tf.cpp 46.1 KB
Newer Older
Khalique's avatar
Khalique committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>
Khalique's avatar
Khalique committed
20
#include <migraphx/pad_calc.hpp>
Khalique's avatar
Khalique committed
21
22
23
24
25
26
27

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

struct tf_parser
{
    using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
Khalique's avatar
Khalique committed
28
    using node_map      = std::map<std::string, tensorflow::NodeDef>;
Khalique's avatar
Khalique committed
29
30
    // using input_node_map = std::unordered_map<std::string, std::unordered_set<std::string>>;
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Khalique's avatar
Khalique committed
31

Khalique's avatar
Khalique committed
32
33
34
35
36
37
38
39
    node_map nodes;
    std::vector<tensorflow::NodeDef> input_nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();
    bool is_nhwc = true;

    std::unordered_map<std::string, op_func> ops;

Khalique's avatar
Khalique committed
40
41
    std::vector<size_t>
    parse_axes(const attribute_map& attributes, const std::string& s, const size_t& num_dims) const
42
    {
43
44
45
        auto attrs = attributes.at(s).list().i();
        std::vector<size_t> axes;
        copy(attrs.begin(), attrs.end(), std::back_inserter(axes));
Khalique's avatar
Khalique committed
46
        if(is_nhwc)
47
        {
Khalique's avatar
Khalique committed
48
            std::transform(axes.begin(), axes.end(), axes.begin(), [&](size_t axis) {
Khalique's avatar
Khalique committed
49
                return parse_axis(axis, num_dims);
Khalique's avatar
Khalique committed
50
            });
51
52
53
54
        }
        return axes;
    }

Khalique's avatar
Khalique committed
55
    template <class T>
Khalique's avatar
Khalique committed
56
    std::vector<T> parse_axes(std::vector<T> axes, const size_t& num_dims) const
Khalique's avatar
Khalique committed
57
58
59
    {
        if(is_nhwc)
        {
60
            std::vector<T> new_axes;
Khalique's avatar
Khalique committed
61
62
63
            std::transform(axes.begin(),
                           axes.end(),
                           std::back_inserter(new_axes),
Khalique's avatar
Khalique committed
64
                           [&](size_t axis) { return parse_axis(axis, num_dims); });
65
            return new_axes;
Khalique's avatar
Khalique committed
66
        }
67
        return axes;
Khalique's avatar
Khalique committed
68
69
    }

Khalique's avatar
Khalique committed
70
71
72
    // tf stores certain attributes such as strides, dilations, as a 4D input.
    // The first and last dims are equal to 1, and the relevant data is in dims 2 and 3.
    // This helper function reorders the data to store for the respective operator member variables.
73
    template <class T>
74
    void reorder_data(std::vector<T>& prev_data) const
75
76
    {
        std::vector<T> new_data(prev_data.size());
77
        for(size_t i = 0; i < new_data.size(); i++)
78
        {
Khalique's avatar
Khalique committed
79
            auto new_idx         = parse_axis(i, new_data.size());
80
            new_data.at(new_idx) = prev_data.at(i);
81
        }
82
83
84
85
        prev_data = new_data;
    }

    template <class T>
Khalique's avatar
Khalique committed
86
    T parse_axis(const T& dim, const size_t& num_dims) const
87
    {
Khalique's avatar
Khalique committed
88
        T new_dim = dim;
Khalique's avatar
Khalique committed
89
        if(is_nhwc and num_dims >= 4)
90
91
92
        {
            switch(dim)
            {
Khalique's avatar
Khalique committed
93
94
95
96
97
            case 0: new_dim = 0; break;
            case 1: new_dim = 2; break;
            case 2: new_dim = 3; break;
            case 3: new_dim = 1; break;
            default: break;
98
99
            }
        }
Khalique's avatar
Khalique committed
100
        return new_dim;
101
102
    }

103
104
105
106
107
108
109
    std::vector<int64_t> get_axes(size_t num_axes) const
    {
        std::vector<int64_t> axes(num_axes);
        std::iota(axes.begin(), axes.end(), 0);
        return axes;
    }

Khalique's avatar
Khalique committed
110
111
112
113
    tf_parser()
    {
        add_generic_op("Identity", op::identity{});
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
114
        add_generic_op("Relu6", op::clip{6.0, 0.0});
Khalique's avatar
Khalique committed
115
        add_generic_op("Tanh", op::tanh{});
Khalique's avatar
Khalique committed
116

117
        add_binary_op("Add", op::add{});
Khalique's avatar
Khalique committed
118
        add_binary_op("Mul", op::mul{});
Khalique's avatar
Khalique committed
119
        add_binary_op("Sub", op::sub{});
Khalique's avatar
Khalique committed
120

121
        add_mem_op("AvgPool", &tf_parser::parse_pooling);
122
123
        add_mem_op("BiasAdd", &tf_parser::parse_biasadd);
        add_mem_op("ConcatV2", &tf_parser::parse_concat);
Khalique's avatar
Khalique committed
124
125
        add_mem_op("Const", &tf_parser::parse_constant);
        add_mem_op("Conv2D", &tf_parser::parse_conv);
Khalique's avatar
Khalique committed
126
        add_mem_op("DepthwiseConv2dNative", &tf_parser::parse_depthwiseconv);
Khalique's avatar
Khalique committed
127
        add_mem_op("ExpandDims", &tf_parser::parse_expanddims);
Khalique's avatar
Khalique committed
128
        add_mem_op("FusedBatchNorm", &tf_parser::parse_batchnorm);
129
        add_mem_op("MatMul", &tf_parser::parse_matmul);
130
        add_mem_op("MaxPool", &tf_parser::parse_pooling);
Khalique's avatar
Khalique committed
131
        add_mem_op("Mean", &tf_parser::parse_mean);
Khalique's avatar
Khalique committed
132
        add_mem_op("Pack", &tf_parser::parse_pack);
Khalique's avatar
Khalique committed
133
        add_mem_op("Pad", &tf_parser::parse_pad);
134
135
136
        add_mem_op("Reshape", &tf_parser::parse_reshape);
        add_mem_op("Softmax", &tf_parser::parse_softmax);
        add_mem_op("Squeeze", &tf_parser::parse_squeeze);
137
        add_mem_op("StridedSlice", &tf_parser::parse_stridedslice);
Khalique's avatar
Khalique committed
138
139
    }

140
141
142
143
144
145
146
147
148
149
150
151
152
    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

Khalique's avatar
Khalique committed
153
154
155
    template <class F>
    void add_mem_op(std::string name, F f)
    {
156
        add_op(name, [=](auto&&... xs) {
Khalique's avatar
Khalique committed
157
158
159
160
161
162
163
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }

    template <class T>
    void add_binary_op(std::string name, T x)
    {
Paul's avatar
Paul committed
164
        add_op(name, [this, x](const attribute_map& attributes, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
165
166
            if(args.size() != 2)
                MIGRAPHX_THROW("binary operators should have 2 operands");
167
168
169
170
171
            auto l0 = args[1];
            if(contains(attributes, "data_format"))
            {
                if(is_nhwc)
                {
Khalique's avatar
Khalique committed
172
                    l0 = prog.add_instruction(op::transpose{{0, 3, 1, 2}}, args[1]);
173
174
175
                }
            }
            return add_broadcastable_binary_op(args[0], l0, x);
Khalique's avatar
Khalique committed
176
177
178
179
180
181
        });
    }

    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
182
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
        {
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
            // Get lengths for both arguments
198
199
            const std::vector<size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<size_t>* s1 = &arg1->get_shape().lens();
Khalique's avatar
Khalique committed
200
201
202
203
204

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

205
            std::vector<size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
    }

    template <class T>
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
226
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
227
228
229
230
231
232
233
            return prog.add_instruction(x, args);
        });
    }

    instruction_ref
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
234
235
236
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Khalique's avatar
Khalique committed
237
238
239
240
241
242
243
244
        if(contains(attributes, "epsilon"))
        {
            epsilon = attributes.at("epsilon").f();
        }
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
        return prog.add_instruction(op, std::move(args));
    }

245
    instruction_ref
Khalique's avatar
Khalique committed
246
    parse_biasadd(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
247
    {
248
        uint64_t axis = 1; // assume output of previous layer is in NCHW (broadcast on channel)
Shucai Xiao's avatar
Shucai Xiao committed
249
        auto l0 = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()}, args[1]);
250
        return prog.add_instruction(op::add{}, args[0], l0);
251
252
    }

Khalique's avatar
Khalique committed
253
254
255
256
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        // get index for axis within args
257
        size_t axis_idx = attributes.at("N").i();
Khalique's avatar
Khalique committed
258
259
        size_t axis =
            parse_axis(args[axis_idx]->eval().at<int64_t>(), args[0]->get_shape().lens().size());
Khalique's avatar
Khalique committed
260
        op::concat op{axis};
261
        // return only first N arguments (assuming last index is the axis value)
Khalique's avatar
Khalique committed
262
        return prog.add_instruction(
263
            op, std::vector<instruction_ref>(args.begin(), args.begin() + args.size() - 1));
Khalique's avatar
Khalique committed
264
265
266
267
268
269
    }

    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
    {
Khalique's avatar
Khalique committed
270
271
        literal v       = parse_tensor(attributes.at("value").tensor());
        auto l0         = prog.add_literal(v);
272
273
274
275
276
277
        size_t num_axes = l0->get_shape().lens().size();
        if(num_axes >= 4)
        {
            std::vector<int64_t> transpose_axes = get_axes(num_axes);
            reorder_data(transpose_axes);
            l0 = prog.add_instruction(op::transpose{transpose_axes}, l0);
Khalique's avatar
Khalique committed
278
        }
279
        return l0;
Khalique's avatar
Khalique committed
280
281
282
283
284
    }

    instruction_ref
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
285
        op::convolution op;
Khalique's avatar
Khalique committed
286
287
        if(contains(attributes, "strides"))
        {
288
            std::vector<size_t> stride;
289
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
290
            reorder_data(stride);
291
292
            if(stride.size() != 4)
            {
293
                MIGRAPHX_THROW("strides should have 4 values");
294
            }
295
296
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
Khalique's avatar
Khalique committed
297
298
299
        }
        if(contains(attributes, "dilations"))
        {
300
            std::vector<size_t> dilation;
301
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
302
            reorder_data(dilation);
303
304
305
306
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
307
308
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
Khalique's avatar
Khalique committed
309
        }
Khalique's avatar
Khalique committed
310
        auto weights = args[1];
311
        // check if weights are from a constant
Khalique's avatar
Khalique committed
312
313

        if(weights->name() != "@param")
314
        {
Khalique's avatar
Khalique committed
315
316
317
318
319
320
321
322
            if(is_nhwc)
            {
                weights = prog.add_instruction(op::transpose{{1, 3, 0, 2}}, args[1]);
            }
            else
            {
                weights = prog.add_instruction(op::transpose{{3, 2, 0, 1}}, args[1]);
            }
323
        }
Khalique's avatar
Khalique committed
324

Khalique's avatar
Khalique committed
325
        auto l0 = args[0];
326
327
        if(contains(attributes, "padding"))
        {
Khalique's avatar
Khalique committed
328
            const std::string& pad_mode = attributes.at("padding").s();
329
330
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
331
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
332
333
334
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];
Khalique's avatar
Khalique committed
335
336

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
337
338
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
339
340
341
342
343
344
345
346
347
348
349
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
350
351
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
352
                }
353
354
355
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
356
                op.padding_mode = op::padding_mode_t::valid;
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
            }
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
            {
                std::vector<size_t> padding;
                copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
                if(padding[0] != padding[2] || padding[1] != padding[3])
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }

Khalique's avatar
Khalique committed
375
        return prog.add_instruction(op, {l0, weights});
Khalique's avatar
Khalique committed
376
377
    }

Khalique's avatar
Khalique committed
378
379
380
    instruction_ref parse_depthwiseconv(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
381
382
383
    {
        op::convolution op;
        size_t num_channels = args[0]->get_shape().lens()[1];
Khalique's avatar
Khalique committed
384
        op.group            = num_channels;
Khalique's avatar
Khalique committed
385

Khalique's avatar
Khalique committed
386
387
388
389
390
391
392
393
394
395
396
397
        if(contains(attributes, "strides"))
        {
            std::vector<size_t> stride;
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
            reorder_data(stride);
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
        }
Khalique's avatar
Khalique committed
398
399
400
401
402
403
404
405
406
407
408
409
410
        if(contains(attributes, "dilations"))
        {
            std::vector<size_t> dilation;
            copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
            reorder_data(dilation);
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
        }

Khalique's avatar
Khalique committed
411
412
413
414
415
416
417
418
419
420
421
        auto weights = args[1];
        // check if weights are from a constant
        if(weights->name() != "@param")
        {
            if(is_nhwc)
            {
                weights = prog.add_instruction(op::transpose{{1, 3, 0, 2}}, args[1]);
            }
            else
            {
                weights = prog.add_instruction(op::transpose{{3, 2, 0, 1}}, args[1]);
Khalique's avatar
Khalique committed
422
            }
Khalique's avatar
Khalique committed
423
        }
Khalique's avatar
Khalique committed
424

Khalique's avatar
Khalique committed
425
        auto l0 = args[0];
Khalique's avatar
Khalique committed
426
427
        if(contains(attributes, "padding"))
        {
Khalique's avatar
Khalique committed
428
429
            const std::string& pad_mode = attributes.at("padding").s();

Khalique's avatar
Khalique committed
430
431
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
432
                op.padding_mode                 = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
433
434
435
436
437
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
438
439
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
440
441
442
443
444
445
446
447
448
449
450
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_w, op.stride[1], op.dilation[1], weight_w);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
                    l0 = prog.add_instruction(migraphx::op::pad{padding}, l0);
                }
                else
                {
Khalique's avatar
Khalique committed
451
452
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
453
                }
Khalique's avatar
Khalique committed
454
455
456
457
458
459
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
Khalique's avatar
Khalique committed
460

Khalique's avatar
Khalique committed
461
462
        std::vector<int64_t> new_weights_shape;
        copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape));
Khalique's avatar
Khalique committed
463
464
465
466

        // weight format is (out_channels, in_channels, h, w), but in depthwise_conv,
        // out_channels is equal to the multiplier. Adjust by inserting a reshape and
        // setting in_channels to 1
Khalique's avatar
Khalique committed
467
        int64_t multiplier   = new_weights_shape[0];
Khalique's avatar
Khalique committed
468
469
470
        int64_t out_channels = num_channels * multiplier;
        new_weights_shape[0] = out_channels;
        new_weights_shape[1] = 1;
Paul's avatar
Paul committed
471
        // Make sure weights are contiguous before doing reshape
Paul's avatar
Paul committed
472
473
        auto cweights    = prog.add_instruction(op::contiguous{}, weights);
        auto new_weights = prog.add_instruction(op::reshape{new_weights_shape}, cweights);
Khalique's avatar
Khalique committed
474

Khalique's avatar
Khalique committed
475
        return prog.add_instruction(op, {l0, new_weights});
Khalique's avatar
Khalique committed
476
477
    }

Khalique's avatar
Khalique committed
478
479
    instruction_ref
    parse_expanddims(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
480
481
    {
        std::vector<size_t> input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
482
        std::vector<int64_t> new_dims(input_dims.begin(), input_dims.end());
Khalique's avatar
Khalique committed
483
        size_t num_dims = input_dims.size();
Khalique's avatar
Khalique committed
484
485
486
        int32_t dim     = parse_axis(args[1]->eval().at<int32_t>(), num_dims);

        if(dim < 0)
Khalique's avatar
Khalique committed
487
488
489
490
491
492
493
494
495
496
        {
            new_dims.insert(new_dims.begin() + (num_dims + dim + 1), 1);
        }
        else
        {
            new_dims.insert(new_dims.begin() + dim, 1);
        }
        return prog.add_instruction(op::reshape{new_dims}, args[0]);
    }

Khalique's avatar
Khalique committed
497
498
    instruction_ref
    parse_matmul(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
499
500
501
    {
        bool transa = false;
        bool transb = false;
Khalique's avatar
Khalique committed
502

503
504
505
506
507
508
509
510
511
512
513
514
        if(contains(attributes, "transpose_a"))
        {
            transa = attributes.at("transpose_a").b();
        }
        if(contains(attributes, "transpose_b"))
        {
            transb = attributes.at("transpose_a").b();
        }

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
Khalique's avatar
Khalique committed
515
        std::iter_swap(perm.end() - 1, perm.end() - 2);
516
517
518
519
520
521
522

        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];

        return prog.add_instruction(op::dot{}, l1, l2);
    }

Khalique's avatar
Khalique committed
523
524
    instruction_ref
    parse_mean(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
525
526
    {
        bool keep_dims = attributes.at("keep_dims").b();
Khalique's avatar
Khalique committed
527
        std::vector<int32_t> hw_axes{2, 3};
Khalique's avatar
Khalique committed
528
        // check if conditions for GlobalAvgPool are met
Khalique's avatar
Khalique committed
529
        auto lens = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
530
531
        auto axes = parse_axes(args[1]->eval().get<int32_t>().to_vector(), lens.size());

Khalique's avatar
Khalique committed
532
        if(axes == hw_axes and lens.size() == 4)
Khalique's avatar
Khalique committed
533
534
        {
            op::pooling op{"average"};
Khalique's avatar
Khalique committed
535
536
            op.lengths[0] = lens[2];
            op.lengths[1] = lens[3];
Khalique's avatar
Khalique committed
537
538
539
540
541
            auto l0       = prog.add_instruction(op, args.front());
            if(keep_dims)
                return l0;
            return prog.add_instruction(
                op::squeeze{std::vector<int64_t>(hw_axes.begin(), hw_axes.end())}, l0);
Khalique's avatar
Khalique committed
542
543
544
545
        }
        MIGRAPHX_THROW("MIGraphX does not support mean outside of GlobalAvgPool transformation");
    }

Khalique's avatar
Khalique committed
546
547
548
    instruction_ref parse_pack(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
549
550
551
552
553
554
    {
        // reinterpret as unsqueeze with concat
        std::vector<instruction_ref> unsqueezed_args;
        int64_t axis = 0;
        if(contains(attributes, "axis"))
            axis = attributes.at("axis").i();
555
556
557
        size_t input_size = args.front()->get_shape().lens().size();
        if(axis > input_size)
        {
Khalique's avatar
Khalique committed
558
559
            MIGRAPHX_THROW("TF_PARSER: axis value of " + to_string(axis) +
                           " must be smaller than input size " + to_string(input_size));
560
561
        }
        // check if input arg needs axis to be converted to NCHW
Khalique's avatar
Khalique committed
562
        axis = parse_axis(axis, input_size);
563

Khalique's avatar
Khalique committed
564
565
566
567
568
        std::transform(
            args.begin(),
            args.end(),
            std::back_inserter(unsqueezed_args),
            [&](instruction_ref arg) { return prog.add_instruction(op::unsqueeze{{axis}}, arg); });
Khalique's avatar
Khalique committed
569
570
571
        return prog.add_instruction(op::concat{static_cast<size_t>(axis)}, unsqueezed_args);
    }

Khalique's avatar
Khalique committed
572
573
574
575
576
    instruction_ref
    parse_pad(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        size_t ndims = args.front()->get_shape().lens().size();

Khalique's avatar
Khalique committed
577
578
        // in tf, the paddings are arranged as a 2d shape (ndims, 2),
        // the last dim contains the left padding and right padding respectively
Khalique's avatar
Khalique committed
579
580
        std::vector<std::pair<int32_t, int32_t>> pad_per_dim(ndims);
        auto tf_padding = args[1]->eval().get<int32_t>().to_vector();
Khalique's avatar
Khalique committed
581
        for(size_t i = 0; i < 2 * ndims; i += 2)
Khalique's avatar
Khalique committed
582
        {
Khalique's avatar
Khalique committed
583
584
            pad_per_dim[i / 2].first  = tf_padding[i];
            pad_per_dim[i / 2].second = tf_padding[i + 1];
Khalique's avatar
Khalique committed
585
586
587
588
        }
        reorder_data(pad_per_dim);

        op::pad op;
Khalique's avatar
Khalique committed
589
590
        std::vector<int64_t> pads(ndims * 2);
        for(size_t i = 0; i < ndims; i++)
Khalique's avatar
Khalique committed
591
        {
Khalique's avatar
Khalique committed
592
593
            pads[i]         = pad_per_dim[i].first;
            pads[i + ndims] = pad_per_dim[i].second;
Khalique's avatar
Khalique committed
594
595
596
597
598
        }
        op.pads = pads;
        return prog.add_instruction(op, args.front());
    }

599
600
601
602
603
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
    {
        op::pooling op{starts_with(name, "Max") ? "max" : "average"};
Khalique's avatar
Khalique committed
604

605
606
        if(contains(attributes, "strides"))
        {
607
            std::vector<size_t> stride;
608
            copy(attributes.at("strides").list().i(), std::back_inserter(stride));
609
            reorder_data(stride);
610
611
612
613
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
614
615
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
616
617
618
        }
        if(contains(attributes, "ksize"))
        {
619
            std::vector<size_t> ksize;
620
            copy(attributes.at("ksize").list().i(), std::back_inserter(ksize));
621
            reorder_data(ksize);
622
623
624
            if(ksize.size() != 4)
            {
                MIGRAPHX_THROW("ksize should have 4 values");
Khalique's avatar
Khalique committed
625
            }
626
627
            op.lengths[0] = ksize[2];
            op.lengths[1] = ksize[3];
628
        }
Khalique's avatar
Khalique committed
629
630

        auto l0 = args[0];
Khalique's avatar
Khalique committed
631
632
633
634
635
        if(contains(attributes, "padding"))
        {
            const std::string& pad_mode = attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
Khalique's avatar
Khalique committed
636
                op.padding_mode = op::padding_mode_t::same;
Khalique's avatar
Khalique committed
637
                auto input_dims = l0->get_shape().lens();
Khalique's avatar
Khalique committed
638
639
                size_t input_h  = input_dims[2];
                size_t input_w  = input_dims[3];
Khalique's avatar
Khalique committed
640
641
642
643
644
645
646
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_h, op.stride[0], 1, op.lengths[0]);
                calculate_padding(1, pads, input_w, op.stride[1], 1, op.lengths[1]);

                if(pads[0] != pads[2] || pads[1] != pads[3])
                {
                    std::vector<int64_t> padding = {0, 0, pads[0], pads[1], 0, 0, pads[2], pads[3]};
Khalique's avatar
Khalique committed
647
648
                    l0                           = prog.add_instruction(
                        migraphx::op::pad{padding, std::numeric_limits<float>::lowest()}, l0);
Khalique's avatar
Khalique committed
649
650
651
                }
                else
                {
Khalique's avatar
Khalique committed
652
653
                    op.padding[0] = pads[0];
                    op.padding[1] = pads[1];
Khalique's avatar
Khalique committed
654
                }
Khalique's avatar
Khalique committed
655
656
657
658
659
660
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
        }
Khalique's avatar
Khalique committed
661
        return prog.add_instruction(op, l0);
662
    }
Khalique's avatar
Khalique committed
663

664
    instruction_ref
Khalique's avatar
Khalique committed
665
    parse_reshape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
666
667
668
669
    {
        op::reshape op;
        if(args.size() != 2)
            MIGRAPHX_THROW("reshape needs 2 arguments (input, new_shape)");
Khalique's avatar
Khalique committed
670
        auto s = args[1]->eval();
671
672
673
674
        s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        return prog.add_instruction(op, args[0]);
    }

Khalique's avatar
Khalique committed
675
676
677
678
679
680
681
682
683
    void parse_from(std::istream& is)
    {
        tensorflow::GraphDef graph;
        if(graph.ParseFromIstream(&is))
        {
            this->parse_graph(graph);
        }
        else
        {
684
            throw std::runtime_error("Failed reading tf file");
Khalique's avatar
Khalique committed
685
686
687
        }
    }

688
689
690
691
692
693
694
695
696
697
    instruction_ref
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
    {
        auto dims = args.front()->get_shape().lens();
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
    }

Khalique's avatar
Khalique committed
698
699
700
    instruction_ref parse_squeeze(const std::string&,
                                  const attribute_map& attributes,
                                  std::vector<instruction_ref> args)
701
702
    {
        op::squeeze op;
Khalique's avatar
Khalique committed
703
        auto input_dims = args[0]->get_shape().lens();
Khalique's avatar
Khalique committed
704
        auto axes       = parse_axes(attributes, "squeeze_dims", input_dims.size());
705
        copy(axes, std::back_inserter(op.axes));
Khalique's avatar
Khalique committed
706

707
708
        if(op.axes.empty()) // no squeeze_dims provided, remove any dim that equals 1
        {
Khalique's avatar
Khalique committed
709
            for(size_t i = 0; i < input_dims.size(); i++)
710
            {
Khalique's avatar
Khalique committed
711
                if(input_dims.at(i) == 1)
712
713
714
715
                {
                    op.axes.push_back(i);
                }
            }
716
        }
717
        return prog.add_instruction(op, args[0]);
718
719
    }

Khalique's avatar
Khalique committed
720
721
722
    instruction_ref parse_stridedslice(const std::string&,
                                       const attribute_map& attributes,
                                       std::vector<instruction_ref> args)
723
724
    {
        op::slice op;
Khalique's avatar
Khalique committed
725
726
727
728
729
730
731
732
        auto starts     = args[1]->eval().get<int32_t>().to_vector();
        auto ends       = args[2]->eval().get<int32_t>().to_vector();
        size_t num_axes = args[0]->get_shape().lens().size();
        if(num_axes >= 4)
        {
            reorder_data(starts);
            reorder_data(ends);
        }
733

Khalique's avatar
Khalique committed
734
735
736
737
        op.starts = std::vector<int64_t>(starts.begin(), starts.end());
        op.ends   = std::vector<int64_t>(ends.begin(), ends.end());
        op.axes   = std::vector<int64_t>(num_axes);
        std::iota(op.axes.begin(), op.axes.end(), 0);
738
        uint32_t shrink_axis_mask = 0;
Khalique's avatar
Khalique committed
739
        uint32_t bitwise_compare  = 1;
740
741
742
        std::vector<int64_t> squeeze_axes;

        if(contains(attributes, "shrink_axis_mask"))
743
            shrink_axis_mask = static_cast<uint32_t>(attributes.at("shrink_axis_mask").i());
744

Khalique's avatar
Khalique committed
745
        for(size_t i = 0; i < num_axes; i++)
746
        {
747
            // the LSB corresponds to axis 0 when determining which axes to squeeze
Khalique's avatar
Khalique committed
748
            if(((shrink_axis_mask >> i) & bitwise_compare) == 1)
749
750
                squeeze_axes.push_back(i);
        }
Khalique's avatar
Khalique committed
751
        squeeze_axes = parse_axes(squeeze_axes, num_axes);
Khalique's avatar
Khalique committed
752

753
754
755
756
        auto l0 = prog.add_instruction(op, args[0]);
        return prog.add_instruction(op::squeeze{squeeze_axes}, l0);
    }

Khalique's avatar
Khalique committed
757
758
759
760
761
    void parse_graph(const tensorflow::GraphDef& graph)
    {
        nodes = get_nodes(graph, input_nodes);
        for(auto&& input : input_nodes)
        {
Khalique's avatar
Khalique committed
762
            const std::string& name   = input.name();
Khalique's avatar
Khalique committed
763
            attribute_map input_attrs = get_attributes(input);
Khalique's avatar
Khalique committed
764
765
            shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
            std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());
766
            if(is_nhwc and dims.size() >= 4)
767
            {
768
                reorder_data(dims);
769
            }
Khalique's avatar
Khalique committed
770
771
            shape s            = shape{shape_type, dims};
            instructions[name] = prog.add_parameter(name, s);
Khalique's avatar
Khalique committed
772
773
774
        }
        for(auto&& p : nodes)
        {
775
            this->parse_node(p.first);
Khalique's avatar
Khalique committed
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
        }
    }

    void parse_node(const std::string& name)
    {
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;

            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
                    auto&& iname = get_name(nodes.at(input));
                    assert(name != iname);
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op()) == 0)
            {
802
                instructions[name] = prog.add_instruction(op::unknown{node.op()}, args);
Khalique's avatar
Khalique committed
803
804
805
806
807
808
809
810
811
812
813
            }
            else
            {
                instructions[name] = ops[node.op()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const tensorflow::NodeDef& node)
    {
        attribute_map result;
Khalique's avatar
Khalique committed
814
        for(auto&& attr : node.attr())
Khalique's avatar
Khalique committed
815
816
817
818
819
820
        {
            result[attr.first] = attr.second;
        }
        return result;
    }

Khalique's avatar
Khalique committed
821
    static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }
Khalique's avatar
Khalique committed
822

Khalique's avatar
Khalique committed
823
824
    static node_map get_nodes(const tensorflow::GraphDef& graph,
                              std::vector<tensorflow::NodeDef>& input_nodes)
Khalique's avatar
Khalique committed
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
    {
        node_map result;
        for(auto&& node : graph.node())
        {
            auto node_name = get_name(node);
            // assume each node in graph has an associated name
            if(node_name.empty())
                MIGRAPHX_THROW("tf node with no name found");
            result[node_name] = node;
            if(node.op() == "Placeholder")
            {
                input_nodes.push_back(node);
            }
        }
        return result;
    }

    static shape::type_t parse_type(const tensorflow::DataType t)
    {
        shape::type_t shape_type{};
        switch(t)
        {
        case tensorflow::DataType::DT_INVALID:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
        case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
        case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
        case tensorflow::DataType::DT_UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
        case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
        case tensorflow::DataType::DT_STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case tensorflow::DataType::DT_COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
        case tensorflow::DataType::DT_BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
        case tensorflow::DataType::DT_QINT8:
            break; // throw std::runtime_error("Unsupported type QINT8");
        case tensorflow::DataType::DT_QUINT8:
            break; // throw std::runtime_error("Unsupported type QUINT8");
        case tensorflow::DataType::DT_QINT32:
            break; // throw std::runtime_error("Unsupported type QINT32");
        case tensorflow::DataType::DT_BFLOAT16:
            break; // throw std::runtime_error("Unsupported type BFLOAT16");
        case tensorflow::DataType::DT_QINT16:
            break; // throw std::runtime_error("Unsupported type QINT16");
        case tensorflow::DataType::DT_QUINT16:
            break; // throw std::runtime_error("Unsupported type QUINT16");
        case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
        case tensorflow::DataType::DT_COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
        case tensorflow::DataType::DT_RESOURCE:
            break; // throw std::runtime_error("Unsupported type RESOURCE");
        case tensorflow::DataType::DT_VARIANT:
            break; // throw std::runtime_error("Unsupported type VARIANT");
        case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
Khalique's avatar
Khalique committed
884
885
886
        case tensorflow::DataType::DT_UINT64:
            shape_type = shape::uint64_type;
            break;
Khalique's avatar
Khalique committed
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913

        // tf pb should not use these types
        case tensorflow::DataType::DT_FLOAT_REF: break;
        case tensorflow::DataType::DT_DOUBLE_REF: break;
        case tensorflow::DataType::DT_INT32_REF: break;
        case tensorflow::DataType::DT_UINT8_REF: break;
        case tensorflow::DataType::DT_INT16_REF: break;
        case tensorflow::DataType::DT_INT8_REF: break;
        case tensorflow::DataType::DT_STRING_REF: break;
        case tensorflow::DataType::DT_COMPLEX64_REF: break;
        case tensorflow::DataType::DT_INT64_REF: break;
        case tensorflow::DataType::DT_BOOL_REF: break;
        case tensorflow::DataType::DT_QINT8_REF: break;
        case tensorflow::DataType::DT_QUINT8_REF: break;
        case tensorflow::DataType::DT_QINT32_REF: break;
        case tensorflow::DataType::DT_BFLOAT16_REF: break;
        case tensorflow::DataType::DT_QINT16_REF: break;
        case tensorflow::DataType::DT_QUINT16_REF: break;
        case tensorflow::DataType::DT_UINT16_REF: break;
        case tensorflow::DataType::DT_COMPLEX128_REF: break;
        case tensorflow::DataType::DT_HALF_REF: break;
        case tensorflow::DataType::DT_RESOURCE_REF: break;
        case tensorflow::DataType::DT_VARIANT_REF: break;
        case tensorflow::DataType::DT_UINT32_REF: break;
        case tensorflow::DataType::DT_UINT64_REF: break;
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_: break;
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
Khalique's avatar
Khalique committed
914
915
916
917
        }
        return shape_type;
    }

Khalique's avatar
Khalique committed
918
    static literal parse_tensor(const tensorflow::TensorProto& t)
Khalique's avatar
Khalique committed
919
920
    {
        std::vector<size_t> dims = parse_dims(t.tensor_shape());
921
        size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
Khalique's avatar
Khalique committed
922
923
        if(!t.tensor_content().empty()) // has raw data
        {
Khalique's avatar
Khalique committed
924
            const std::string& s = t.tensor_content();
Khalique's avatar
Khalique committed
925
926
927
            switch(t.dtype())
            {
            case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
Khalique's avatar
Khalique committed
928
929
            case tensorflow::DataType::DT_FLOAT:
                return literal{{shape::float_type, dims}, s.data()};
Khalique's avatar
Khalique committed
930
            case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
931
            case tensorflow::DataType::DT_INT8: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
932
            case tensorflow::DataType::DT_UINT16:
933
                return literal{{shape::uint16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
934
            case tensorflow::DataType::DT_INT16:
935
                return literal{{shape::int16_type, dims}, s.data()};
Khalique's avatar
Khalique committed
936
937
938
939
            case tensorflow::DataType::DT_INT32:
                return literal{{shape::int32_type, dims}, s.data()};
            case tensorflow::DataType::DT_INT64:
                return literal{{shape::int64_type, dims}, s.data()};
Khalique's avatar
Khalique committed
940
            case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
941
            case tensorflow::DataType::DT_BOOL: return literal{{shape::int8_type, dims}, s.data()};
Khalique's avatar
Khalique committed
942
            case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
Khalique's avatar
Khalique committed
943
944
            case tensorflow::DataType::DT_DOUBLE:
                return literal{{shape::double_type, dims}, s.data()};
Khalique's avatar
Khalique committed
945
946
947
948
            case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
            case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
            case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
            case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
980
981
982
983
            case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
            case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
                throw std::runtime_error("");
Khalique's avatar
Khalique committed
984
985
986
987
988
989
990
            }
            MIGRAPHX_THROW("Invalid tensor type");
        }
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT:
Khalique's avatar
Khalique committed
991
992
            return create_literal(
                shape::float_type, dims, get_data_vals(t.float_val(), shape_size));
Khalique's avatar
Khalique committed
993
994
        case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8:
995
            return create_literal(shape::int8_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
996
        case tensorflow::DataType::DT_UINT16:
997
            return create_literal(shape::uint16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
998
        case tensorflow::DataType::DT_INT16:
999
            return create_literal(shape::int16_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1000
        case tensorflow::DataType::DT_INT32:
1001
            return create_literal(shape::int32_type, dims, get_data_vals(t.int_val(), shape_size));
Khalique's avatar
Khalique committed
1002
        case tensorflow::DataType::DT_INT64:
Khalique's avatar
Khalique committed
1003
1004
            return create_literal(
                shape::int64_type, dims, get_data_vals(t.int64_val(), shape_size));
Khalique's avatar
Khalique committed
1005
1006
        case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL:
1007
            return create_literal(shape::int32_type, dims, get_data_vals(t.bool_val(), shape_size));
Khalique's avatar
Khalique committed
1008
        case tensorflow::DataType::DT_HALF:
Khalique's avatar
Khalique committed
1009
        {
1010
1011
            std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
            std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
Khalique's avatar
Khalique committed
1012
1013
1014
1015
1016
            std::vector<half> data_half;
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1017
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1018
        }
Khalique's avatar
Khalique committed
1019
        case tensorflow::DataType::DT_DOUBLE:
Khalique's avatar
Khalique committed
1020
            return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
Khalique's avatar
Khalique committed
1021
1022
1023
1024
        case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
Khalique's avatar
Khalique committed
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
        case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
        case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
        case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
Khalique's avatar
Khalique committed
1056
1057
1058
1059
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
Khalique's avatar
Khalique committed
1060
1061
1062
1063
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }

1064
    template <class T>
Khalique's avatar
Khalique committed
1065
    static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
1066
                                        const size_t& shape_size)
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
    {
        std::vector<T> data_vals(shape_size);
        // check if shape has enough data values given existing fields
        if(data.size() == 1)
        {
            std::fill(data_vals.begin(), data_vals.end(), data[0]);
        }
        else
            copy(data.begin(), data.end(), std::back_inserter(data_vals));
        return data_vals;
    }

Khalique's avatar
Khalique committed
1079
1080
1081
1082
    static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
    {
        std::vector<size_t> dims;
        auto input_dims = s.dim();
Khalique's avatar
Khalique committed
1083
1084
1085
        std::transform(input_dims.begin(),
                       input_dims.end(),
                       std::back_inserter(dims),
Paul's avatar
Paul committed
1086
                       [](const tensorflow::TensorShapeProto_Dim& dim) { return dim.size(); });
Khalique's avatar
Khalique committed
1087
1088
        return dims;
    }
1089
1090

    template <class T>
Khalique's avatar
Khalique committed
1091
    static literal
1092
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, std::vector<T> data)
1093
    {
Khalique's avatar
Khalique committed
1094
        // assume if explicit value is mentioned in protobuf and dim size <= 1, treat as scalar
1095
        if(dims.empty() or (dims.size() == 1 and dims.front() == 1))
1096
            return literal{{shape_type}, data};
1097
1098
        return literal{{shape_type, dims}, data};
    }
Khalique's avatar
Khalique committed
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
};

program parse_tf(const std::string& name, bool is_nhwc)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    tf_parser parser;
    parser.is_nhwc = is_nhwc;

#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx