tf.cpp 43.8 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>
Khalique's avatar
Khalique committed
20
#include <migraphx/pad_calc.hpp>
Khalique's avatar
Khalique committed
21
22
23
24
25
26
27

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Paul's avatar
Paul committed
28
    using node_map      = std::map<std::string, tensorflow::NodeDef>;
Khalique's avatar
Khalique committed
29
30
    // using input_node_map = std::unordered_map<std::string, std::unordered_set<std::string>>;
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
31

Khalique's avatar
Khalique committed
32
33
34
35
36
37
38
39
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

Paul's avatar
Paul committed
40
    bool should_transpose(instruction_ref ins) const
Paul's avatar
Paul committed
41
42
43
44
45
46
    {
        return is_nhwc and ins->get_shape().lens().size() == 4;
    }

    instruction_ref to_nhwc(instruction_ref ins)
    {
Paul's avatar
Paul committed
47
        if(should_transpose(ins))
Paul's avatar
Paul committed
48
49
50
51
52
53
            return prog.add_instruction(op::transpose{{0, 2, 3, 1}}, ins);
        return ins;
    }

    instruction_ref to_nchw(instruction_ref ins)
    {
Paul's avatar
Paul committed
54
        if(should_transpose(ins))
Paul's avatar
Paul committed
55
56
57
58
59
60
            return prog.add_instruction(op::transpose{{0, 3, 1, 2}}, ins);
        return ins;
    }

    instruction_ref to_kcxy(instruction_ref ins)
    {
Paul's avatar
Paul committed
61
        if(should_transpose(ins))
Paul's avatar
Paul committed
62
63
64
65
66
67
            return prog.add_instruction(op::transpose{{3, 2, 0, 1}}, ins);
        return ins;
    }

    instruction_ref make_contiguous(instruction_ref ins)
    {
Paul's avatar
Paul committed
68
        if(ins->get_shape().standard())
Paul's avatar
Paul committed
69
70
71
72
73
74
75
76
            return ins;
        else
            return prog.add_instruction(op::contiguous{}, ins);
    }

    std::vector<instruction_ref> to_nchw(const std::vector<instruction_ref>& args)
    {
        std::vector<instruction_ref> result(args.size());
Paul's avatar
Paul committed
77
        std::transform(
Paul's avatar
Paul committed
78
            args.begin(), args.end(), result.begin(), [&](auto ins) { return this->to_nchw(ins); });
Paul's avatar
Paul committed
79
80
81
        return result;
    }

Khalique's avatar
Khalique committed
82
    std::vector<size_t>
83
    parse_axes(const attribute_map& attributes, const std::string& s, const size_t num_dims) const
84
    {
85
86
87
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
88
        if(is_nhwc)
89
        {
Khalique's avatar
Khalique committed
90
            std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
Khalique's avatar
Khalique committed
91
                return parse_axis(axis, num_dims);
Khalique's avatar
Khalique committed
92
            });
93
94
95
96
        }
        return axes;
    }

Khalique's avatar
Khalique committed
97
    template <class T>
98
    std::vector<T> parse_axes(std::vector<T> axes, const size_t num_dims) const
Khalique's avatar
Khalique committed
99
100
101
    {
        if(is_nhwc)
        {
102
            std::vector<T> new_axes;
Khalique's avatar
Khalique committed
103
104
105
            std::transform(axes.begin(),
                           axes.end(),
                           std::back_inserter(new_axes),
Khalique's avatar
Khalique committed
106
                           [&](size_t axis) { return parse_axis(axis, num_dims); });
107
            return new_axes;
Khalique's avatar
Khalique committed
108
        }
109
        return axes;
Khalique's avatar
Khalique committed
110
111
    }

Khalique's avatar
Khalique committed
112
113
114
    // tf stores certain attributes such as strides, dilations, as a 4D input.
    // The first and last dims are equal to 1, and the relevant data is in dims 2 and 3.
    // This helper function reorders the data to store for the respective operator member variables.
115
    template <class T>
116
    void reorder_data(std::vector<T>& prev_data) const
117
118
    {
        std::vector<T> new_data(prev_data.size());
119
        for(size_t i = 0; i < new_data.size(); i++)
120
        {
Khalique's avatar
Khalique committed
121
            auto new_idx         = parse_axis(i, new_data.size());
122
            new_data.at(new_idx) = prev_data.at(i);
123
        }
124
125
126
127
        prev_data = new_data;
    }

    template <class T>
128
    T parse_axis(const T& dim, const size_t num_dims) const
129
    {
Khalique's avatar
Khalique committed
130
        T new_dim = dim;
Khalique's avatar
Khalique committed
131
        if(is_nhwc and num_dims >= 4)
132
133
134
        {
            switch(dim)
            {
Khalique's avatar
Khalique committed
135
136
137
138
139
            case 0: new_dim = 0; break;
            case 1: new_dim = 2; break;
            case 2: new_dim = 3; break;
            case 3: new_dim = 1; break;
            default: break;
140
141
            }
        }
Khalique's avatar
Khalique committed
142
        return new_dim;
143
144
    }

145
146
147
148
149
150
151
    std::vector<int64_t> get_axes(size_t num_axes) const
    {
        std::vector<int64_t> axes(num_axes);
        std::iota(axes.begin(), axes.end(), 0);
        return axes;
    }

Khalique's avatar
Khalique committed
152
153
154
155
    tf_parser()
    {
        add_generic_op("Identity", op::identity{});
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
156
        add_generic_op("Relu6", op::clip{6.0, 0.0});
Khalique's avatar
Khalique committed
157
        add_generic_op("Rsqrt", op::rsqrt{});
Khalique's avatar
Khalique committed
158
        add_generic_op("Tanh", op::tanh{});
Khalique's avatar
Khalique committed
159
        add_generic_op("StopGradient", op::identity{});
Khalique's avatar
Khalique committed
160

161
        add_binary_op("Add", op::add{});
Khalique's avatar
Khalique committed
162
        add_binary_op("Mul", op::mul{});
Khalique's avatar
Khalique committed
163
        add_binary_op("Pow", op::pow{});
Khalique's avatar
Khalique committed
164
        add_binary_op("SquaredDifference", op::sqdiff{});
Khalique's avatar
Khalique committed
165
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
166

167
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
168
        add_mem_op("BatchMatMul", &tf_parser::parse_matmul, false);
169
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
Paul's avatar
Paul committed
170
        add_mem_op("ConcatV2", &tf_parser::parse_concat, false);
Khalique's avatar
Khalique committed
171
        add_mem_op("Const", &tf_parser::parse_constant);
Paul's avatar
Paul committed
172
        add_mem_op("Conv2D", &tf_parser::parse_conv);
Paul's avatar
Paul committed
173
        add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv);
174
        add_mem_op("ExpandDims", &tf_parser::parse_expanddims, false);
Khalique's avatar
Khalique committed
175
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
Paul's avatar
Paul committed
176
        add_mem_op("MatMul", &tf_parser::parse_matmul, false);
177
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
178
        add_mem_op("Mean", &tf_parser::parse_mean);
Paul's avatar
Paul committed
179
        add_mem_op("Pack", &tf_parser::parse_pack, false);
Paul's avatar
Paul committed
180
        add_mem_op("Pad", &tf_parser::parse_pad);
Paul's avatar
Paul committed
181
        add_mem_op("Reshape", &tf_parser::parse_reshape, false);
182
        add_mem_op("Softmax", &tf_parser::parse_softmax);
Paul's avatar
Paul committed
183
        add_mem_op("Squeeze", &tf_parser::parse_squeeze, false);
184
        add_mem_op("StridedSlice", &tf_parser::parse_stridedslice);
Khalique's avatar
Khalique committed
185
        add_mem_op("Transpose", &tf_parser::parse_transpose, false);
Khalique's avatar
Khalique committed
186
187
    }

188
    template <class F>
Paul's avatar
Paul committed
189
    void add_op(std::string name, F f, bool transpose = true)
190
    {
Paul's avatar
Paul committed
191
        if(transpose)
Paul's avatar
Paul committed
192
        {
Paul's avatar
Paul committed
193
194
            ops.emplace(name,
                        op_func{[=](const attribute_map& attributes,
Paul's avatar
Paul committed
195
                                    const std::vector<instruction_ref>& args) -> instruction_ref {
Paul's avatar
Paul committed
196
197
                            return to_nhwc(f(attributes, to_nchw(args)));
                        }});
Paul's avatar
Paul committed
198
199
200
201
202
        }
        else
        {
            ops.emplace(name, f);
        }
203
204
    }

Khalique's avatar
Khalique committed
205
    template <class F>
Paul's avatar
Paul committed
206
    void add_mem_op(std::string name, F f, bool transpose = true)
Khalique's avatar
Khalique committed
207
    {
Paul's avatar
Paul committed
208
209
210
211
212
        add_op(name,
               [=](auto&&... xs) {
                   return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
               },
               transpose);
Khalique's avatar
Khalique committed
213
214
215
216
217
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Paul's avatar
Paul committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   if(args.size() != 2)
                       MIGRAPHX_THROW("binary operators should have 2 operands");
                   // TODO
                   // if(contains(attributes, "data_format"))
                   // {
                   //     if(is_nhwc)
                   //     {
                   //         l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
                   //     }
                   // }
                   return add_broadcastable_binary_op(args[0], args[1], x);
               },
               false);
Khalique's avatar
Khalique committed
233
234
235
236
237
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
238
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
254
255
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
256
257
258
259
260

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

261
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
262
263
264
265
266
267
268
269
270
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
Paul's avatar
Paul committed
271
            return to_nhwc(prog.add_instruction(x, to_nchw(l0), to_nchw(l1)));
Khalique's avatar
Khalique committed
272
273
274
        }
        else
        {
Paul's avatar
Paul committed
275
            return to_nhwc(prog.add_instruction(x, {to_nchw(arg0), to_nchw(arg1)}));
Khalique's avatar
Khalique committed
276
277
278
279
        }
    }

    template <class T>
Paul's avatar
Paul committed
280
    void add_generic_op(std::string name, T x, bool transpose = true)
Khalique's avatar
Khalique committed
281
    {
Paul's avatar
Paul committed
282
283
284
285
286
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   return prog.add_instruction(x, args);
               },
               transpose);
Khalique's avatar
Khalique committed
287
288
289
290
291
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
292
293
294
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
295
296
297
298
299
300
301
302
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

303
    instruction_ref
Khalique's avatar
Khalique committed
304
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
305
    {
306
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
Shucai Xiao's avatar
Shucai Xiao committed
307
        auto l0 = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()}, args[1]);
308
        return prog.add_instruction(op::add{}, args[0], l0);
309
310
    }

Khalique's avatar
Khalique committed
311
312
313
314
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
315
        size_t axis_idx = attributes.at("N").i();
Paul's avatar
Paul committed
316
        size_t axis     = args[axis_idx]->eval().at<int64_t>();
Khalique's avatar
Khalique committed
317
        op::concat op{axis};
318
        // return only first N arguments (assuming last index is the axis value)
Paul's avatar
Paul committed
319
320
        return prog.add_instruction(
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
321
322
323
324
325
326
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
Paul's avatar
Paul committed
327
        literal v = parse_tensor(attributes.at("value").tensor());
Paul's avatar
Paul committed
328
        return prog.add_literal(v);
Khalique's avatar
Khalique committed
329
330
331
332
333
334
335
336
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::convolution op;
        if(contains(attributes, "strides"))
        {
337
            std::vector<size_t> stride;
338
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
339
            reorder_data(stride);
340
341
            if(stride.size() != 4)
            {
342
                MIGRAPHX_THROW("strides should have 4 values");
343
            }
344
345
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
346
347
348
        }
        if(contains(attributes, "dilations"))
        {
349
            std::vector<size_t> dilation;
350
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
351
            reorder_data(dilation);
352
353
354
355
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
356
357
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
358
        }
Khalique's avatar
Khalique committed
359

Paul's avatar
Paul committed
360
        auto weights = to_kcxy(args[1]);
Paul's avatar
Paul committed
361
        auto l0      = args[0];
Khalique's avatar
Khalique committed
362
363
364
365
366
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
367
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
368
369
370
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];
Khalique's avatar
Khalique committed
371
372

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
373
374
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
375
376
377
378
379
380
381
382
383
384
385
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
386
387
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
388
                }
389
390
391
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
392
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
393
            }
Khalique's avatar
Khalique committed
394
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
Khalique's avatar
Khalique committed
395
            {
396
                std::vector<size_t> padding;
397
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
Khalique's avatar
Khalique committed
398
399
400
401
402
403
404
405
406
407
408
409
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
Paul's avatar
Paul committed
410
        return prog.add_instruction(op, {l0, to_kcxy(args[1])});
Khalique's avatar
Khalique committed
411
412
    }

Khalique's avatar
Khalique committed
413
414
415
    instruction_ref parse_depthwiseconv(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
416
417
418
    {
        op::convolution op;
        size_t num_channels = args[0]->get_shape().lens()[1];
Khalique's avatar
Khalique committed
419
        op.group            = num_channels;
Khalique's avatar
Khalique committed
420

Khalique's avatar
Khalique committed
421
422
        if(contains(attributes, "strides"))
        {
423
            std::vector<size_t> stride;
424
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
425
            reorder_data(stride);
426
427
            if(stride.size() != 4)
            {
428
                MIGRAPHX_THROW("strides should have 4 values");
429
            }
430
431
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
432
        }
Paul's avatar
Paul committed
433
434

        auto weights = to_kcxy(args[1]);
Khalique's avatar
Khalique committed
435
436
        if(contains(attributes, "dilations"))
        {
437
            std::vector<size_t> dilation;
438
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
439
            reorder_data(dilation);
440
441
442
443
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
444
445
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
446
447
        }

Khalique's avatar
Khalique committed
448
        auto l0 = args[0];
Khalique's avatar
Khalique committed
449
450
451
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
Khalique's avatar
Khalique committed
452

Khalique's avatar
Khalique committed
453
454
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
455
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
456
457
458
459
460
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
461
462
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
463
464
465
466
467
468
469
470
471
472
473
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
474
475
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
476
                }
Khalique's avatar
Khalique committed
477
            }
Khalique's avatar
Khalique committed
478
            else if(pad_mode.find("VALID") != std::string::npos)
Khalique's avatar
Khalique committed
479
            {
Khalique's avatar
Khalique committed
480
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
481
482
            }
        }
Khalique's avatar
Khalique committed
483

Khalique's avatar
Khalique committed
484
485
        std::vector<int64_t> new_weights_shape;
        copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape));
Khalique's avatar
Khalique committed
486
487
488
489

        // weight format is (out_channels, in_channels, h, w), but in depthwise_conv,
        // out_channels is equal to the multiplier. Adjust by inserting a reshape and
        // setting in_channels to 1
Khalique's avatar
Khalique committed
490
        int64_t multiplier   = new_weights_shape[0];
Khalique's avatar
Khalique committed
491
492
493
        int64_t out_channels = num_channels * multiplier;
        new_weights_shape[0] = out_channels;
        new_weights_shape[1] = 1;
Paul's avatar
Paul committed
494
        // Make sure weights are contiguous before doing reshape
Paul's avatar
Paul committed
495
496
        auto new_weights =
            prog.add_instruction(op::reshape{new_weights_shape}, make_contiguous(weights));
Khalique's avatar
Khalique committed
497

Khalique's avatar
Khalique committed
498
        return prog.add_instruction(op, {l0, new_weights});
Khalique's avatar
Khalique committed
499
500
    }

Khalique's avatar
Khalique committed
501
502
    instruction_ref
    parse_expanddims(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
503
504
    {
        std::vector<size_t> input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
505
        std::vector<int64_t> new_dims(input_dims.begin(), input_dims.end());
Khalique's avatar
Khalique committed
506
        size_t num_dims = input_dims.size();
507
        int32_t dim     = args[1]->eval().at<int32_t>();
Khalique's avatar
Khalique committed
508
509

        if(dim < 0)
Khalique's avatar
Khalique committed
510
511
512
513
514
515
516
517
518
519
        {
            new_dims.insert(new_dims.begin() + (num_dims + dim + 1), 1);
        }
        else
        {
            new_dims.insert(new_dims.begin() + dim, 1);
        }
        return prog.add_instruction(op::reshape{new_dims}, args[0]);
    }

Khalique's avatar
Khalique committed
520
521
    instruction_ref
    parse_matmul(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
522
523
524
    {
        bool transa = false;
        bool transb = false;
Khalique's avatar
Khalique committed
525

526
527
528
529
530
531
532
533
534
        if(contains(attributes, "transpose_a"))
        {
            transa = attributes.at("transpose_a").b();
        }
        if(contains(attributes, "transpose_b"))
        {
            transb = attributes.at("transpose_a").b();
        }

Khalique's avatar
Khalique committed
535
536
537
538
539
540
541
542
543
        if(contains(attributes, "adj_x"))
        {
            transa = attributes.at("adj_x").b();
        }
        if(contains(attributes, "adj_y"))
        {
            transb = attributes.at("adj_y").b();
        }

544
545
546
        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
Khalique's avatar
Khalique committed
547
        std::iter_swap(perm.end() - 1, perm.end() - 2);
548
549
550
551
552
553
554

        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];

        return prog.add_instruction(op::dot{}, l1, l2);
    }

Khalique's avatar
Khalique committed
555
556
    instruction_ref
    parse_mean(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
557
558
    {
        bool keep_dims = attributes.at("keep_dims").b();
Paul's avatar
Paul committed
559
        std::vector<int32_t> hw_axes{2, 3};
Khalique's avatar
Khalique committed
560
        // check if conditions for GlobalAvgPool are met
Khalique's avatar
Khalique committed
561
        auto lens = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
562
563
        auto axes = parse_axes(args[1]->eval().get<int32_t>().to_vector(), lens.size());

Khalique's avatar
Khalique committed
564
        if(axes == hw_axes and lens.size() == 4)
Khalique's avatar
Khalique committed
565
566
        {
            op::pooling op{"average"};
Khalique's avatar
Khalique committed
567
568
            op.lengths[0] = lens[2];
            op.lengths[1] = lens[3];
Khalique's avatar
Khalique committed
569
570
571
572
573
            auto l0       = prog.add_instruction(op, args.front());
            if(keep_dims)
                return l0;
            return prog.add_instruction(
                op::squeeze{std::vector<int64_t>(hw_axes.begin(), hw_axes.end())}, l0);
Khalique's avatar
Khalique committed
574
575
576
577
        }
        MIGRAPHX_THROW("MIGraphX does not support mean outside of GlobalAvgPool transformation");
    }

Khalique's avatar
Khalique committed
578
579
580
    instruction_ref parse_pack(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
581
582
583
584
585
586
    {
        // reinterpret as unsqueeze with concat
        std::vector<instruction_ref> unsqueezed_args;
        int64_t axis = 0;
        if(contains(attributes, "axis"))
            axis = attributes.at("axis").i();
587
588
589
        size_t input_size = args.front()->get_shape().lens().size();
        if(axis > input_size)
        {
Khalique's avatar
Khalique committed
590
591
            MIGRAPHX_THROW("TF_PARSER: axis value of " + to_string(axis) +
                           " must be smaller than input size " + to_string(input_size));
592
593
        }

Khalique's avatar
Khalique committed
594
595
596
597
598
        std::transform(
            args.begin(),
            args.end(),
            std::back_inserter(unsqueezed_args),
            [&](instruction_ref arg) { return prog.add_instruction(op::unsqueeze{{axis}}, arg); });
Paul's avatar
Paul committed
599
600
        return to_nhwc(
            prog.add_instruction(op::concat{static_cast<size_t>(axis)}, unsqueezed_args));
Khalique's avatar
Khalique committed
601
602
    }

Khalique's avatar
Khalique committed
603
604
605
606
607
    instruction_ref
    parse_pad(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        size_t ndims = args.front()->get_shape().lens().size();

Khalique's avatar
Khalique committed
608
609
        // in tf, the paddings are arranged as a 2d shape (ndims, 2),
        // the last dim contains the left padding and right padding respectively
Khalique's avatar
Khalique committed
610
        std::vector<std::pair<int32_t, int32_t>> pad_per_dim(ndims);
Paul's avatar
Paul committed
611
        auto tf_padding = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
612
        for(size_t i = 0; i < 2 * ndims; i += 2)
Khalique's avatar
Khalique committed
613
        {
Khalique's avatar
Khalique committed
614
615
            pad_per_dim[i / 2].first  = tf_padding[i];
            pad_per_dim[i / 2].second = tf_padding[i + 1];
Khalique's avatar
Khalique committed
616
617
618
619
        }
        reorder_data(pad_per_dim);

        op::pad op;
Khalique's avatar
Khalique committed
620
621
        std::vector<int64_t> pads(ndims * 2);
        for(size_t i = 0; i < ndims; i++)
Khalique's avatar
Khalique committed
622
        {
Khalique's avatar
Khalique committed
623
624
            pads[i]         = pad_per_dim[i].first;
            pads[i + ndims] = pad_per_dim[i].second;
Khalique's avatar
Khalique committed
625
626
        }
        op.pads = pads;
Paul's avatar
Paul committed
627
        return prog.add_instruction(op, args.front());
Khalique's avatar
Khalique committed
628
629
    }

630
631
632
633
634
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
635

636
637
        if(contains(attributes, "strides"))
        {
638
            std::vector<size_t> stride;
639
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
640
            reorder_data(stride);
641
642
643
644
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
645
646
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
647
648
649
        }
        if(contains(attributes, "ksize"))
        {
650
            std::vector<size_t> ksize;
651
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
652
            reorder_data(ksize);
653
654
655
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
656
            }
657
658
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
659
        }
Khalique's avatar
Khalique committed
660
661

        auto l0 = args[0];
Khalique's avatar
Khalique committed
662
663
664
665
666
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
667
                op.padding_mode = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
668
                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
669
670
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
671
672
673
674
675
676
677
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], 1, op.lengths[0]);
                calculate_padding(1, pads, input_w, op.stride[1], 1, op.lengths[1]);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
Khalique's avatar
Khalique committed
678
679
                    l0                           = prog.add_instruction(
                        migraphx::op::pad{padding, std::numeric_limits<float>::lowest()}, l0);
Khalique's avatar
Khalique committed
680
681
682
                }
                else
                {
Khalique's avatar
Khalique committed
683
684
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
685
                }
Khalique's avatar
Khalique committed
686
687
688
689
690
691
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
Khalique's avatar
Khalique committed
692
        return prog.add_instruction(op, l0);
693
    }
Khalique's avatar
Khalique committed
694

695
    instruction_ref
Khalique's avatar
Khalique committed
696
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
697
698
699
700
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
Khalique's avatar
Khalique committed
701
        auto s = args[1]->eval();
702
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
703
        return prog.add_instruction(op, make_contiguous(args[0]));
704
705
    }

Khalique's avatar
Khalique committed
706
707
708
709
710
711
712
713
714
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
715
            throw std::runtime_error("Failed reading tf file");
Khalique's avatar
Khalique committed
716
717
718
        }
    }

719
720
721
722
723
724
725
726
727
728
    instruction_ref
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        auto dims = args.front()->get_shape().lens();
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
    }

Khalique's avatar
Khalique committed
729
730
731
    instruction_ref parse_squeeze(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
732
733
    {
        op::squeeze op;
Khalique's avatar
Khalique committed
734
        auto input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
735
        auto axes       = attributes.at("squeeze_dims").list().i();
736
        copy(axes, std::back_inserter(op.axes));
Khalique's avatar
Khalique committed
737

738
739
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
Khalique's avatar
Khalique committed
740
            for(size_t i = 0; i < input_dims.size(); i++)
741
            {
Khalique's avatar
Khalique committed
742
                if(input_dims.at(i) == 1)
743
744
745
746
                {
                    op.axes.push_back(i);
                }
            }
747
        }
Paul's avatar
Paul committed
748
        return prog.add_instruction(op, make_contiguous(args[0]));
749
750
    }

Khalique's avatar
Khalique committed
751
752
753
    instruction_ref parse_stridedslice(const std::string&,
                                       const attribute_map& attributes,
                                       std::vector<instruction_ref> args)
754
755
    {
        op::slice op;
Khalique's avatar
Khalique committed
756
757
758
        auto starts     = args[1]->eval().get<int32_t>().to_vector();
        auto ends       = args[2]->eval().get<int32_t>().to_vector();
        size_t num_axes = args[0]->get_shape().lens().size();
759

Khalique's avatar
Khalique committed
760
761
762
763
        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(ends.begin(), ends.end());
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
764
        uint32_t shrink_axis_mask = 0;
Khalique's avatar
Khalique committed
765
        uint32_t bitwise_compare  = 1;
766
767
768
        std::vector<int64_t> squeeze_axes;

        if(contains(attributes, "shrink_axis_mask"))
769
            shrink_axis_mask = static_cast<uint32_t>(attributes.at("shrink_axis_mask").i());
770

Khalique's avatar
Khalique committed
771
        for(size_t i = 0; i < num_axes; i++)
772
        {
773
            // the LSB corresponds to axis 0 when determining which axes to squeeze
Khalique's avatar
Khalique committed
774
            if(((shrink_axis_mask >> i) & bitwise_compare) == 1)
775
776
                squeeze_axes.push_back(i);
        }
Khalique's avatar
Khalique committed
777

Paul's avatar
Paul committed
778
779
        auto l0 = prog.add_instruction(op, make_contiguous(args[0]));
        return to_nhwc(prog.add_instruction(op::squeeze{squeeze_axes}, l0));
780
781
    }

Khalique's avatar
Khalique committed
782
783
    instruction_ref
    parse_transpose(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
784
785
786
787
788
789
790
791
    {
        auto perm = args[1]->eval().get<int32_t>().to_vector();
        op::transpose op;
        op.dims = std::vector<int64_t>(perm.begin(), perm.end());

        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
792
793
794
795
796
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
797
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
798
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
799
800
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
801
            if(is_nhwc and dims.size() >= 4)
802
            {
803
                reorder_data(dims);
804
            }
Khalique's avatar
Khalique committed
805
            shape s            = shape{shape_type, dims};
Paul's avatar
Paul committed
806
            instructions[name] = to_nhwc(prog.add_parameter(name, s));
Khalique's avatar
Khalique committed
807
808
809
        }
        for(auto&& p : nodes)
        {
810
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;

            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
837
                instructions[name] = prog.add_instruction(op::unknown{node.op()}, args);
Khalique's avatar
Khalique committed
838
839
840
841
842
843
844
845
846
847
848
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
849
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
850
851
852
853
854
855
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
856
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
857

Khalique's avatar
Khalique committed
858
859
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
Paul's avatar
Paul committed
887
888
889
890
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Paul's avatar
Paul committed
891
        case tensorflow::DataType::DT_UINT64: shape_type = shape::uint64_type; break;
Paul's avatar
Paul committed
892
893
894

        case tensorflow::DataType::DT_INVALID:
        case tensorflow::DataType::DT_UINT8:
Khalique's avatar
Khalique committed
895
896
897
898
899
900
901
902
903
904
905
906
        case tensorflow::DataType::DT_STRING:
        case tensorflow::DataType::DT_COMPLEX64:
        case tensorflow::DataType::DT_BOOL:
        case tensorflow::DataType::DT_QINT8:
        case tensorflow::DataType::DT_QUINT8:
        case tensorflow::DataType::DT_QINT32:
        case tensorflow::DataType::DT_BFLOAT16:
        case tensorflow::DataType::DT_QINT16:
        case tensorflow::DataType::DT_QUINT16:
        case tensorflow::DataType::DT_COMPLEX128:
        case tensorflow::DataType::DT_RESOURCE:
        case tensorflow::DataType::DT_VARIANT:
Khalique's avatar
Khalique committed
907
        // tf pb should not use these types
Paul's avatar
Paul committed
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
        case tensorflow::DataType::DT_FLOAT_REF:
        case tensorflow::DataType::DT_DOUBLE_REF:
        case tensorflow::DataType::DT_INT32_REF:
        case tensorflow::DataType::DT_UINT8_REF:
        case tensorflow::DataType::DT_INT16_REF:
        case tensorflow::DataType::DT_INT8_REF:
        case tensorflow::DataType::DT_STRING_REF:
        case tensorflow::DataType::DT_COMPLEX64_REF:
        case tensorflow::DataType::DT_INT64_REF:
        case tensorflow::DataType::DT_BOOL_REF:
        case tensorflow::DataType::DT_QINT8_REF:
        case tensorflow::DataType::DT_QUINT8_REF:
        case tensorflow::DataType::DT_QINT32_REF:
        case tensorflow::DataType::DT_BFLOAT16_REF:
        case tensorflow::DataType::DT_QINT16_REF:
        case tensorflow::DataType::DT_QUINT16_REF:
        case tensorflow::DataType::DT_UINT16_REF:
        case tensorflow::DataType::DT_COMPLEX128_REF:
        case tensorflow::DataType::DT_HALF_REF:
        case tensorflow::DataType::DT_RESOURCE_REF:
        case tensorflow::DataType::DT_VARIANT_REF:
        case tensorflow::DataType::DT_UINT32_REF:
        case tensorflow::DataType::DT_UINT64_REF:
Paul's avatar
Paul committed
931
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
Khalique's avatar
Khalique committed
932
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
933
934
935
936
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
937
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
938
939
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
940
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
941
942
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
943
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
944
945
            switch(t.dtype())
            {
Khalique's avatar
Khalique committed
946
947
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Paul's avatar
Paul committed
948
            case tensorflow::DataType::DT_BOOL:
949
            case tensorflow::DataType::DT_INT8: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
950
951
            case tensorflow::DataType::DT_UINT16:
            case tensorflow::DataType::DT_INT16:
952
                return literal{{shape::int16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
953
954
955
956
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
957
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
958
959
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Paul's avatar
Paul committed
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
            case tensorflow::DataType::DT_INVALID:
            case tensorflow::DataType::DT_UINT8:
            case tensorflow::DataType::DT_STRING:
            case tensorflow::DataType::DT_UINT32:
            case tensorflow::DataType::DT_UINT64:
            case tensorflow::DataType::DT_COMPLEX64:
            case tensorflow::DataType::DT_COMPLEX128:
            case tensorflow::DataType::DT_QINT8:
            case tensorflow::DataType::DT_QUINT8:
            case tensorflow::DataType::DT_QINT32:
            case tensorflow::DataType::DT_BFLOAT16:
            case tensorflow::DataType::DT_QINT16:
            case tensorflow::DataType::DT_QUINT16:
            case tensorflow::DataType::DT_RESOURCE:
            case tensorflow::DataType::DT_VARIANT:
            case tensorflow::DataType::DT_FLOAT_REF:
            case tensorflow::DataType::DT_DOUBLE_REF:
            case tensorflow::DataType::DT_INT32_REF:
            case tensorflow::DataType::DT_UINT8_REF:
            case tensorflow::DataType::DT_INT16_REF:
            case tensorflow::DataType::DT_INT8_REF:
            case tensorflow::DataType::DT_STRING_REF:
            case tensorflow::DataType::DT_COMPLEX64_REF:
            case tensorflow::DataType::DT_INT64_REF:
            case tensorflow::DataType::DT_BOOL_REF:
            case tensorflow::DataType::DT_QINT8_REF:
            case tensorflow::DataType::DT_QUINT8_REF:
            case tensorflow::DataType::DT_QINT32_REF:
            case tensorflow::DataType::DT_BFLOAT16_REF:
            case tensorflow::DataType::DT_QINT16_REF:
            case tensorflow::DataType::DT_QUINT16_REF:
            case tensorflow::DataType::DT_UINT16_REF:
            case tensorflow::DataType::DT_COMPLEX128_REF:
            case tensorflow::DataType::DT_HALF_REF:
            case tensorflow::DataType::DT_RESOURCE_REF:
            case tensorflow::DataType::DT_VARIANT_REF:
            case tensorflow::DataType::DT_UINT32_REF:
            case tensorflow::DataType::DT_UINT64_REF:
Khalique's avatar
Khalique committed
998
999
1000
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
1001
1002
1003
1004
1005
1006
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_FLOAT:
Khalique's avatar
Khalique committed
1007
1008
            return create_literal(
                shape::float_type, dims, get_data_vals(t.float_val(), shape_size));
Khalique's avatar
Khalique committed
1009
        case tensorflow::DataType::DT_INT8:
1010
            return create_literal(shape::int8_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1011
        case tensorflow::DataType::DT_UINT16:
1012
            return create_literal(shape::uint16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1013
        case tensorflow::DataType::DT_INT16:
1014
            return create_literal(shape::int16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1015
        case tensorflow::DataType::DT_INT32:
1016
            return create_literal(shape::int32_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1017
        case tensorflow::DataType::DT_INT64:
Khalique's avatar
Khalique committed
1018
1019
            return create_literal(
                shape::int64_type, dims, get_data_vals(t.int64_val(), shape_size));
Khalique's avatar
Khalique committed
1020
        case tensorflow::DataType::DT_BOOL:
1021
            return create_literal(shape::int32_type, dims, get_data_vals(t.bool_val(), shape_size));
Khalique's avatar
Khalique committed
1022
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
1023
        {
1024
1025
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
Khalique's avatar
Khalique committed
1026
1027
1028
1029
1030
            std::vector<half> data_half;
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1031
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1032
        }
Khalique's avatar
Khalique committed
1033
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
1034
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Paul's avatar
Paul committed
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
        case tensorflow::DataType::DT_INVALID:
        case tensorflow::DataType::DT_UINT8:
        case tensorflow::DataType::DT_STRING:
        case tensorflow::DataType::DT_UINT32:
        case tensorflow::DataType::DT_UINT64:
        case tensorflow::DataType::DT_COMPLEX64:
        case tensorflow::DataType::DT_COMPLEX128:
        case tensorflow::DataType::DT_QINT8:
        case tensorflow::DataType::DT_QUINT8:
        case tensorflow::DataType::DT_QINT32:
        case tensorflow::DataType::DT_BFLOAT16:
        case tensorflow::DataType::DT_QINT16:
        case tensorflow::DataType::DT_QUINT16:
        case tensorflow::DataType::DT_RESOURCE:
        case tensorflow::DataType::DT_VARIANT:
        case tensorflow::DataType::DT_FLOAT_REF:
        case tensorflow::DataType::DT_DOUBLE_REF:
        case tensorflow::DataType::DT_INT32_REF:
        case tensorflow::DataType::DT_UINT8_REF:
        case tensorflow::DataType::DT_INT16_REF:
        case tensorflow::DataType::DT_INT8_REF:
        case tensorflow::DataType::DT_STRING_REF:
        case tensorflow::DataType::DT_COMPLEX64_REF:
        case tensorflow::DataType::DT_INT64_REF:
        case tensorflow::DataType::DT_BOOL_REF:
        case tensorflow::DataType::DT_QINT8_REF:
        case tensorflow::DataType::DT_QUINT8_REF:
        case tensorflow::DataType::DT_QINT32_REF:
        case tensorflow::DataType::DT_BFLOAT16_REF:
        case tensorflow::DataType::DT_QINT16_REF:
        case tensorflow::DataType::DT_QUINT16_REF:
        case tensorflow::DataType::DT_UINT16_REF:
        case tensorflow::DataType::DT_COMPLEX128_REF:
        case tensorflow::DataType::DT_HALF_REF:
        case tensorflow::DataType::DT_RESOURCE_REF:
        case tensorflow::DataType::DT_VARIANT_REF:
        case tensorflow::DataType::DT_UINT32_REF:
        case tensorflow::DataType::DT_UINT64_REF:
Khalique's avatar
Khalique committed
1073
1074
1075
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
1076
1077
1078
1079
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

1080
    template <class T>
Khalique's avatar
Khalique committed
1081
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
1082
                                        const size_t& shape_size)
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
1095
1096
1097
1098
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
1099
1100
1101
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
Paul's avatar
Paul committed
1102
                       [](const tensorflow::TensorShapeProto_Dim& dim) { return dim.size(); });
Khalique's avatar
Khalique committed
1103
1104
        return dims;
    }
1105
1106

    template <class T>
Khalique's avatar
Khalique committed
1107
    static literal
1108
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, std::vector<T> data)
1109
    {
Khalique's avatar
Khalique committed
1110
        // assume if explicit value is mentioned in protobuf and dim size <= 1, treat as scalar
1111
        if(dims.empty() or (dims.size() == 1 and dims.front() == 1))
1112
            return literal{{shape_type}, data};
1113
1114
        return literal{{shape_type, dims}, data};
    }
Khalique's avatar
Khalique committed
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
Paul's avatar
Paul committed
1137
    parser.to_nchw(std::prev(parser.prog.end()));
Khalique's avatar
Khalique committed
1138
1139
1140
1141
1142
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx