onnx.cpp 31.2 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
28
29
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
30
    program prog    = program();
31
    bool is_pytorch = false;
Paul's avatar
Paul committed
32
33
34
35
36

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
37
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
38
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
39
40
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
41
42
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
43
44
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
45
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
46
47
48
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
49
50
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
51
        add_generic_op("Tanh", op::tanh{});
52
53
54
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
55

Khalique's avatar
Khalique committed
56
57
58
59
60
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
61
62
63
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
64

Khalique's avatar
Khalique committed
65
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
66
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
67
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
68
69
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
70
71
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
72
73
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
74
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
75
76
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
77
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
78
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
79
80
81
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
82
        add_mem_op("Concat", &onnx_parser::parse_concat);
Khalique's avatar
Khalique committed
83
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Khalique's avatar
Khalique committed
84
        add_mem_op("Pad", &onnx_parser::parse_pad);
Paul's avatar
Paul committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    }

    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
100

101
    template <class T>
Khalique's avatar
Khalique committed
102
    void add_binary_op(std::string name, T x)
103
104
    {
        ops.emplace(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
105
            if(args.size() != 2)
Paul's avatar
Paul committed
106
                MIGRAPHX_THROW("binary operators should have 2 operands");
107
108
109
110
111
112
113
114
115
116
117
118
            if(contains(attributes, "broadcast"))
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
                    return prog.add_instruction(x, args[0], l);
                }
119
                return prog.add_instruction(x, args);
120
            }
Paul's avatar
Paul committed
121
            else
122
            {
Khalique's avatar
Khalique committed
123
                return add_broadcastable_binary_op(args[0], args[1], x);
124
125
126
127
            }
        });
    }

Khalique's avatar
Khalique committed
128
129
130
131
132
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
Khalique's avatar
Khalique committed
133
134
135
136
137
138
139
140
141
142
143
144
145
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
Khalique's avatar
Khalique committed
146
147
148
149
150
151
152
153
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

Khalique's avatar
Khalique committed
154
            std::vector<std::size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
155
156
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
Khalique's avatar
Khalique committed
157
158
159
160
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });
Khalique's avatar
Khalique committed
161
162
163
164
165
166
167
168
169

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
170
171
    }

Paul's avatar
Paul committed
172
    template <class T>
Paul's avatar
Paul committed
173
174
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
175
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
176
177
178
179
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
180
    template <class T>
Khalique's avatar
Khalique committed
181
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
182
    {
Khalique's avatar
Khalique committed
183
184
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
185
186
187
188
189
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
190
        });
Khalique's avatar
Khalique committed
191
192
    }

Paul's avatar
Paul committed
193
    instruction_ref
Paul's avatar
Paul committed
194
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
195
196
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
197
198
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
199
200
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
201
202
    }

Paul's avatar
Paul committed
203
    instruction_ref
Paul's avatar
Paul committed
204
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
205
    {
206
        op::convolution op;
Paul's avatar
Paul committed
207
208
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
209
            if(contains(attributes, "auto_pad"))
210
            {
Paul's avatar
Paul committed
211
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
212
213
214
            }
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
215
            if(padding.size() != 4)
216
            {
Paul's avatar
Paul committed
217
                MIGRAPHX_THROW("padding should have 4 values");
218
            }
Scott Thornton's avatar
Scott Thornton committed
219
            if(padding[0] != padding[2] || padding[1] != padding[3])
220
            {
Paul's avatar
Paul committed
221
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
222
223
224
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
225
        }
Paul's avatar
Paul committed
226
227
228
229
230
231
232
233
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
234
        if(contains(attributes, "auto_pad"))
235
236
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
237
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
238
            {
Paul's avatar
Paul committed
239
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
240
241
            }

wsttiger's avatar
fixes  
wsttiger committed
242
            if(s.find("SAME") != std::string::npos)
243
244
245
246
            {
                op.padding_mode = op::convolution::same;
            }
        }
Khalique's avatar
Khalique committed
247
248
249
250
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
251
252
253
254
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
255
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
256
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
257
        }
Paul's avatar
Paul committed
258
259
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
260

Paul's avatar
Paul committed
261
262
263
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
264
    {
Khalique's avatar
Khalique committed
265
266
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
        if(starts_with(name, "Global"))
267
        {
Khalique's avatar
Khalique committed
268
269
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
270
        }
Paul's avatar
Paul committed
271
272
        if(contains(attributes, "pads"))
        {
273
274
            std::vector<std::size_t> padding(4);
            copy(attributes["pads"].ints(), padding.begin());
Scott Thornton's avatar
Scott Thornton committed
275
            if(padding.size() != 4)
276
            {
Paul's avatar
Paul committed
277
                MIGRAPHX_THROW("padding should have 4 values");
278
            }
Scott Thornton's avatar
Scott Thornton committed
279
            if(padding[0] != padding[2] || padding[1] != padding[3])
280
            {
Paul's avatar
Paul committed
281
                MIGRAPHX_THROW("migraphx does not support asymetric padding");
282
283
284
            }
            op.padding[0] = padding[0];
            op.padding[1] = padding[1];
Paul's avatar
Paul committed
285
286
287
288
289
290
291
292
293
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
294
        if(contains(attributes, "auto_pad"))
295
296
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
297
            if(to_upper(s) != "NOTSET")
298
            {
Paul's avatar
Paul committed
299
                MIGRAPHX_THROW("auto_pad is not supported for pooling");
300
301
302
            }
        }

Paul's avatar
Paul committed
303
        return prog.add_instruction(op, std::move(args));
Paul's avatar
Paul committed
304
305
    }

Paul's avatar
Paul committed
306
    instruction_ref
Paul's avatar
Paul committed
307
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
308
    {
309
        op::reshape op;
Paul's avatar
Paul committed
310
311
312
313
314
315
316
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
317
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
318
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
319
        }
Paul's avatar
Paul committed
320
321
322
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
323
    instruction_ref
Paul's avatar
Paul committed
324
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
325
    {
326
        uint64_t axis = 1;
Paul's avatar
Paul committed
327
328
329
330
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
331
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
332
333
    }

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
352
353
354
355
356
357
358
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
380
381
382
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
383
384
385
386
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
387

Paul's avatar
Paul committed
388
    instruction_ref
Paul's avatar
Paul committed
389
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
390
391
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
392
        float beta  = 1.0f;
Paul's avatar
Paul committed
393
394
395
396
397
398
399
400
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
401
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
402
403
404
405
406
407
408
409
410
411
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
412
413
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
414
415
        if(args.size() == 3)
        {
Khalique's avatar
Khalique committed
416
            if(beta != 0.f)
417
            {
Khalique's avatar
Khalique committed
418
                auto l3 = prog.add_instruction(op::dot{alpha}, l1, l2);
Khalique's avatar
Khalique committed
419
                auto l4 = args[2];
Khalique's avatar
Khalique committed
420
                if(l4->get_shape().scalar()) // ignore args[2] (no C value added to alpha*A*B)
Khalique's avatar
Khalique committed
421
                    return l3;
Khalique's avatar
Khalique committed
422
                if(beta != 1.f)
Khalique's avatar
Khalique committed
423
424
                {
                    auto beta_val = prog.add_literal(beta);
Khalique's avatar
Khalique committed
425
426
                    auto l5 = prog.add_instruction(op::scalar{args[2]->get_shape()}, beta_val);
                    l4      = prog.add_instruction(op::mul{}, args[2], l5);
Khalique's avatar
Khalique committed
427
428
                }
                return add_broadcastable_binary_op(l3, l4, op::add{});
429
            }
Paul's avatar
Paul committed
430
        }
Shucai Xiao's avatar
Shucai Xiao committed
431
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
432
433
    }

434
    instruction_ref
Paul's avatar
Paul committed
435
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
436
    {
Scott Thornton's avatar
Scott Thornton committed
437
438
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
439
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
440
        bool is_test                                      = false;
441
442
443
444
445
446
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
447
            momentum = parse_value(attributes.at("momentum")).at<float>();
448
449
450
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
451
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
452
453
454
        }
        if(contains(attributes, "spatial"))
        {
455
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
456
457
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
458
        }
Paul's avatar
Paul committed
459
        (void)is_test;
Paul's avatar
Paul committed
460
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
461
        return prog.add_instruction(op, std::move(args));
462
463
    }

464
465
466
467
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
468
        float alpha = 0.01; // default alpha val for leaky relu
469
470
471
472
473
474
475
476
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
477
478
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
479
480
481
482
483
484
485
486
487
488
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
506

Khalique's avatar
Khalique committed
507
508
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
509
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
510

Paul's avatar
Paul committed
511
512
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
513
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
514
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
515
    }
Khalique's avatar
Khalique committed
516

Khalique's avatar
Khalique committed
517
518
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
519
520
521
522
523
524
525
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
526
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
527
528
    }

Khalique's avatar
Khalique committed
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }

Paul's avatar
Paul committed
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
571
572
573
574
575
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
576
577
578
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
579
580
581
582
583
584
585
586
587
588
589
590
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
591
592
593
        }
        for(auto&& p : nodes)
        {
594
            this->parse_node(get_name(p.second));
Paul's avatar
Paul committed
595
596
597
        }
    }

Paul's avatar
Paul committed
598
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
599
    {
Paul's avatar
Paul committed
600
        if(name.empty())
Paul's avatar
Paul committed
601
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
602
603
604
605
606
607
608
609
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
610
                    auto&& iname = get_name(nodes.at(input));
Paul's avatar
Paul committed
611
                    assert(name != iname);
Paul's avatar
Paul committed
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

641
642
643
644
    static std::string get_name(const onnx::NodeProto& node)
    {
        if(node.name().empty())
        {
Paul's avatar
Paul committed
645
            std::string generated = "migraphx_unnamed_node";
Paul's avatar
Paul committed
646
647
648
649
            return std::accumulate(node.output().begin(),
                                   node.output().end(),
                                   generated,
                                   [](auto x, auto y) { return x + "_" + y; });
650
651
652
653
        }
        return node.name();
    }

Paul's avatar
Paul committed
654
655
656
657
658
    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
659
            result[get_name(node)] = node;
Paul's avatar
Paul committed
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
685
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
686
687
688
689
690
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
691
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
692
693
694
695
696
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
Khalique's avatar
Khalique committed
697
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
698
        if(dims.empty())
Khalique's avatar
Khalique committed
699
700
701
        {
            dims = {1};
        }
702
703
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
704
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
705
706
707
708
709
710
711
712
713
714
715
716
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
717
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
718
719
720
721
722
723
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
724
            MIGRAPHX_THROW("Invalid tensor type");
725
        }
Paul's avatar
Paul committed
726
727
728
729
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
730
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
731
732
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
733
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
734
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
735
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
736
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
737
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
738
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
739
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
740
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
741
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
742
743
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
744
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
745
746
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
747
748
749
750
751
752
753
754
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
755
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
777
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
778
779
780
781
782
783
784
785
786
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
787
        auto&& tensor_dims = t.tensor_type().shape().dim();
788
789
790
791
792
793
794
795
796
797
798
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
        return {shape_type, dims};
    }
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
824
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
825
} // namespace migraphx