tf.cpp 44.1 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>
Khalique's avatar
Khalique committed
20
#include <migraphx/pad_calc.hpp>
Khalique's avatar
Khalique committed
21
22
23
24
25
26
27

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Paul's avatar
Paul committed
28
    using node_map      = std::map<std::string, tensorflow::NodeDef>;
Khalique's avatar
Khalique committed
29
30
    // using input_node_map = std::unordered_map<std::string, std::unordered_set<std::string>>;
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
31

Khalique's avatar
Khalique committed
32
33
34
35
36
37
38
39
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

Paul's avatar
Paul committed
40
    bool should_transpose(instruction_ref ins) const
Paul's avatar
Paul committed
41
42
43
44
45
46
    {
        return is_nhwc and ins->get_shape().lens().size() == 4;
    }

    instruction_ref to_nhwc(instruction_ref ins)
    {
Paul's avatar
Paul committed
47
        if(should_transpose(ins))
Paul's avatar
Paul committed
48
49
50
51
52
53
            return prog.add_instruction(op::transpose{{0, 2, 3, 1}}, ins);
        return ins;
    }

    instruction_ref to_nchw(instruction_ref ins)
    {
Paul's avatar
Paul committed
54
        if(should_transpose(ins))
Paul's avatar
Paul committed
55
56
57
58
59
60
            return prog.add_instruction(op::transpose{{0, 3, 1, 2}}, ins);
        return ins;
    }

    instruction_ref to_kcxy(instruction_ref ins)
    {
Paul's avatar
Paul committed
61
        if(should_transpose(ins))
Paul's avatar
Paul committed
62
63
64
65
66
67
            return prog.add_instruction(op::transpose{{3, 2, 0, 1}}, ins);
        return ins;
    }

    instruction_ref make_contiguous(instruction_ref ins)
    {
Paul's avatar
Paul committed
68
        if(ins->get_shape().standard())
Paul's avatar
Paul committed
69
70
71
72
73
74
75
76
            return ins;
        else
            return prog.add_instruction(op::contiguous{}, ins);
    }

    std::vector<instruction_ref> to_nchw(const std::vector<instruction_ref>& args)
    {
        std::vector<instruction_ref> result(args.size());
Paul's avatar
Paul committed
77
        std::transform(
Paul's avatar
Paul committed
78
            args.begin(), args.end(), result.begin(), [&](auto ins) { return this->to_nchw(ins); });
Paul's avatar
Paul committed
79
80
81
        return result;
    }

Khalique's avatar
Khalique committed
82
    std::vector<size_t>
83
    parse_axes(const attribute_map& attributes, const std::string& s, const size_t num_dims) const
84
    {
85
86
87
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
88
        if(is_nhwc)
89
        {
Khalique's avatar
Khalique committed
90
            std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
Khalique's avatar
Khalique committed
91
                return parse_axis(axis, num_dims);
Khalique's avatar
Khalique committed
92
            });
93
94
95
96
        }
        return axes;
    }

Khalique's avatar
Khalique committed
97
    template <class T>
98
    std::vector<T> parse_axes(std::vector<T> axes, const size_t num_dims) const
Khalique's avatar
Khalique committed
99
100
101
    {
        if(is_nhwc)
        {
102
            std::vector<T> new_axes;
Khalique's avatar
Khalique committed
103
104
105
            std::transform(axes.begin(),
                           axes.end(),
                           std::back_inserter(new_axes),
Khalique's avatar
Khalique committed
106
                           [&](size_t axis) { return parse_axis(axis, num_dims); });
107
            return new_axes;
Khalique's avatar
Khalique committed
108
        }
109
        return axes;
Khalique's avatar
Khalique committed
110
111
    }

Khalique's avatar
Khalique committed
112
113
114
    // tf stores certain attributes such as strides, dilations, as a 4D input.
    // The first and last dims are equal to 1, and the relevant data is in dims 2 and 3.
    // This helper function reorders the data to store for the respective operator member variables.
115
    template <class T>
116
    void reorder_data(std::vector<T>& prev_data) const
117
118
    {
        std::vector<T> new_data(prev_data.size());
119
        for(size_t i = 0; i < new_data.size(); i++)
120
        {
Khalique's avatar
Khalique committed
121
            auto new_idx         = parse_axis(i, new_data.size());
122
            new_data.at(new_idx) = prev_data.at(i);
123
        }
124
125
126
127
        prev_data = new_data;
    }

    template <class T>
128
    T parse_axis(const T& dim, const size_t num_dims) const
129
    {
Khalique's avatar
Khalique committed
130
        T new_dim = dim;
Khalique's avatar
Khalique committed
131
        if(is_nhwc and num_dims >= 4)
132
133
134
        {
            switch(dim)
            {
Khalique's avatar
Khalique committed
135
136
137
138
139
            case 0: new_dim = 0; break;
            case 1: new_dim = 2; break;
            case 2: new_dim = 3; break;
            case 3: new_dim = 1; break;
            default: break;
140
141
            }
        }
Khalique's avatar
Khalique committed
142
        return new_dim;
143
144
    }

145
146
147
148
149
150
151
    std::vector<int64_t> get_axes(size_t num_axes) const
    {
        std::vector<int64_t> axes(num_axes);
        std::iota(axes.begin(), axes.end(), 0);
        return axes;
    }

Khalique's avatar
Khalique committed
152
153
154
155
    tf_parser()
    {
        add_generic_op("Identity", op::identity{});
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
156
        add_generic_op("Relu6", op::clip{6.0, 0.0});
Khalique's avatar
Khalique committed
157
        add_generic_op("Rsqrt", op::rsqrt{});
Khalique's avatar
Khalique committed
158
        add_generic_op("Tanh", op::tanh{});
Khalique's avatar
Khalique committed
159
        add_generic_op("StopGradient", op::identity{});
Khalique's avatar
Khalique committed
160

161
        add_binary_op("Add", op::add{});
Khalique's avatar
Khalique committed
162
        add_binary_op("Mul", op::mul{});
Khalique's avatar
Khalique committed
163
        add_binary_op("SquaredDifference", op::sqdiff{});
Khalique's avatar
Khalique committed
164
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
165

166
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
167
        add_mem_op("BatchMatMul", &tf_parser::parse_matmul, false);
168
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
Khalique's avatar
Khalique committed
169
        add_mem_op("Cast", &tf_parser::parse_cast, false);
Paul's avatar
Paul committed
170
        add_mem_op("ConcatV2", &tf_parser::parse_concat, false);
Khalique's avatar
Khalique committed
171
        add_mem_op("Const", &tf_parser::parse_constant);
Paul's avatar
Paul committed
172
        add_mem_op("Conv2D", &tf_parser::parse_conv);
Paul's avatar
Paul committed
173
        add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv);
174
        add_mem_op("ExpandDims", &tf_parser::parse_expanddims, false);
Khalique's avatar
Khalique committed
175
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
Paul's avatar
Paul committed
176
        add_mem_op("MatMul", &tf_parser::parse_matmul, false);
177
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
178
        add_mem_op("Mean", &tf_parser::parse_mean);
Paul's avatar
Paul committed
179
        add_mem_op("Pack", &tf_parser::parse_pack, false);
Paul's avatar
Paul committed
180
        add_mem_op("Pad", &tf_parser::parse_pad);
Paul's avatar
Paul committed
181
        add_mem_op("Reshape", &tf_parser::parse_reshape, false);
182
        add_mem_op("Softmax", &tf_parser::parse_softmax);
Paul's avatar
Paul committed
183
        add_mem_op("Squeeze", &tf_parser::parse_squeeze, false);
184
        add_mem_op("StridedSlice", &tf_parser::parse_stridedslice);
Khalique's avatar
Khalique committed
185
        add_mem_op("Transpose", &tf_parser::parse_transpose, false);
Khalique's avatar
Khalique committed
186
187
    }

188
    template <class F>
Paul's avatar
Paul committed
189
    void add_op(std::string name, F f, bool transpose = true)
190
    {
Paul's avatar
Paul committed
191
        if(transpose)
Paul's avatar
Paul committed
192
        {
Paul's avatar
Paul committed
193
194
            ops.emplace(name,
                        op_func{[=](const attribute_map& attributes,
Paul's avatar
Paul committed
195
                                    const std::vector<instruction_ref>& args) -> instruction_ref {
Paul's avatar
Paul committed
196
197
                            return to_nhwc(f(attributes, to_nchw(args)));
                        }});
Paul's avatar
Paul committed
198
199
200
201
202
        }
        else
        {
            ops.emplace(name, f);
        }
203
204
    }

Khalique's avatar
Khalique committed
205
    template <class F>
Paul's avatar
Paul committed
206
    void add_mem_op(std::string name, F f, bool transpose = true)
Khalique's avatar
Khalique committed
207
    {
Paul's avatar
Paul committed
208
209
210
211
212
        add_op(name,
               [=](auto&&... xs) {
                   return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
               },
               transpose);
Khalique's avatar
Khalique committed
213
214
215
216
217
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Paul's avatar
Paul committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   if(args.size() != 2)
                       MIGRAPHX_THROW("binary operators should have 2 operands");
                   // TODO
                   // if(contains(attributes, "data_format"))
                   // {
                   //     if(is_nhwc)
                   //     {
                   //         l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
                   //     }
                   // }
                   return add_broadcastable_binary_op(args[0], args[1], x);
               },
               false);
Khalique's avatar
Khalique committed
233
234
235
236
237
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
238
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
254
255
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
256
257
258
259
260

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

261
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
262
263
264
265
266
267
268
269
270
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
Paul's avatar
Paul committed
271
            return to_nhwc(prog.add_instruction(x, to_nchw(l0), to_nchw(l1)));
Khalique's avatar
Khalique committed
272
273
274
        }
        else
        {
Paul's avatar
Paul committed
275
            return to_nhwc(prog.add_instruction(x, {to_nchw(arg0), to_nchw(arg1)}));
Khalique's avatar
Khalique committed
276
277
278
279
        }
    }

    template <class T>
Paul's avatar
Paul committed
280
    void add_generic_op(std::string name, T x, bool transpose = true)
Khalique's avatar
Khalique committed
281
    {
Paul's avatar
Paul committed
282
283
284
285
286
        add_op(name,
               [this, x](const attribute_map&, std::vector<instruction_ref> args) {
                   return prog.add_instruction(x, args);
               },
               transpose);
Khalique's avatar
Khalique committed
287
288
289
290
291
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
292
293
294
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
295
296
297
298
299
300
301
302
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

303
    instruction_ref
Khalique's avatar
Khalique committed
304
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
305
    {
306
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
Shucai Xiao's avatar
Shucai Xiao committed
307
        auto l0 = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()}, args[1]);
308
        return prog.add_instruction(op::add{}, args[0], l0);
309
310
    }

Khalique's avatar
Khalique committed
311
312
313
314
315
316
317
    instruction_ref
    parse_cast(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        shape::type_t type = parse_type(attributes.at("DstT").type());
        return prog.add_instruction(op::convert{type}, std::move(args));
    }

Khalique's avatar
Khalique committed
318
319
320
321
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
322
        size_t axis_idx = attributes.at("N").i();
Paul's avatar
Paul committed
323
        size_t axis     = args[axis_idx]->eval().at<int64_t>();
Khalique's avatar
Khalique committed
324
        op::concat op{axis};
325
        // return only first N arguments (assuming last index is the axis value)
Paul's avatar
Paul committed
326
327
        return prog.add_instruction(
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
328
329
330
331
332
333
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
Paul's avatar
Paul committed
334
        literal v = parse_tensor(attributes.at("value").tensor());
Paul's avatar
Paul committed
335
        return prog.add_literal(v);
Khalique's avatar
Khalique committed
336
337
338
339
340
341
342
343
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::convolution op;
        if(contains(attributes, "strides"))
        {
344
            std::vector<size_t> stride;
345
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
346
            reorder_data(stride);
347
348
            if(stride.size() != 4)
            {
349
                MIGRAPHX_THROW("strides should have 4 values");
350
            }
351
352
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
353
354
355
        }
        if(contains(attributes, "dilations"))
        {
356
            std::vector<size_t> dilation;
357
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
358
            reorder_data(dilation);
359
360
361
362
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
363
364
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
365
        }
Khalique's avatar
Khalique committed
366

Paul's avatar
Paul committed
367
        auto weights = to_kcxy(args[1]);
Paul's avatar
Paul committed
368
        auto l0      = args[0];
Khalique's avatar
Khalique committed
369
370
371
372
373
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
374
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
375
376
377
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];
Khalique's avatar
Khalique committed
378
379

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
380
381
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
382
383
384
385
386
387
388
389
390
391
392
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
393
394
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
395
                }
396
397
398
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
399
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
400
            }
Khalique's avatar
Khalique committed
401
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
Khalique's avatar
Khalique committed
402
            {
403
                std::vector<size_t> padding;
404
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
Khalique's avatar
Khalique committed
405
406
407
408
409
410
411
412
413
414
415
416
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
Paul's avatar
Paul committed
417
        return prog.add_instruction(op, {l0, to_kcxy(args[1])});
Khalique's avatar
Khalique committed
418
419
    }

Khalique's avatar
Khalique committed
420
421
422
    instruction_ref parse_depthwiseconv(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
423
424
425
    {
        op::convolution op;
        size_t num_channels = args[0]->get_shape().lens()[1];
Khalique's avatar
Khalique committed
426
        op.group            = num_channels;
Khalique's avatar
Khalique committed
427

Khalique's avatar
Khalique committed
428
429
        if(contains(attributes, "strides"))
        {
430
            std::vector<size_t> stride;
431
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
432
            reorder_data(stride);
433
434
            if(stride.size() != 4)
            {
435
                MIGRAPHX_THROW("strides should have 4 values");
436
            }
437
438
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
439
        }
Paul's avatar
Paul committed
440
441

        auto weights = to_kcxy(args[1]);
Khalique's avatar
Khalique committed
442
443
        if(contains(attributes, "dilations"))
        {
444
            std::vector<size_t> dilation;
445
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
446
            reorder_data(dilation);
447
448
449
450
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
451
452
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
453
454
        }

Khalique's avatar
Khalique committed
455
        auto l0 = args[0];
Khalique's avatar
Khalique committed
456
457
458
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
Khalique's avatar
Khalique committed
459

Khalique's avatar
Khalique committed
460
461
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
462
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
463
464
465
466
467
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
468
469
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
470
471
472
473
474
475
476
477
478
479
480
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
481
482
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
483
                }
Khalique's avatar
Khalique committed
484
            }
Khalique's avatar
Khalique committed
485
            else if(pad_mode.find("VALID") != std::string::npos)
Khalique's avatar
Khalique committed
486
            {
Khalique's avatar
Khalique committed
487
                op.padding_mode = op::padding_mode_t::valid;
Khalique's avatar
Khalique committed
488
489
            }
        }
Khalique's avatar
Khalique committed
490

Khalique's avatar
Khalique committed
491
492
        std::vector<int64_t> new_weights_shape;
        copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape));
Khalique's avatar
Khalique committed
493
494
495
496

        // weight format is (out_channels, in_channels, h, w), but in depthwise_conv,
        // out_channels is equal to the multiplier. Adjust by inserting a reshape and
        // setting in_channels to 1
Khalique's avatar
Khalique committed
497
        int64_t multiplier   = new_weights_shape[0];
Khalique's avatar
Khalique committed
498
499
500
        int64_t out_channels = num_channels * multiplier;
        new_weights_shape[0] = out_channels;
        new_weights_shape[1] = 1;
Paul's avatar
Paul committed
501
        // Make sure weights are contiguous before doing reshape
Paul's avatar
Paul committed
502
503
        auto new_weights =
            prog.add_instruction(op::reshape{new_weights_shape}, make_contiguous(weights));
Khalique's avatar
Khalique committed
504

Khalique's avatar
Khalique committed
505
        return prog.add_instruction(op, {l0, new_weights});
Khalique's avatar
Khalique committed
506
507
    }

Khalique's avatar
Khalique committed
508
509
    instruction_ref
    parse_expanddims(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
510
511
    {
        std::vector<size_t> input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
512
        std::vector<int64_t> new_dims(input_dims.begin(), input_dims.end());
Khalique's avatar
Khalique committed
513
        size_t num_dims = input_dims.size();
514
        int32_t dim     = args[1]->eval().at<int32_t>();
Khalique's avatar
Khalique committed
515
516

        if(dim < 0)
Khalique's avatar
Khalique committed
517
518
519
520
521
522
523
524
525
526
        {
            new_dims.insert(new_dims.begin() + (num_dims + dim + 1), 1);
        }
        else
        {
            new_dims.insert(new_dims.begin() + dim, 1);
        }
        return prog.add_instruction(op::reshape{new_dims}, args[0]);
    }

Khalique's avatar
Khalique committed
527
528
    instruction_ref
    parse_matmul(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
529
530
531
    {
        bool transa = false;
        bool transb = false;
Khalique's avatar
Khalique committed
532

533
534
535
536
537
538
539
540
541
        if(contains(attributes, "transpose_a"))
        {
            transa = attributes.at("transpose_a").b();
        }
        if(contains(attributes, "transpose_b"))
        {
            transb = attributes.at("transpose_a").b();
        }

Khalique's avatar
Khalique committed
542
543
544
545
546
547
548
549
550
        if(contains(attributes, "adj_x"))
        {
            transa = attributes.at("adj_x").b();
        }
        if(contains(attributes, "adj_y"))
        {
            transb = attributes.at("adj_y").b();
        }

551
552
553
        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
Khalique's avatar
Khalique committed
554
        std::iter_swap(perm.end() - 1, perm.end() - 2);
555
556
557
558
559
560
561

        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];

        return prog.add_instruction(op::dot{}, l1, l2);
    }

Khalique's avatar
Khalique committed
562
563
    instruction_ref
    parse_mean(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
564
565
    {
        bool keep_dims = attributes.at("keep_dims").b();
Paul's avatar
Paul committed
566
        std::vector<int32_t> hw_axes{2, 3};
Khalique's avatar
Khalique committed
567
        // check if conditions for GlobalAvgPool are met
Khalique's avatar
Khalique committed
568
        auto lens = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
569
570
        auto axes = parse_axes(args[1]->eval().get<int32_t>().to_vector(), lens.size());

Khalique's avatar
Khalique committed
571
        if(axes == hw_axes and lens.size() == 4)
Khalique's avatar
Khalique committed
572
573
        {
            op::pooling op{"average"};
Khalique's avatar
Khalique committed
574
575
            op.lengths[0] = lens[2];
            op.lengths[1] = lens[3];
Khalique's avatar
Khalique committed
576
577
578
579
580
            auto l0       = prog.add_instruction(op, args.front());
            if(keep_dims)
                return l0;
            return prog.add_instruction(
                op::squeeze{std::vector<int64_t>(hw_axes.begin(), hw_axes.end())}, l0);
Khalique's avatar
Khalique committed
581
582
583
584
        }
        MIGRAPHX_THROW("MIGraphX does not support mean outside of GlobalAvgPool transformation");
    }

Khalique's avatar
Khalique committed
585
586
587
    instruction_ref parse_pack(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
588
589
590
591
592
593
    {
        // reinterpret as unsqueeze with concat
        std::vector<instruction_ref> unsqueezed_args;
        int64_t axis = 0;
        if(contains(attributes, "axis"))
            axis = attributes.at("axis").i();
594
595
596
        size_t input_size = args.front()->get_shape().lens().size();
        if(axis > input_size)
        {
Khalique's avatar
Khalique committed
597
598
            MIGRAPHX_THROW("TF_PARSER: axis value of " + to_string(axis) +
                           " must be smaller than input size " + to_string(input_size));
599
600
        }

Khalique's avatar
Khalique committed
601
602
603
604
605
        std::transform(
            args.begin(),
            args.end(),
            std::back_inserter(unsqueezed_args),
            [&](instruction_ref arg) { return prog.add_instruction(op::unsqueeze{{axis}}, arg); });
Paul's avatar
Paul committed
606
607
        return to_nhwc(
            prog.add_instruction(op::concat{static_cast<size_t>(axis)}, unsqueezed_args));
Khalique's avatar
Khalique committed
608
609
    }

Khalique's avatar
Khalique committed
610
611
612
613
614
    instruction_ref
    parse_pad(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        size_t ndims = args.front()->get_shape().lens().size();

Khalique's avatar
Khalique committed
615
616
        // in tf, the paddings are arranged as a 2d shape (ndims, 2),
        // the last dim contains the left padding and right padding respectively
Khalique's avatar
Khalique committed
617
        std::vector<std::pair<int32_t, int32_t>> pad_per_dim(ndims);
Paul's avatar
Paul committed
618
        auto tf_padding = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
619
        for(size_t i = 0; i < 2 * ndims; i += 2)
Khalique's avatar
Khalique committed
620
        {
Khalique's avatar
Khalique committed
621
622
            pad_per_dim[i / 2].first  = tf_padding[i];
            pad_per_dim[i / 2].second = tf_padding[i + 1];
Khalique's avatar
Khalique committed
623
624
625
626
        }
        reorder_data(pad_per_dim);

        op::pad op;
Khalique's avatar
Khalique committed
627
628
        std::vector<int64_t> pads(ndims * 2);
        for(size_t i = 0; i < ndims; i++)
Khalique's avatar
Khalique committed
629
        {
Khalique's avatar
Khalique committed
630
631
            pads[i]         = pad_per_dim[i].first;
            pads[i + ndims] = pad_per_dim[i].second;
Khalique's avatar
Khalique committed
632
633
        }
        op.pads = pads;
Paul's avatar
Paul committed
634
        return prog.add_instruction(op, args.front());
Khalique's avatar
Khalique committed
635
636
    }

637
638
639
640
641
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
642

643
644
        if(contains(attributes, "strides"))
        {
645
            std::vector<size_t> stride;
646
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
647
            reorder_data(stride);
648
649
650
651
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
652
653
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
654
655
656
        }
        if(contains(attributes, "ksize"))
        {
657
            std::vector<size_t> ksize;
658
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
659
            reorder_data(ksize);
660
661
662
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
663
            }
664
665
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
666
        }
Khalique's avatar
Khalique committed
667
668

        auto l0 = args[0];
Khalique's avatar
Khalique committed
669
670
671
672
673
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
674
                op.padding_mode = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
675
                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
676
677
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
678
679
680
681
682
683
684
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], 1, op.lengths[0]);
                calculate_padding(1, pads, input_w, op.stride[1], 1, op.lengths[1]);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
Khalique's avatar
Khalique committed
685
686
                    l0                           = prog.add_instruction(
                        migraphx::op::pad{padding, std::numeric_limits<float>::lowest()}, l0);
Khalique's avatar
Khalique committed
687
688
689
                }
                else
                {
Khalique's avatar
Khalique committed
690
691
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
692
                }
Khalique's avatar
Khalique committed
693
694
695
696
697
698
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
Khalique's avatar
Khalique committed
699
        return prog.add_instruction(op, l0);
700
    }
Khalique's avatar
Khalique committed
701

702
    instruction_ref
Khalique's avatar
Khalique committed
703
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
704
705
706
707
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
Khalique's avatar
Khalique committed
708
        auto s = args[1]->eval();
709
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
710
        return prog.add_instruction(op, make_contiguous(args[0]));
711
712
    }

Khalique's avatar
Khalique committed
713
714
715
716
717
718
719
720
721
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
722
            throw std::runtime_error("Failed reading tf file");
Khalique's avatar
Khalique committed
723
724
725
        }
    }

726
727
728
729
730
731
732
733
734
735
    instruction_ref
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        auto dims = args.front()->get_shape().lens();
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
    }

Khalique's avatar
Khalique committed
736
737
738
    instruction_ref parse_squeeze(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
739
740
    {
        op::squeeze op;
Khalique's avatar
Khalique committed
741
        auto input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
742
        auto axes       = attributes.at("squeeze_dims").list().i();
743
        copy(axes, std::back_inserter(op.axes));
Khalique's avatar
Khalique committed
744

745
746
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
Khalique's avatar
Khalique committed
747
            for(size_t i = 0; i < input_dims.size(); i++)
748
            {
Khalique's avatar
Khalique committed
749
                if(input_dims.at(i) == 1)
750
751
752
753
                {
                    op.axes.push_back(i);
                }
            }
754
        }
Paul's avatar
Paul committed
755
        return prog.add_instruction(op, make_contiguous(args[0]));
756
757
    }

Khalique's avatar
Khalique committed
758
759
760
    instruction_ref parse_stridedslice(const std::string&,
                                       const attribute_map& attributes,
                                       std::vector<instruction_ref> args)
761
762
    {
        op::slice op;
Khalique's avatar
Khalique committed
763
764
765
        auto starts     = args[1]->eval().get<int32_t>().to_vector();
        auto ends       = args[2]->eval().get<int32_t>().to_vector();
        size_t num_axes = args[0]->get_shape().lens().size();
766

Khalique's avatar
Khalique committed
767
768
769
770
        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(ends.begin(), ends.end());
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
771
        uint32_t shrink_axis_mask = 0;
Khalique's avatar
Khalique committed
772
        uint32_t bitwise_compare  = 1;
773
774
775
        std::vector<int64_t> squeeze_axes;

        if(contains(attributes, "shrink_axis_mask"))
776
            shrink_axis_mask = static_cast<uint32_t>(attributes.at("shrink_axis_mask").i());
777

Khalique's avatar
Khalique committed
778
        for(size_t i = 0; i < num_axes; i++)
779
        {
780
            // the LSB corresponds to axis 0 when determining which axes to squeeze
Khalique's avatar
Khalique committed
781
            if(((shrink_axis_mask >> i) & bitwise_compare) == 1)
782
783
                squeeze_axes.push_back(i);
        }
Khalique's avatar
Khalique committed
784

Paul's avatar
Paul committed
785
786
        auto l0 = prog.add_instruction(op, make_contiguous(args[0]));
        return to_nhwc(prog.add_instruction(op::squeeze{squeeze_axes}, l0));
787
788
    }

Khalique's avatar
Khalique committed
789
790
    instruction_ref
    parse_transpose(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
791
792
793
794
795
796
797
798
    {
        auto perm = args[1]->eval().get<int32_t>().to_vector();
        op::transpose op;
        op.dims = std::vector<int64_t>(perm.begin(), perm.end());

        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
799
800
801
802
803
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
804
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
805
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
806
807
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
808
            if(is_nhwc and dims.size() >= 4)
809
            {
810
                reorder_data(dims);
811
            }
Khalique's avatar
Khalique committed
812
            shape s            = shape{shape_type, dims};
Paul's avatar
Paul committed
813
            instructions[name] = to_nhwc(prog.add_parameter(name, s));
Khalique's avatar
Khalique committed
814
815
816
        }
        for(auto&& p : nodes)
        {
817
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;

            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
844
                instructions[name] = prog.add_instruction(op::unknown{node.op()}, args);
Khalique's avatar
Khalique committed
845
846
847
848
849
850
851
852
853
854
855
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
856
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
857
858
859
860
861
862
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
863
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
864

Khalique's avatar
Khalique committed
865
866
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
Paul's avatar
Paul committed
894
895
896
897
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Paul's avatar
Paul committed
898
        case tensorflow::DataType::DT_UINT64: shape_type = shape::uint64_type; break;
Paul's avatar
Paul committed
899
900
901

        case tensorflow::DataType::DT_INVALID:
        case tensorflow::DataType::DT_UINT8:
Khalique's avatar
Khalique committed
902
903
904
905
906
907
908
909
910
911
912
913
        case tensorflow::DataType::DT_STRING:
        case tensorflow::DataType::DT_COMPLEX64:
        case tensorflow::DataType::DT_BOOL:
        case tensorflow::DataType::DT_QINT8:
        case tensorflow::DataType::DT_QUINT8:
        case tensorflow::DataType::DT_QINT32:
        case tensorflow::DataType::DT_BFLOAT16:
        case tensorflow::DataType::DT_QINT16:
        case tensorflow::DataType::DT_QUINT16:
        case tensorflow::DataType::DT_COMPLEX128:
        case tensorflow::DataType::DT_RESOURCE:
        case tensorflow::DataType::DT_VARIANT:
Khalique's avatar
Khalique committed
914
        // tf pb should not use these types
Paul's avatar
Paul committed
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
        case tensorflow::DataType::DT_FLOAT_REF:
        case tensorflow::DataType::DT_DOUBLE_REF:
        case tensorflow::DataType::DT_INT32_REF:
        case tensorflow::DataType::DT_UINT8_REF:
        case tensorflow::DataType::DT_INT16_REF:
        case tensorflow::DataType::DT_INT8_REF:
        case tensorflow::DataType::DT_STRING_REF:
        case tensorflow::DataType::DT_COMPLEX64_REF:
        case tensorflow::DataType::DT_INT64_REF:
        case tensorflow::DataType::DT_BOOL_REF:
        case tensorflow::DataType::DT_QINT8_REF:
        case tensorflow::DataType::DT_QUINT8_REF:
        case tensorflow::DataType::DT_QINT32_REF:
        case tensorflow::DataType::DT_BFLOAT16_REF:
        case tensorflow::DataType::DT_QINT16_REF:
        case tensorflow::DataType::DT_QUINT16_REF:
        case tensorflow::DataType::DT_UINT16_REF:
        case tensorflow::DataType::DT_COMPLEX128_REF:
        case tensorflow::DataType::DT_HALF_REF:
        case tensorflow::DataType::DT_RESOURCE_REF:
        case tensorflow::DataType::DT_VARIANT_REF:
        case tensorflow::DataType::DT_UINT32_REF:
        case tensorflow::DataType::DT_UINT64_REF:
Paul's avatar
Paul committed
938
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
Khalique's avatar
Khalique committed
939
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
940
941
942
943
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
944
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
945
946
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
947
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
948
949
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
950
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
951
952
            switch(t.dtype())
            {
Khalique's avatar
Khalique committed
953
954
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Paul's avatar
Paul committed
955
            case tensorflow::DataType::DT_BOOL:
956
            case tensorflow::DataType::DT_INT8: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
957
958
            case tensorflow::DataType::DT_UINT16:
            case tensorflow::DataType::DT_INT16:
959
                return literal{{shape::int16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
960
961
962
963
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
964
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
965
966
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Paul's avatar
Paul committed
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
            case tensorflow::DataType::DT_INVALID:
            case tensorflow::DataType::DT_UINT8:
            case tensorflow::DataType::DT_STRING:
            case tensorflow::DataType::DT_UINT32:
            case tensorflow::DataType::DT_UINT64:
            case tensorflow::DataType::DT_COMPLEX64:
            case tensorflow::DataType::DT_COMPLEX128:
            case tensorflow::DataType::DT_QINT8:
            case tensorflow::DataType::DT_QUINT8:
            case tensorflow::DataType::DT_QINT32:
            case tensorflow::DataType::DT_BFLOAT16:
            case tensorflow::DataType::DT_QINT16:
            case tensorflow::DataType::DT_QUINT16:
            case tensorflow::DataType::DT_RESOURCE:
            case tensorflow::DataType::DT_VARIANT:
            case tensorflow::DataType::DT_FLOAT_REF:
            case tensorflow::DataType::DT_DOUBLE_REF:
            case tensorflow::DataType::DT_INT32_REF:
            case tensorflow::DataType::DT_UINT8_REF:
            case tensorflow::DataType::DT_INT16_REF:
            case tensorflow::DataType::DT_INT8_REF:
            case tensorflow::DataType::DT_STRING_REF:
            case tensorflow::DataType::DT_COMPLEX64_REF:
            case tensorflow::DataType::DT_INT64_REF:
            case tensorflow::DataType::DT_BOOL_REF:
            case tensorflow::DataType::DT_QINT8_REF:
            case tensorflow::DataType::DT_QUINT8_REF:
            case tensorflow::DataType::DT_QINT32_REF:
            case tensorflow::DataType::DT_BFLOAT16_REF:
            case tensorflow::DataType::DT_QINT16_REF:
            case tensorflow::DataType::DT_QUINT16_REF:
            case tensorflow::DataType::DT_UINT16_REF:
            case tensorflow::DataType::DT_COMPLEX128_REF:
            case tensorflow::DataType::DT_HALF_REF:
            case tensorflow::DataType::DT_RESOURCE_REF:
            case tensorflow::DataType::DT_VARIANT_REF:
            case tensorflow::DataType::DT_UINT32_REF:
            case tensorflow::DataType::DT_UINT64_REF:
Khalique's avatar
Khalique committed
1005
1006
1007
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
1008
1009
1010
1011
1012
1013
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_FLOAT:
Khalique's avatar
Khalique committed
1014
1015
            return create_literal(
                shape::float_type, dims, get_data_vals(t.float_val(), shape_size));
Khalique's avatar
Khalique committed
1016
        case tensorflow::DataType::DT_INT8:
1017
            return create_literal(shape::int8_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1018
        case tensorflow::DataType::DT_UINT16:
1019
            return create_literal(shape::uint16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1020
        case tensorflow::DataType::DT_INT16:
1021
            return create_literal(shape::int16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1022
        case tensorflow::DataType::DT_INT32:
1023
            return create_literal(shape::int32_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1024
        case tensorflow::DataType::DT_INT64:
Khalique's avatar
Khalique committed
1025
1026
            return create_literal(
                shape::int64_type, dims, get_data_vals(t.int64_val(), shape_size));
Khalique's avatar
Khalique committed
1027
        case tensorflow::DataType::DT_BOOL:
1028
            return create_literal(shape::int32_type, dims, get_data_vals(t.bool_val(), shape_size));
Khalique's avatar
Khalique committed
1029
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
1030
        {
1031
1032
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
Khalique's avatar
Khalique committed
1033
1034
1035
1036
1037
            std::vector<half> data_half;
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1038
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1039
        }
Khalique's avatar
Khalique committed
1040
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
1041
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Paul's avatar
Paul committed
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
        case tensorflow::DataType::DT_INVALID:
        case tensorflow::DataType::DT_UINT8:
        case tensorflow::DataType::DT_STRING:
        case tensorflow::DataType::DT_UINT32:
        case tensorflow::DataType::DT_UINT64:
        case tensorflow::DataType::DT_COMPLEX64:
        case tensorflow::DataType::DT_COMPLEX128:
        case tensorflow::DataType::DT_QINT8:
        case tensorflow::DataType::DT_QUINT8:
        case tensorflow::DataType::DT_QINT32:
        case tensorflow::DataType::DT_BFLOAT16:
        case tensorflow::DataType::DT_QINT16:
        case tensorflow::DataType::DT_QUINT16:
        case tensorflow::DataType::DT_RESOURCE:
        case tensorflow::DataType::DT_VARIANT:
        case tensorflow::DataType::DT_FLOAT_REF:
        case tensorflow::DataType::DT_DOUBLE_REF:
        case tensorflow::DataType::DT_INT32_REF:
        case tensorflow::DataType::DT_UINT8_REF:
        case tensorflow::DataType::DT_INT16_REF:
        case tensorflow::DataType::DT_INT8_REF:
        case tensorflow::DataType::DT_STRING_REF:
        case tensorflow::DataType::DT_COMPLEX64_REF:
        case tensorflow::DataType::DT_INT64_REF:
        case tensorflow::DataType::DT_BOOL_REF:
        case tensorflow::DataType::DT_QINT8_REF:
        case tensorflow::DataType::DT_QUINT8_REF:
        case tensorflow::DataType::DT_QINT32_REF:
        case tensorflow::DataType::DT_BFLOAT16_REF:
        case tensorflow::DataType::DT_QINT16_REF:
        case tensorflow::DataType::DT_QUINT16_REF:
        case tensorflow::DataType::DT_UINT16_REF:
        case tensorflow::DataType::DT_COMPLEX128_REF:
        case tensorflow::DataType::DT_HALF_REF:
        case tensorflow::DataType::DT_RESOURCE_REF:
        case tensorflow::DataType::DT_VARIANT_REF:
        case tensorflow::DataType::DT_UINT32_REF:
        case tensorflow::DataType::DT_UINT64_REF:
Khalique's avatar
Khalique committed
1080
1081
1082
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
1083
1084
1085
1086
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

1087
    template <class T>
Khalique's avatar
Khalique committed
1088
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
1089
                                        const size_t& shape_size)
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
1102
1103
1104
1105
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
1106
1107
1108
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
Paul's avatar
Paul committed
1109
                       [](const tensorflow::TensorShapeProto_Dim& dim) { return dim.size(); });
Khalique's avatar
Khalique committed
1110
1111
        return dims;
    }
1112
1113

    template <class T>
Khalique's avatar
Khalique committed
1114
    static literal
1115
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, std::vector<T> data)
1116
    {
Khalique's avatar
Khalique committed
1117
        // assume if explicit value is mentioned in protobuf and dim size <= 1, treat as scalar
1118
        if(dims.empty() or (dims.size() == 1 and dims.front() == 1))
1119
            return literal{{shape_type}, data};
1120
1121
        return literal{{shape_type, dims}, data};
    }
Khalique's avatar
Khalique committed
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
Paul's avatar
Paul committed
1144
    parser.to_nchw(std::prev(parser.prog.end()));
Khalique's avatar
Khalique committed
1145
1146
1147
1148
1149
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx