task.py 48.7 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3

4
import os
5
import re
6
import ast
lintangsutawika's avatar
lintangsutawika committed
7
import yaml
lintangsutawika's avatar
lintangsutawika committed
8
import logging
9
10
11
import evaluate
import random
import itertools
12
import functools
13
from tqdm import tqdm
14
15
16
17

import datasets
import numpy as np

baberabb's avatar
baberabb committed
18
from typing import Union, List, Any, Tuple, Literal
19
from collections.abc import Callable
20

21
from lm_eval import utils
22
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
23
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
24
from lm_eval.api.filter import FilterEnsemble
25
26
27

from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
28
29
30
31
32
33
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_metric,
35
36
37
    get_evaluate,
    get_aggregation,
    METRIC_REGISTRY,
38
    DEFAULT_METRIC_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
39
)
40

41
42
43
44
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
45
    "generate_until",
46
47
]

lintangsutawika's avatar
lintangsutawika committed
48

49
eval_logger = logging.getLogger("lm-eval")
50

lintangsutawika's avatar
lintangsutawika committed
51

52
53
@dataclass
class TaskConfig(dict):
54
    # task naming/registry
55
    task: str = None
lintangsutawika's avatar
lintangsutawika committed
56
    task_alias: str = None
57
    group: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
58
    group_alias: Union[str, list] = None
59
60
61
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
62
63
    dataset_path: str = None
    dataset_name: str = None
64
    dataset_kwargs: dict = None
65
66
67
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
68
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
69
70
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
71
    process_docs: Callable = None
72
73
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
74
    doc_to_choice: Union[Callable, str, dict, list] = None
lintangsutawika's avatar
lintangsutawika committed
75
    process_results: Union[Callable, str] = None
76
    use_prompt: str = None
77
    description: str = ""
78
79
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
80
    fewshot_config: dict = None
81
    # runtime configuration options
82
    num_fewshot: int = None
83
    # scoring options
84
    metric_list: list = None
85
    output_type: str = "generate_until"
86
    generation_kwargs: dict = None
87
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
88
    filter_list: Union[str, list] = None
89
90
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
91

lintangsutawika's avatar
lintangsutawika committed
92
93
94
    metadata: Union[
        str, list
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
95

Ethan Smith's avatar
Ethan Smith committed
96
    def __post_init__(self) -> None:
97
        if self.dataset_path and os.path.exists(os.path.dirname(self.dataset_path)):
lintangsutawika's avatar
lintangsutawika committed
98
99
            import inspect
            from importlib import import_module
lintangsutawika's avatar
format  
lintangsutawika committed
100

lintangsutawika's avatar
lintangsutawika committed
101
            self.dataset_path = inspect.getfile(import_module(self.dataset_path))
102

Lintang Sutawika's avatar
Lintang Sutawika committed
103
        if self.generation_kwargs is not None:
104
            if self.output_type != "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
105
                eval_logger.warning(
106
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
107
                )
108
                assert self.output_type != "generate_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
109
110
111
112
113
114
115

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
116
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
117
        else:
118
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
119
120
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
121
                    "until": None
122
123
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
124
125
                    "do_sample": False,
                }
126

haileyschoelkopf's avatar
haileyschoelkopf committed
127
128
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

129
130
131
    def __getitem__(self, item):
        return getattr(self, item)

132
133
134
    def __setitem__(self, item, value):
        return setattr(self, item, value)

135
    def to_dict(self):
136
137
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
138
        Used for dumping results alongside full task configuration
139

haileyschoelkopf's avatar
haileyschoelkopf committed
140
141
142
143
144
145
146
147
148
149
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
150
151
152
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
153
        return cfg_dict
154

155
156
157
158
159
160
161
162
163
164
165
166

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
167

168
169
170
171
172
173
174
175
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
176

177
178
179
180
181
182
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
183
    ) -> None:
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

lintangsutawika's avatar
lintangsutawika committed
210
        self._config = TaskConfig({**config}) if config else TaskConfig()
211

lintangsutawika's avatar
lintangsutawika committed
212
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
213

Ethan Smith's avatar
Ethan Smith committed
214
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
239
240
241
242
243
244
245
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
246

247
248
249
250
251
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

288
289
290
291
292
293
294
295
296
297
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
298
            eval_logger.warning(
299
                "has_training_docs and has_validation_docs are False"
300
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
301
            )
302
303
            return self.test_docs()

304
305
306
307
308
309
310
311
312
313
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
314

315
316
317
318
319
320
321
322
323
324
325
326
327
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
328
    def doc_to_decontamination_query(self, doc) -> None:
329
330
331
332
333
334
335
336
337
338
339
340
341
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
342
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
343
344
345
346
347
348
349
350
351
352
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

353
        eval_logger.info(f"Building contexts for task on rank {rank}...")
354

355
        instances = []
356
357
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
358
        ):
359
            # sample fewshot context #TODO: need to offset doc_id by rank now!
360
            fewshot_ctx = self.fewshot_context(
361
                doc,
362
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
363
            )
364

365
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
366
367
368
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
369
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
370
            )
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
396
            The number of times each instance in a dataset is inferred on. Defaults to 1,
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
415
    def aggregation(self):
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
432
433
434
435
436
437
438
439
440
441
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

442
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
443
    def fewshot_context(
444
445
446
447
448
        self,
        doc,
        num_fewshot,
        rnd=random.Random(1234),
        description=None,
lintangsutawika's avatar
lintangsutawika committed
449
    ):
450
451
452
453
454
455
456
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
457
458
459
460
461
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
462
463
464
        :returns: str
            The fewshot context.
        """
lintangsutawika's avatar
lintangsutawika committed
465
466
467
468
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

469
        description = description if description else ""
470
471

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
472
            labeled_examples = ""
473
        else:
lintangsutawika's avatar
lintangsutawika committed
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
498
            )
499
500

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
501
        return description + labeled_examples + example
502
503

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
504
505
        if hasattr(self, "_filters"):
            for f in self._filters:
lintangsutawika's avatar
lintangsutawika committed
506
                f.apply(self._instances, None)
lintangsutawika's avatar
lintangsutawika committed
507
508
509
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
510

baberabb's avatar
baberabb committed
511
    def dump_config(self) -> dict:
512
        """Returns a dictionary representing the task's config.
513
514
515
516
517

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
518
        # (num_fewshot)
519
        return self.config.to_dict()
520

521
522

class ConfigurableTask(Task):
523
    VERSION = "Yaml"
524
    OUTPUT_TYPE = None
525
    CONFIG = None
526
527
528

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
529
    ) -> None:  # TODO no super() call here
530
        # Get pre-configured attributes
531
        self._config = self.CONFIG
532

533
        # Use new configurations if there was no preconfiguration
534
        if self.config is None:
535
            self._config = TaskConfig(**config)
536
537
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
538
            if config is not None:
539
                self._config.__dict__.update(config)
540

541
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
542
543
544
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
545

546
547
548
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
549

550
551
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
552

553
554
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
555

556
557
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
558
        self._aggregation_list = {}
559
        self._higher_is_better = {}
560

561
        if self.config.metric_list is None:
562
            # TODO: handle this in TaskConfig.__post_init__ ?
563
564
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

565
            for metric_name in _metric_list:
566
                metric = get_metric(metric_name)
567
                self._metric_fn_list[metric_name] = metric["function"]
lintangsutawika's avatar
lintangsutawika committed
568
                self._metric_fn_kwargs[metric_name] = {}
569
570
                self._aggregation_list = metric["aggregation"]
                self._higher_is_better[metric_name] = metric["is_higher_better"]
571
        else:
572
            for metric_config in self.config.metric_list:
573
                assert "metric" in metric_config
574
                from_registry = False
575
576
577
578
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
579
580
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
581
                }
582
                use_hf_evaluate = (
Chris's avatar
Chris committed
583
584
585
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
586

587
                if callable(metric_name):
588
589
590
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                else:
591
592
593
594
595
596
597
                    assert type(metric_name) == str
                    if use_hf_evaluate:
                        metric_fn = get_evaluate(metric_name, **kwargs)
                    elif metric_name in METRIC_REGISTRY:
                        from_registry = True
                        metric = get_metric(metric_name, **kwargs)
                        metric_fn = metric["function"]
598
599

                self._metric_fn_kwargs[metric_name] = kwargs
600
                self._metric_fn_list[metric_name] = metric_fn
lintangsutawika's avatar
lintangsutawika committed
601

602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
                if "aggregation" in metric_config:
                    agg_name = metric_config["aggregation"]
                    if isinstance(agg_name, str):
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
                    elif callable(agg_name):  # noqa: E721
                        self._aggregation_list[metric_name] = agg_name
                else:
                    if from_registry:
                        if "aggregation" in metric:
                            self._aggregation_list[metric_name] = metric["aggregation"]
                        else:
                            self._aggregation_list[metric_name] = metric_fn

                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    if from_registry:
                        self._higher_is_better[metric_name] = metric["higher_is_better"]

623
        self.download(self.config.dataset_kwargs)
624
625
626
        self._training_docs = None
        self._fewshot_docs = None

627
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
628
            self._filters = []
629
            for filter_config in self.config.filter_list:
lintangsutawika's avatar
lintangsutawika committed
630
631
632
633
634
635
636
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
637
638
639
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
640
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
641
        else:
642
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
643

644
645
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
646
            self.prompt = get_prompt(
647
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
648
            )
649
650
651
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
652
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
653
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
654
655
656
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
657
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
658

659
        if self.has_test_docs():
660
            self.task_docs = self.test_docs()
661
        elif self.has_validation_docs():
662
            self.task_docs = self.validation_docs()
663
664
665
666
667
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

668
        # Test One Doc
669
        self.features = list(self.task_docs.features.keys())
670
671
        self.multiple_input = 0
        self.multiple_target = 0
672
        test_doc = self.task_docs[0]
673
        test_text = self.doc_to_text(test_doc)
674
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
675

676
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
677
678
679
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
680
681
            else:
                num_choice = len(test_choice)
682

683
684
            if type(test_text) is int:
                self.multiple_input = num_choice
685
686
        else:
            test_choice = None
687

688
        if type(test_target) is list:
689
            self.multiple_target = len(test_target)
690
        else:
lintangsutawika's avatar
lintangsutawika committed
691
            if (type(test_target) is int) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
692
                test_target = test_choice[test_target]
693
            else:
lintangsutawika's avatar
lintangsutawika committed
694
                test_target = str(test_target)
695

696
697
698
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
699
            check_choices = [test_target]
700
701
702
703
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
704
705
                    True
                    if self.config.target_delimiter.rstrip()
706
                    != self.config.target_delimiter
707
                    else False
708
                )
709

710
711
712
713
714
715
                if delimiter_has_whitespace and choice_has_whitespace:
                    eval_logger.warning(
                        f'Both target_delimiter and target choice: "{choice}" have whitespace'
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
                    eval_logger.warning(
716
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
717
718
                    )

Ethan Smith's avatar
Ethan Smith committed
719
    def download(self, dataset_kwargs=None) -> None:
720
721
722
723
724
725
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
726
    def has_training_docs(self) -> bool:
727
        if self.config.training_split is not None:
728
729
730
731
            return True
        else:
            return False

baberabb's avatar
baberabb committed
732
    def has_validation_docs(self) -> bool:
733
        if self.config.validation_split is not None:
734
735
736
737
            return True
        else:
            return False

baberabb's avatar
baberabb committed
738
    def has_test_docs(self) -> bool:
739
        if self.config.test_split is not None:
740
741
742
743
            return True
        else:
            return False

baberabb's avatar
baberabb committed
744
    def training_docs(self) -> datasets.Dataset:
745
        if self.has_training_docs():
746
747
748
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
749
                )
750
            return self.dataset[self.config.training_split]
751

baberabb's avatar
baberabb committed
752
    def validation_docs(self) -> datasets.Dataset:
753
        if self.has_validation_docs():
754
755
756
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
757
                )
758
            return self.dataset[self.config.validation_split]
759

baberabb's avatar
baberabb committed
760
    def test_docs(self) -> datasets.Dataset:
761
        if self.has_test_docs():
762
763
764
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
765

766
    def fewshot_docs(self):
767
768
        if self.config.fewshot_split is not None:
            return self.dataset[self.config.fewshot_split]
769
        else:
770
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
771
                eval_logger.warning(
772
                    f"Task '{self.config.task}': "
773
774
775
776
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
777

lintangsutawika's avatar
lintangsutawika committed
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
            labeled_examples = self.config.description
        else:
            labeled_examples = self.config.description + self.sampler.get_context(
                doc, num_fewshot
            )

        example = self.doc_to_text(doc)
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
        elif type(example) == int:
            if self.config.doc_to_choice is not None:
                choices = self.doc_to_choice(doc)
                return labeled_examples + choices[example]
            else:
                return labeled_examples + str(example)

811
812
813
814
815
816
817
818
    def apply_filters(self):
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances, self.task_docs)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

819
    def should_decontaminate(self):
820
        return self.config.should_decontaminate
821
822

    def doc_to_decontamination_query(self, doc):
823
        if self.config.should_decontaminate:
824
825
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
826
            else:
827
828
829
830
831
832
833
834
835
836
837
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
838

839
840
841
842
843
844
845
846
847
848
849
850
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
851
852
        if self.prompt is not None:
            doc_to_text = self.prompt
853
        else:
854
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
855

856
857
858
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
859
            if doc_to_text in self.features:
860
                # if self.config.doc_to_choice is not None:
861
862
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
863
864
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
865
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
866
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
867
868
869
                    return ast.literal_eval(text_string)
                else:
                    return text_string
870
        elif callable(doc_to_text):
871
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
872
        # Used when applying a Promptsource template
873
        elif hasattr(doc_to_text, "apply"):
874
875
876
877
878
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
879
                return self.config.fewshot_delimiter
880
        else:
881
            print(type(doc_to_text))
882
            raise TypeError
883

884
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
885
886
        if self.prompt is not None:
            doc_to_target = self.prompt
887
        else:
888
            doc_to_target = self.config.doc_to_target
889

890
891
892
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
893
            if doc_to_target in self.features:
894
                # if self.config.doc_to_choice is not None:
895
896
897
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
898
            else:
lintangsutawika's avatar
lintangsutawika committed
899
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
900
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
901
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
902
903
904
905
906
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
907
908
909
910
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
911
912
                else:
                    return target_string
913
914
        elif type(doc_to_target) == list:
            return doc_to_target
915
        elif callable(doc_to_target):
916
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
917
        # Used when applying a Promptsource template
918
        elif hasattr(doc_to_target, "apply"):
919
            applied_prompt = doc_to_target.apply(doc)
920
921
922
923
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
924
                return self.config.fewshot_delimiter
925
926
        else:
            raise TypeError
927

baberabb's avatar
baberabb committed
928
    def doc_to_choice(self, doc: Any) -> List[str]:
929
930
        if self.prompt is not None:
            doc_to_choice = self.prompt
931
        elif self.config.doc_to_choice is None:
932
933
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
934
            doc_to_choice = self.config.doc_to_choice
935
936

        if type(doc_to_choice) == str:
937
938
939
940
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
941
942
943
944
945
946
947
948
949
950
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
951

baberabb's avatar
baberabb committed
952
953
954
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
955
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
956
            arguments = (ctx, self.doc_to_target(doc))
957
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
958
            arguments = (self.doc_to_target(doc),)
959
        elif self.OUTPUT_TYPE == "multiple_choice":
960
            choices = self.doc_to_choice(doc)
961
            target_delimiter = self.config.target_delimiter
962
963
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
964
                cont = self.doc_to_target(doc)
965
                arguments = [(ctx, f"{target_delimiter}{cont}") for ctx in choices]
966
            else:
967
                # Otherwise they are placed in the continuation
968
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
969

970
            request_list = [
971
972
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
973
                    doc=doc,
974
                    arguments=arg,
975
                    idx=i,
976
977
                    **kwargs,
                )
978
                for i, arg in enumerate(arguments)
979
            ]
980
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
981
            if "acc_mutual_info" in self._metric_fn_list.keys():
982
983
984
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
985
                # here mutual info refers to calculating
986
987
988
989
990
991
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
992
                            doc=doc,
993
                            arguments=("", "{}".format(choice)),
994
995
996
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
997
                        for i, choice in enumerate(choices)
998
999
1000
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1001

1002
        elif self.OUTPUT_TYPE == "generate_until":
1003
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
1004
1005

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1006
1007
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1008
1009

    def process_results(self, doc, results):
1010
1011
1012
1013

        # Process results returns 1 of X things per doc/results
        # 1. A score
        # 2. Components to be processed later to obtained a score. such as gold and prediction
1014
1015
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1016

1017
        result_dict = {}
1018
        use_metric = list(self._metric_fn_list.keys())
1019
1020
1021
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1022
1023
1024
1025
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1026
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1027
            (loglikelihood,) = results
1028
1029
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
            return {
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
            }
1047
        elif self.OUTPUT_TYPE == "multiple_choice":
1048
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1049

1050
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1051
            choices = self.doc_to_choice(doc)
1052
1053
            completion_len = np.array([float(len(i)) for i in choices])

1054
1055
            if (
                2 * len(choices) == len(lls)
1056
                and "acc_mutual_info" in self._metric_fn_list.keys()
1057
1058
1059
1060
1061
1062
1063
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1064

1065
1066
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1067

1068
1069
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1070
            else:
1071
                gold = self.doc_to_target(doc)
1072
1073

            gold_index_error = False
1074
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1075
1076
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1077
1078
                    gold_index_error = True
            else:
1079
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1080
                    gold = gold if gold < len(choices) else -100
1081
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1082
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1083

Lintang Sutawika's avatar
Lintang Sutawika committed
1084
                if gold == -100:
1085
1086
1087
1088
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1089
                    f"Label index was not in within range of available choices,"
1090
1091
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1092

1093
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1094
1095
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1096
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1097
1098
1099
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1100
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1101
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1102

1103
            # gold, lls, is_greedy, completion_len
1104
            result_dict = {
1105
1106
                **({"acc": acc} if "acc" in use_metric else {}),
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1107
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1108
1109
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1110
1111
            }

1112
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1113
1114
1115
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1116
1117
1118
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1119
        elif self.OUTPUT_TYPE == "generate_until":
1120
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1121
            result = results[0]
1122
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1123
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1124
                # it assumes that doc_to_target returns a number.
1125
1126
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1127
1128
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1129
                gold = list(gold)
Chris's avatar
Chris committed
1130
1131
1132
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1133

lintangsutawika's avatar
lintangsutawika committed
1134
            for metric in self._metric_fn_list.keys():
1135
1136
                result_dict[metric] = (gold, result)
                continue
haileyschoelkopf's avatar
haileyschoelkopf committed
1137
1138
1139
1140
1141
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1142
1143
1144
1145
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
haileyschoelkopf's avatar
haileyschoelkopf committed
1146
                    for gold_option in gold:
1147
                        try:
1148
                            result_score = self._metric_fn_list[metric](
1149
1150
                                references=[gold_option],
                                predictions=[result],
1151
                                **self._metric_fn_kwargs[metric],
1152
                            )
baberabb's avatar
baberabb committed
1153
1154
1155
                        except (
                            TypeError
                        ):  # TODO: this is hacky and I don't want to do it
1156
                            result_score = self._metric_fn_list[metric](
haileyschoelkopf's avatar
haileyschoelkopf committed
1157
1158
1159
                                [gold_option, result]
                            )
                        if isinstance(result_score, dict):
haileyschoelkopf's avatar
haileyschoelkopf committed
1160
                            # TODO: this handles the case where HF evaluate returns a dict.
1161
                            result_score = result_score[metric]
haileyschoelkopf's avatar
haileyschoelkopf committed
1162
                        scores.append(result_score)
haileyschoelkopf's avatar
haileyschoelkopf committed
1163
                    if any(scores):
1164
                        result_score = 1.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1165
                    else:
1166
                        result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1167
                else:
1168
                    try:
1169
                        result_score = self._metric_fn_list[metric](
1170
1171
1172
                            references=[gold],
                            predictions=[result],
                        )
1173
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1174
                        result_score = self._metric_fn_list[metric]([gold, result])
1175
1176
1177
1178
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1179
        else:
lintangsutawika's avatar
lintangsutawika committed
1180
1181
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1182
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1183
            )
1184
1185
1186

        return result_dict

1187
1188
    def aggregation(self):
        return self._aggregation_list
1189
1190

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1191
        return self._higher_is_better
1192
1193
1194
1195
1196


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1197
    def doc_to_target(self, doc: dict) -> str:
1198
1199
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1200
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1201
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1202
1203
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1204
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1205
                doc=doc,
1206
                arguments=(ctx, " {}".format(choice)),
1207
                idx=i,
1208
1209
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1210
1211
            for i, choice in enumerate(doc["choices"])
        ]
1212

baberabb's avatar
baberabb committed
1213
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1214
1215
1216
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1228
    def higher_is_better(self) -> dict:
1229
1230
1231
1232
1233
        return {
            "acc": True,
            "acc_norm": True,
        }

1234
    def aggregation(self) -> dict:
1235
1236
1237
1238
1239
1240
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1241
class PerplexityTask(Task):
1242
1243
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1244
    def has_training_docs(self) -> bool:
1245
1246
        return False

baberabb's avatar
baberabb committed
1247
    def fewshot_examples(self, k: int, rnd) -> List:
1248
1249
1250
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1251
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1252
1253
1254
1255
1256
1257
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1258
    def higher_is_better(self) -> dict:
1259
1260
1261
1262
1263
1264
1265
1266
1267
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1268
    def doc_to_text(self, doc) -> str:
1269
1270
1271
1272
1273
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1274
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1275
1276
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1277
1278
1279
1280
1281
1282
1283
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1284

baberabb's avatar
baberabb committed
1285
    def process_results(self, doc: dict, results: float) -> dict:
1286
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1287
1288
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1289
1290
1291
1292
1293
1294
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

1295
    def aggregation(self) -> dict:
1296
1297
1298
1299
1300
1301
1302
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1303
    def count_bytes(cls, doc) -> int:
1304
1305
1306
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1307
    def count_words(cls, doc) -> int:
1308
1309
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))