar
Khalique committed
423
424
425
    instruction_ref parse_depthwiseconv(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
426
427
428
    {
        op::convolution op;
        size_t num_channels = args[0]->get_shape().lens()[1];
Khalique's avatar
Khalique committed
429
        op.group            = num_channels;
Khalique's avatar
Khalique committed
430

Khalique's avatar
Khalique committed
431
432
        if(contains(attributes, "strides"))
        {
433
            std::vector<size_t> stride;
434
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
435
            reorder_data(stride);
436
437
            if(stride.size() != 4)
            {
438
                MIGRAPHX_THROW("strides should have 4 values");
439
            }
440
441
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
442
        }
Paul's avatar
Paul committed
443
444

        auto weights = to_kcxy(args[1]);
Khalique's avatar
Khalique committed
445
446
        if(contains(attributes, "dilations"))
        {
447
            std::vector<size_t> dilation;
448
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
449
            reorder_data(dilation);
450
451
452
453
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
454
455
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
456
457
        }

Khalique's avatar
Khalique committed
458
        auto l0 = args[0];
Khalique's avatar
Khalique committed
459
460
461
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
Khalique's avatar
Khalique committed
462

Khalique's avatar
Khalique committed
463
464
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
465
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
466
467
468
469
470
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
471
472
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
473
474
475
476
477
478
479
480
481
482
483
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
484
485
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
486
                }
Khalique's avatar
Khalique committed
487
            }
Khalique's avatar
Khalique committed
488
            else if(pad_mode.find("VALID") != std::string::npos)
Khalique's avatar
Khalique committed
489
            {
Khalique's avatar
Khalique committed
490
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
491
492
            }
        }
Khalique's avatar
Khalique committed
493

Khalique's avatar
Khalique committed
494
495
        std::vector<int64_t> new_weights_shape;
        copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape));
Khalique's avatar
Khalique committed
496
497
498
499

        // weight format is (out_channels, in_channels, h, w), but in depthwise_conv,
        // out_channels is equal to the multiplier. Adjust by inserting a reshape and
        // setting in_channels to 1
Khalique's avatar
Khalique committed
500
        int64_t multiplier   = new_weights_shape[0];
Khalique's avatar
Khalique committed
501
502
503
        int64_t out_channels = num_channels * multiplier;
        new_weights_shape[0] = out_channels;
        new_weights_shape[1] = 1;
Paul's avatar
Paul committed
504
        // Make sure weights are contiguous before doing reshape
Paul's avatar
Paul committed
505
506
        auto new_weights =
            prog.add_instruction(op::reshape{new_weights_shape}, make_contiguous(weights));
Khalique's avatar
Khalique committed
507

Khalique's avatar
Khalique committed
508
        return prog.add_instruction(op, {l0, new_weights});
Khalique's avatar
Khalique committed
509
510
    }

Khalique's avatar
Khalique committed
511
512
    instruction_ref
    parse_expanddims(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
513
514
    {
        std::vector<size_t> input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
515
        std::vector<int64_t> new_dims(input_dims.begin(), input_dims.end());
Khalique's avatar
Khalique committed
516
        size_t num_dims = input_dims.size();
517
        int32_t dim     = args[1]->eval().at<int32_t>();
Khalique's avatar
Khalique committed
518
519

        if(dim < 0)
Khalique's avatar
Khalique committed
520
521
522
523
524
525
526
527
528
529
        {
            new_dims.insert(new_dims.begin() + (num_dims + dim + 1), 1);
        }
        else
        {
            new_dims.insert(new_dims.begin() + dim, 1);
        }
        return prog.add_instruction(op::reshape{new_dims}, args[0]);
    }

Khalique's avatar
Khalique committed
530
531
532
533
534
535
536
537
    instruction_ref
    parse_gather(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        int axis = args[2]->eval().at<int32_t>();
        op::gather op{axis};
        return prog.add_instruction(op, {args[0], args[1]});
    }

Khalique's avatar
Khalique committed
538
539
    instruction_ref
    parse_matmul(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
540
541
542
    {
        bool transa = false;
        bool transb = false;
Khalique's avatar
Khalique committed
543

544
545
546
547
548
549
550
551
552
        if(contains(attributes, "transpose_a"))
        {
            transa = attributes.at("transpose_a").b();
        }
        if(contains(attributes, "transpose_b"))
        {
            transb = attributes.at("transpose_a").b();
        }

Khalique's avatar
Khalique committed
553
554
555
556
557
558
559
560
561
        if(contains(attributes, "adj_x"))
        {
            transa = attributes.at("adj_x").b();
        }
        if(contains(attributes, "adj_y"))
        {
            transb = attributes.at("adj_y").b();
        }

562
563
564
        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
Khalique's avatar
Khalique committed
565
        std::iter_swap(perm.end() - 1, perm.end() - 2);
566
567
568
569
570
571
572

        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];

        return prog.add_instruction(op::dot{}, l1, l2);
    }

Khalique's avatar
Khalique committed
573
574
    instruction_ref
    parse_mean(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
575
576
    {
        bool keep_dims = attributes.at("keep_dims").b();
577
578
        auto lens      = args[0]->get_shape().lens();
        auto axes = parse_axes(args[1]->eval().get<int32_t>().to_vector<int64_t>(), lens.size());
Khalique's avatar
Khalique committed
579

580
        if(keep_dims)
Khalique's avatar
Khalique committed
581
        {
582
583
584
585
586
587
            return prog.add_instruction(op::reduce_mean{axes}, args[0]);
        }
        else
        {
            auto ins = prog.add_instruction(op::reduce_mean{axes}, args[0]);
            return prog.add_instruction(op::squeeze{axes}, ins);
Khalique's avatar
Khalique committed
588
589
590
        }
    }

Khalique's avatar
Khalique committed
591
592
593
    instruction_ref parse_pack(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
594
595
596
597
598
599
    {
        // reinterpret as unsqueeze with concat
        std::vector<instruction_ref> unsqueezed_args;
        int64_t axis = 0;
        if(contains(attributes, "axis"))
            axis = attributes.at("axis").i();
600
601
602
        size_t input_size = args.front()->get_shape().lens().size();
        if(axis > input_size)
        {
Khalique's avatar
Khalique committed
603
604
            MIGRAPHX_THROW("TF_PARSER: axis value of " + to_string(axis) +
                           " must be smaller than input size " + to_string(input_size));
605
606
        }

Khalique's avatar
Khalique committed
607
608
609
610
611
        std::transform(
            args.begin(),
            args.end(),
            std::back_inserter(unsqueezed_args),
            [&](instruction_ref arg) { return prog.add_instruction(op::unsqueeze{{axis}}, arg); });
Paul's avatar
Paul committed
612
613
        return to_nhwc(
            prog.add_instruction(op::concat{static_cast<size_t>(axis)}, unsqueezed_args));
Khalique's avatar
Khalique committed
614
615
    }

Khalique's avatar
Khalique committed
616
617
618
619
620
    instruction_ref
    parse_pad(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        size_t ndims = args.front()->get_shape().lens().size();

Khalique's avatar
Khalique committed
621
622
        // in tf, the paddings are arranged as a 2d shape (ndims, 2),
        // the last dim contains the left padding and right padding respectively
Khalique's avatar
Khalique committed
623
        std::vector<std::pair<int32_t, int32_t>> pad_per_dim(ndims);
Paul's avatar
Paul committed
624
        auto tf_padding = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
625
        for(size_t i = 0; i < 2 * ndims; i += 2)
Khalique's avatar
Khalique committed
626
        {
Khalique's avatar
Khalique committed
627
628
            pad_per_dim[i / 2].first  = tf_padding[i];
            pad_per_dim[i / 2].second = tf_padding[i + 1];
Khalique's avatar
Khalique committed
629
630
631
632
        }
        reorder_data(pad_per_dim);

        op::pad op;
Khalique's avatar
Khalique committed
633
634
        std::vector<int64_t> pads(ndims * 2);
        for(size_t i = 0; i < ndims; i++)
Khalique's avatar
Khalique committed
635
        {
Khalique's avatar
Khalique committed
636
637
            pads[i]         = pad_per_dim[i].first;
            pads[i + ndims] = pad_per_dim[i].second;
Khalique's avatar
Khalique committed
638
639
        }
        op.pads = pads;
Paul's avatar
Paul committed
640
        return prog.add_instruction(op, args.front());
Khalique's avatar
Khalique committed
641
642
    }

643
644
645
646
647
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
648

649
650
        if(contains(attributes, "strides"))
        {
651
            std::vector<size_t> stride;
652
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
653
            reorder_data(stride);
654
655
656
657
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
658
659
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
660
661
662
        }
        if(contains(attributes, "ksize"))
        {
663
            std::vector<size_t> ksize;
664
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
665
            reorder_data(ksize);
666
667
668
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
669
            }
670
671
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
672
        }
Khalique's avatar
Khalique committed
673
674

        auto l0 = args[0];
Khalique's avatar
Khalique committed
675
676
677
678
679
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
680
                op.padding_mode = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
681
                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
682
683
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
684
685
686
687
688
689
690
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], 1, op.lengths[0]);
                calculate_padding(1, pads, input_w, op.stride[1], 1, op.lengths[1]);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
Khalique's avatar
Khalique committed
691
692
                    l0                           = prog.add_instruction(
                        migraphx::op::pad{padding, std::numeric_limits<float>::lowest()}, l0);
Khalique's avatar
Khalique committed
693
694
695
                }
                else
                {
Khalique's avatar
Khalique committed
696
697
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
698
                }
Khalique's avatar
Khalique committed
699
700
701
702
703
704
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
Khalique's avatar
Khalique committed
705
        return prog.add_instruction(op, l0);
706
    }
Khalique's avatar
Khalique committed
707

708
    instruction_ref
Khalique's avatar
Khalique committed
709
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
710
711
712
713
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
Khalique's avatar
Khalique committed
714
        auto s = args[1]->eval();
715
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
716
        return prog.add_instruction(op, make_contiguous(args[0]));
717
718
    }

Khalique's avatar
Khalique committed
719
720
721
722
723
724
725
726
727
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
728
            throw std::runtime_error("Failed reading tf file");
Khalique's avatar
Khalique committed
729
730
731
        }
    }

732
    instruction_ref
Khalique's avatar
Khalique committed
733
    parse_slice(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
734
    {
Khalique's avatar
Khalique committed
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
        op::slice op;
        auto starts     = args[1]->eval().get<int32_t>().to_vector();
        auto size       = args[2]->eval().get<int32_t>().to_vector();
        auto axes       = args[0]->get_shape().lens();
        size_t num_axes = axes.size();

        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(num_axes);
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
        for(size_t i = 0; i < num_axes; i++)
        {
            if(size[i] == -1)
                op.ends[i] = axes[i];
            else
                op.ends[i] = starts[i] + size[i];
        }
        return prog.add_instruction(op, make_contiguous(args[0]));
    }

755
756
    // template to facilitate the logsoftmax later
    template <class Op>
Shucai Xiao's avatar
Shucai Xiao committed
757
758
759
    instruction_ref parse_softmax(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
760
    {
Shucai Xiao's avatar
Shucai Xiao committed
761
        int axis      = -1;
Shucai Xiao's avatar
Shucai Xiao committed
762
        auto num_dims = args[0]->get_shape().lens().size();
763
764
765
766
        if(contains(attributes, "axis"))
        {
            axis = static_cast<int>(attributes.at("axis").i());
        }
Shucai Xiao's avatar
Shucai Xiao committed
767
768
769
770
        if(axis < 0)
        {
            axis += num_dims;
        }
771

Shucai Xiao's avatar
Shucai Xiao committed
772
        return prog.add_instruction(Op{axis}, make_contiguous(args[0]));
773
774
    }

Khalique's avatar
Khalique committed
775
776
777
    instruction_ref parse_squeeze(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
778
779
    {
        op::squeeze op;
Khalique's avatar
Khalique committed
780
        auto input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
781
        auto axes       = attributes.at("squeeze_dims").list().i();
782
        copy(axes, std::back_inserter(op.axes));
Khalique's avatar
Khalique committed
783

784
785
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
Khalique's avatar
Khalique committed
786
            for(size_t i = 0; i < input_dims.size(); i++)
787
            {
Khalique's avatar
Khalique committed
788
                if(input_dims.at(i) == 1)
789
790
791
792
                {
                    op.axes.push_back(i);
                }
            }
793
        }
Paul's avatar
Paul committed
794
        return prog.add_instruction(op, make_contiguous(args[0]));
795
796
    }

Khalique's avatar
Khalique committed
797
798
799
    instruction_ref parse_stridedslice(const std::string&,
                                       const attribute_map& attributes,
                                       std::vector<instruction_ref> args)
800
801
    {
        op::slice op;
Khalique's avatar
Khalique committed
802
803
804
        auto starts     = args[1]->eval().get<int32_t>().to_vector();
        auto ends       = args[2]->eval().get<int32_t>().to_vector();
        size_t num_axes = args[0]->get_shape().lens().size();
805

Khalique's avatar
Khalique committed
806
807
808
809
        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(ends.begin(), ends.end());
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
810
        uint32_t shrink_axis_mask = 0;
Khalique's avatar
Khalique committed
811
        uint32_t bitwise_compare  = 1;
812
813
814
        std::vector<int64_t> squeeze_axes;

        if(contains(attributes, "shrink_axis_mask"))
815
            shrink_axis_mask = static_cast<uint32_t>(attributes.at("shrink_axis_mask").i());
816

Khalique's avatar
Khalique committed
817
        for(size_t i = 0; i < num_axes; i++)
818
        {
819
            // the LSB corresponds to axis 0 when determining which axes to squeeze
Khalique's avatar
Khalique committed
820
            if(((shrink_axis_mask >> i) & bitwise_compare) == 1)
821
822
                squeeze_axes.push_back(i);
        }
Khalique's avatar
Khalique committed
823

Paul's avatar
Paul committed
824
825
        auto l0 = prog.add_instruction(op, make_contiguous(args[0]));
        return to_nhwc(prog.add_instruction(op::squeeze{squeeze_axes}, l0));
826
827
    }

Khalique's avatar
Khalique committed
828
829
    instruction_ref
    parse_transpose(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
830
831
832
833
834
835
836
837
    {
        auto perm = args[1]->eval().get<int32_t>().to_vector();
        op::transpose op;
        op.dims = std::vector<int64_t>(perm.begin(), perm.end());

        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
838
839
840
841
842
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
843
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
844
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
845
846
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
847
            if(is_nhwc and dims.size() >= 4)
848
            {
849
                reorder_data(dims);
850
            }
Khalique's avatar
Khalique committed
851
            shape s            = shape{shape_type, dims};
Paul's avatar
Paul committed
852
            instructions[name] = to_nhwc(prog.add_parameter(name, s));
Khalique's avatar
Khalique committed
853
854
855
        }
        for(auto&& p : nodes)
        {
856
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;

            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
883
                instructions[name] = prog.add_instruction(op::unknown{node.op()}, args);
Khalique's avatar
Khalique committed
884
885
886
887
888
889
890
891
892
893
894
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
895
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
896
897
898
899
900
901
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
902
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
903

Khalique's avatar
Khalique committed
904
905
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
Paul's avatar
Paul committed
933
934
935
936
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Paul's avatar
Paul committed
937
        case tensorflow::DataType::DT_UINT64: shape_type = shape::uint64_type; break;
Paul's avatar
Paul committed
938
939
940

        case tensorflow::DataType::DT_INVALID:
        case tensorflow::DataType::DT_UINT8:
Khalique's avatar
Khalique committed
941
942
943
944
945
946
947
948
949
950
951
952
        case tensorflow::DataType::DT_STRING:
        case tensorflow::DataType::DT_COMPLEX64:
        case tensorflow::DataType::DT_BOOL:
        case tensorflow::DataType::DT_QINT8:
        case tensorflow::DataType::DT_QUINT8:
        case tensorflow::DataType::DT_QINT32:
        case tensorflow::DataType::DT_BFLOAT16:
        case tensorflow::DataType::DT_QINT16:
        case tensorflow::DataType::DT_QUINT16:
        case tensorflow::DataType::DT_COMPLEX128:
        case tensorflow::DataType::DT_RESOURCE:
        case tensorflow::DataType::DT_VARIANT:
Khalique's avatar
Khalique committed
953
        // tf pb should not use these types
Paul's avatar
Paul committed
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
        case tensorflow::DataType::DT_FLOAT_REF:
        case tensorflow::DataType::DT_DOUBLE_REF:
        case tensorflow::DataType::DT_INT32_REF:
        case tensorflow::DataType::DT_UINT8_REF:
        case tensorflow::DataType::DT_INT16_REF:
        case tensorflow::DataType::DT_INT8_REF:
        case tensorflow::DataType::DT_STRING_REF:
        case tensorflow::DataType::DT_COMPLEX64_REF:
        case tensorflow::DataType::DT_INT64_REF:
        case tensorflow::DataType::DT_BOOL_REF:
        case tensorflow::DataType::DT_QINT8_REF:
        case tensorflow::DataType::DT_QUINT8_REF:
        case tensorflow::DataType::DT_QINT32_REF:
        case tensorflow::DataType::DT_BFLOAT16_REF:
        case tensorflow::DataType::DT_QINT16_REF:
        case tensorflow::DataType::DT_QUINT16_REF:
        case tensorflow::DataType::DT_UINT16_REF:
        case tensorflow::DataType::DT_COMPLEX128_REF:
        case tensorflow::DataType::DT_HALF_REF:
        case tensorflow::DataType::DT_RESOURCE_REF:
        case tensorflow::DataType::DT_VARIANT_REF:
        case tensorflow::DataType::DT_UINT32_REF:
        case tensorflow::DataType::DT_UINT64_REF:
Paul's avatar
Paul committed
977
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
Khalique's avatar
Khalique committed
978
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
979
980
981
982
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
983
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
984
985
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
986
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
987
988
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
989
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
990
991
            switch(t.dtype())
            {
Khalique's avatar
Khalique committed
992
993
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Paul's avatar
Paul committed
994
            case tensorflow::DataType::DT_BOOL:
995
            case tensorflow::DataType::DT_INT8: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
996
997
            case tensorflow::DataType::DT_UINT16:
            case tensorflow::DataType::DT_INT16:
998
                return literal{{shape::int16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
999
1000
1001
1002
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1003
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
1004
1005
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Paul's avatar
Paul committed
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
            case tensorflow::DataType::DT_INVALID:
            case tensorflow::DataType::DT_UINT8:
            case tensorflow::DataType::DT_STRING:
            case tensorflow::DataType::DT_UINT32:
            case tensorflow::DataType::DT_UINT64:
            case tensorflow::DataType::DT_COMPLEX64:
            case tensorflow::DataType::DT_COMPLEX128:
            case tensorflow::DataType::DT_QINT8:
            case tensorflow::DataType::DT_QUINT8:
            case tensorflow::DataType::DT_QINT32:
            case tensorflow::DataType::DT_BFLOAT16:
            case tensorflow::DataType::DT_QINT16:
            case tensorflow::DataType::DT_QUINT16:
            case tensorflow::DataType::DT_RESOURCE:
            case tensorflow::DataType::DT_VARIANT:
            case tensorflow::DataType::DT_FLOAT_REF:
            case tensorflow::DataType::DT_DOUBLE_REF:
            case tensorflow::DataType::DT_INT32_REF:
            case tensorflow::DataType::DT_UINT8_REF:
            case tensorflow::DataType::DT_INT16_REF:
            case tensorflow::DataType::DT_INT8_REF:
            case tensorflow::DataType::DT_STRING_REF:
            case tensorflow::DataType::DT_COMPLEX64_REF:
            case tensorflow::DataType::DT_INT64_REF:
            case tensorflow::DataType::DT_BOOL_REF:
            case tensorflow::DataType::DT_QINT8_REF:
            case tensorflow::DataType::DT_QUINT8_REF:
            case tensorflow::DataType::DT_QINT32_REF:
            case tensorflow::DataType::DT_BFLOAT16_REF:
            case tensorflow::DataType::DT_QINT16_REF:
            case tensorflow::DataType::DT_QUINT16_REF:
            case tensorflow::DataType::DT_UINT16_REF:
            case tensorflow::DataType::DT_COMPLEX128_REF:
            case tensorflow::DataType::DT_HALF_REF:
            case tensorflow::DataType::DT_RESOURCE_REF:
            case tensorflow::DataType::DT_VARIANT_REF:
            case tensorflow::DataType::DT_UINT32_REF:
            case tensorflow::DataType::DT_UINT64_REF:
Khalique's avatar
Khalique committed
1044
1045
1046
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
1047
1048
1049
1050
1051
1052
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_FLOAT:
Khalique's avatar
Khalique committed
1053
1054
            return create_literal(
                shape::float_type, dims, get_data_vals(t.float_val(), shape_size));
Khalique's avatar
Khalique committed
1055
        case tensorflow::DataType::DT_INT8:
1056
            return create_literal(shape::int8_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1057
        case tensorflow::DataType::DT_UINT16:
1058
            return create_literal(shape::uint16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1059
        case tensorflow::DataType::DT_INT16:
1060
            return create_literal(shape::int16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1061
        case tensorflow::DataType::DT_INT32:
1062
            return create_literal(shape::int32_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1063
        case tensorflow::DataType::DT_INT64:
Khalique's avatar
Khalique committed
1064
1065
            return create_literal(
                shape::int64_type, dims, get_data_vals(t.int64_val(), shape_size));
Khalique's avatar
Khalique committed
1066
        case tensorflow::DataType::DT_BOOL:
1067
            return create_literal(shape::int32_type, dims, get_data_vals(t.bool_val(), shape_size));
Khalique's avatar
Khalique committed
1068
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
1069
        {
1070
1071
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
Khalique's avatar
Khalique committed
1072
1073
1074
1075
1076
            std::vector<half> data_half;
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1077
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1078
        }
Khalique's avatar
Khalique committed
1079
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
1080
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Paul's avatar
Paul committed
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
        case tensorflow::DataType::DT_INVALID:
        case tensorflow::DataType::DT_UINT8:
        case tensorflow::DataType::DT_STRING:
        case tensorflow::DataType::DT_UINT32:
        case tensorflow::DataType::DT_UINT64:
        case tensorflow::DataType::DT_COMPLEX64:
        case tensorflow::DataType::DT_COMPLEX128:
        case tensorflow::DataType::DT_QINT8:
        case tensorflow::DataType::DT_QUINT8:
        case tensorflow::DataType::DT_QINT32:
        case tensorflow::DataType::DT_BFLOAT16:
        case tensorflow::DataType::DT_QINT16:
        case tensorflow::DataType::DT_QUINT16:
        case tensorflow::DataType::DT_RESOURCE:
        case tensorflow::DataType::DT_VARIANT:
        case tensorflow::DataType::DT_FLOAT_REF:
        case tensorflow::DataType::DT_DOUBLE_REF:
        case tensorflow::DataType::DT_INT32_REF:
        case tensorflow::DataType::DT_UINT8_REF:
        case tensorflow::DataType::DT_INT16_REF:
        case tensorflow::DataType::DT_INT8_REF:
        case tensorflow::DataType::DT_STRING_REF:
        case tensorflow::DataType::DT_COMPLEX64_REF:
        case tensorflow::DataType::DT_INT64_REF:
        case tensorflow::DataType::DT_BOOL_REF:
        case tensorflow::DataType::DT_QINT8_REF:
        case tensorflow::DataType::DT_QUINT8_REF:
        case tensorflow::DataType::DT_QINT32_REF:
        case tensorflow::DataType::DT_BFLOAT16_REF:
        case tensorflow::DataType::DT_QINT16_REF:
        case tensorflow::DataType::DT_QUINT16_REF:
        case tensorflow::DataType::DT_UINT16_REF:
        case tensorflow::DataType::DT_COMPLEX128_REF:
        case tensorflow::DataType::DT_HALF_REF:
        case tensorflow::DataType::DT_RESOURCE_REF:
        case tensorflow::DataType::DT_VARIANT_REF:
        case tensorflow::DataType::DT_UINT32_REF:
        case tensorflow::DataType::DT_UINT64_REF:
Khalique's avatar
Khalique committed
1119
1120
1121
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
1122
1123
1124
1125
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

1126
    template <class T>
Khalique's avatar
Khalique committed
1127
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
1128
                                        const size_t& shape_size)
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
1141
1142
1143
1144
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
1145
1146
1147
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
Paul's avatar
Paul committed
1148
                       [](const tensorflow::TensorShapeProto_Dim& dim) { return dim.size(); });
Khalique's avatar
Khalique committed
1149
1150
        return dims;
    }
1151
1152

    template <class T>
Khalique's avatar
Khalique committed
1153
    static literal
1154
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, std::vector<T> data)
1155
    {
Khalique's avatar
Khalique committed
1156
        // assume if explicit value is mentioned in protobuf and dim size <= 1, treat as scalar
1157
        if(dims.empty() or (dims.size() == 1 and dims.front() == 1))
1158
            return literal{{shape_type}, data};
1159
1160
        return literal{{shape_type, dims}, data};
    }
Khalique's avatar
Khalique committed
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
Paul's avatar
Paul committed
1183
    parser.to_nchw(std::prev(parser.prog.end()));
Khalique's avatar
Khalique committed
1184
1185
1186
1187
1188
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx