test_modeling_common.py 67.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import gc
18
import inspect
19
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import random
21
import tempfile
thomwolf's avatar
thomwolf committed
22
import unittest
23
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
24

Sylvain Gugger's avatar
Sylvain Gugger committed
25
26
from huggingface_hub import HfApi
from requests.exceptions import HTTPError
27
from transformers import is_torch_available, logging
28
from transformers.file_utils import WEIGHTS_NAME, is_torch_fx_available
29
from transformers.models.auto import get_values
Sylvain Gugger's avatar
Sylvain Gugger committed
30
31
32
33
34
35
36
37
38
39
40
from transformers.testing_utils import (
    ENDPOINT_STAGING,
    PASS,
    USER,
    CaptureLogger,
    is_staging_test,
    require_torch,
    require_torch_multi_gpu,
    slow,
    torch_device,
)
41

Aymeric Augustin's avatar
Aymeric Augustin committed
42

43
if is_torch_available():
44
    import numpy as np
45
    import torch
thomwolf's avatar
thomwolf committed
46

47
    from transformers import (
48
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
49
        MODEL_FOR_CAUSAL_LM_MAPPING,
50
        MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
51
        MODEL_FOR_MASKED_LM_MAPPING,
52
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
53
        MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
54
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
55
56
57
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
58
        MODEL_MAPPING,
59
60
61
62
63
        AdaptiveEmbedding,
        BertConfig,
        BertModel,
        PretrainedConfig,
        PreTrainedModel,
64
        T5ForConditionalGeneration,
65
    )
thomwolf's avatar
thomwolf committed
66

67
68
69
if is_torch_fx_available():
    from transformers.modeling_fx_utils import symbolic_trace

70

71
72
73
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
74
        if "_range" in key or "_std" in key or "initializer_factor" in key:
Lysandre Debut's avatar
Lysandre Debut committed
75
            setattr(configs_no_init, key, 1e-10)
76
77
    return configs_no_init

thomwolf's avatar
thomwolf committed
78

79
80
81
TINY_T5 = "patrickvonplaten/t5-tiny-random"


82
83
84
85
86
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
87
    all_generative_model_classes = ()
88
    fx_ready_model_classes = ()
Patrick von Platen's avatar
Patrick von Platen committed
89
90
91
92
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    test_head_masking = True
93
    test_missing_keys = True
94
    test_model_parallel = False
95
    is_encoder_decoder = False
96
    test_sequence_classification_problem_types = False
97

98
99
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
100
        if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
101
            inputs_dict = {
102
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
103
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
104
                else v
105
106
                for k, v in inputs_dict.items()
            }
107
108

        if return_labels:
109
            if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
110
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
111
            elif model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
112
113
114
115
116
117
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
118
            elif model_class in [
119
120
121
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
122
            ]:
123
124
125
126
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
127
128
129
130
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
131
132
133
134
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
135
136
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
137
    def test_save_load(self):
138
139
140
141
142
143
144
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
145
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
146

147
            out_2 = outputs[0].cpu().numpy()
148
            out_2[np.isnan(out_2)] = 0
149

150
            with tempfile.TemporaryDirectory() as tmpdirname:
151
152
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
153
                model.to(torch_device)
154
                with torch.no_grad():
155
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
156

157
158
159
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
160
161
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
162

163
    def test_save_load__keys_to_ignore_on_save(self):
164
165
166
167
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
168
169
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
170
171
172
                continue

            # check the keys are in the original state_dict
173
            for k in _keys_to_ignore_on_save:
174
175
176
177
178
179
180
                self.assertIn(k, model.state_dict())

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
181
                for k in _keys_to_ignore_on_save:
182
183
                    self.assertNotIn(k, state_dict_saved)

Sylvain Gugger's avatar
Sylvain Gugger committed
184
185
186
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
                self.assertTrue(
187
188
                    len(load_result.missing_keys) == 0
                    or set(load_result.missing_keys) == set(model._keys_to_ignore_on_save)
Sylvain Gugger's avatar
Sylvain Gugger committed
189
190
191
                )
                self.assertTrue(len(load_result.unexpected_keys) == 0)

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)

    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            model_class_copy._init_weights = self._mock_init_weights

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
                    max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:

            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            base_class_copy._init_weights = self._mock_init_weights

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
                    max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

Patrick von Platen's avatar
Patrick von Platen committed
289
    def test_initialization(self):
290
291
292
293
294
295
296
297
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
298
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
299
                        [0.0, 1.0],
300
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
301
                    )
thomwolf's avatar
thomwolf committed
302

Patrick von Platen's avatar
Patrick von Platen committed
303
    def test_determinism(self):
304
305
306
307
308
309
310
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
311
312
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
313

314
315
316
317
318
319
320
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
337
                expected_arg_names.extend(
338
339
                    ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
340
341
342
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
343
344
345
346
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

347
348
349
350
351
352
353
354
    def test_training(self):
        if not self.model_tester.is_training:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
355
            if model_class in get_values(MODEL_MAPPING):
356
357
358
359
360
361
362
363
364
365
366
367
368
369
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.model_tester.is_training or not hasattr(config, "gradient_checkpointing"):
            return

        config.gradient_checkpointing = True
370
        config.use_cache = False
371
372
373
        config.return_dict = True

        for model_class in self.all_model_classes:
374
            if model_class in get_values(MODEL_MAPPING):
375
376
377
378
379
380
381
382
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

Patrick von Platen's avatar
Patrick von Platen committed
383
    def test_attention_outputs(self):
384
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Weizhen's avatar
Weizhen committed
385
386
        config.return_dict = True

sshleifer's avatar
sshleifer committed
387
        seq_len = getattr(self.model_tester, "seq_length", None)
sshleifer's avatar
sshleifer committed
388
389
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
Weizhen's avatar
Weizhen committed
390
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
391
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Patrick von Platen's avatar
Patrick von Platen committed
392
393
394
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
395
396

        for model_class in self.all_model_classes:
397
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
398
            inputs_dict["output_hidden_states"] = False
399
            config.return_dict = True
400
401
402
403
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
404
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
405
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
406
407
408
409
410
411
412
413
414
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
415
416
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
417
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
418
419
420
421
422
423
424
425
426
427
428

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
429
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
430

431
            if self.is_encoder_decoder:
432
                correct_outlen = 5
433

434
435
436
437
                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
438
                if model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
439
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
440
441
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned
Weizhen's avatar
Weizhen committed
442

Sam Shleifer's avatar
Sam Shleifer committed
443
444
                self.assertEqual(out_len, correct_outlen)

445
                # decoder attentions
446
                decoder_attentions = outputs.decoder_attentions
Sam Shleifer's avatar
Sam Shleifer committed
447
                self.assertIsInstance(decoder_attentions, (list, tuple))
448
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
449
                self.assertListEqual(
450
451
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
452
                )
thomwolf's avatar
thomwolf committed
453

454
455
456
457
458
459
460
461
462
463
464
465
466
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

467
            # Check attention is always last and order is fine
468
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
469
            inputs_dict["output_hidden_states"] = True
470
471
472
473
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
474
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
475

Weizhen's avatar
Weizhen committed
476
477
478
479
480
481
482
483
            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

484
485
            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

486
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
487
488
489
490
491
492
493
494
495
496
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
497

Patrick von Platen's avatar
Patrick von Platen committed
498
    def test_torchscript(self):
499
500
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
501

Patrick von Platen's avatar
Patrick von Platen committed
502
    def test_torchscript_output_attentions(self):
503
504
505
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
506

Patrick von Platen's avatar
Patrick von Platen committed
507
    def test_torchscript_output_hidden_state(self):
508
509
510
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
511

512
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
513
        if not self.test_torchscript:
514
            return
515

516
517
518
519
520
521
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
522
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
523

524
            try:
525
                if model.config.is_encoder_decoder:
526
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
527
528
529
530
531
532
533
534
535
536
                    input_ids = inputs["input_ids"]
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]
                    traced_model = torch.jit.trace(
                        model, (input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
                    )
                else:
                    input_ids = inputs["input_ids"]
                    traced_model = torch.jit.trace(model, input_ids)
537
538
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
539

540
            with tempfile.TemporaryDirectory() as tmp_dir_name:
541
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
542

543
                try:
544
                    torch.jit.save(traced_model, pt_file_name)
545
546
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
547

548
549
550
551
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
552

553
554
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
555

556
557
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
558

559
560
561
562
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
563

564
            models_equal = True
565
566
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
567
568
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False
thomwolf's avatar
thomwolf committed
569

570
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
571

572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available():
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

        for model_class in self.fx_ready_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

            try:
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                    input_ids = inputs["input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]
                    labels = inputs.get("labels", None)
                    input_names = ["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask"]
                    if labels is not None:
                        input_names.append("labels")
                    prepared_inputs = {k: v for (k, v) in inputs.items() if k in input_names}

                    model_output = model(**prepared_inputs)

                    batch_size = input_ids.shape[0]
                    encoder_sequence_length = input_ids.shape[1]
                    decoder_sequence_length = decoder_attention_mask.shape[1]

                    traced_model = symbolic_trace(
                        model,
                        input_names,
                        batch_size=batch_size,
                        sequence_length=[encoder_sequence_length, decoder_sequence_length],
                    )

                    traced_output = traced_model(**prepared_inputs)

                else:
                    input_ids = inputs["input_ids"]
                    labels = inputs.get("labels", None)
                    input_names = ["input_ids", "attention_mask", "token_type_ids"]
                    if labels is not None:
                        input_names.append("labels")
                    prepared_inputs = {k: v for (k, v) in inputs.items() if k in input_names}

                    model_output = model(**prepared_inputs)

                    batch_size = input_ids.shape[0]

                    if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
                        sequence_length = input_ids.shape[2]
                        num_choices = input_ids.shape[1]
                    else:
                        sequence_length = input_ids.shape[1]
                        num_choices = -1

                    traced_model = symbolic_trace(
                        model,
                        input_names,
                        batch_size=batch_size,
                        sequence_length=sequence_length,
                        num_choices=num_choices,
                    )
                    traced_output = traced_model(**prepared_inputs)

            except RuntimeError:
                self.fail("Couldn't trace module.")

            num_outputs = len(model_output)
            outputs_are_close = all(torch.allclose(model_output[i], traced_output[i]) for i in range(num_outputs))
            self.assertTrue(outputs_are_close)

Patrick von Platen's avatar
Patrick von Platen committed
654
655
    def test_headmasking(self):
        if not self.test_head_masking:
656
            return
657

658
659
660
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
661

662
        inputs_dict["output_attentions"] = True
663
664
665
666
667
668
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
669

670
671
672
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
673
674
675
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
676
677
678
679
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
680
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
681
            inputs["head_mask"] = head_mask
682
683
684
685
686
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
687
688
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
689
            outputs = model(**inputs, return_dict=True)
690
691
692
693
694
695
696
697
698

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
720
                check_attentions_validity(outputs.cross_attentions)
721
722
            else:
                check_attentions_validity(outputs.attentions)
723

Patrick von Platen's avatar
Patrick von Platen committed
724
725
    def test_head_pruning(self):
        if not self.test_pruning:
726
727
728
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
729
730
731
732
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
733

734
735
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
736

737
            inputs_dict["output_attentions"] = True
738
739
740
741
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
742
743
744
745
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
746
747
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
748
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
749

750
            attentions = outputs[-1]
751

752
753
754
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
755

Patrick von Platen's avatar
Patrick von Platen committed
756
757
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
758
            return
LysandreJik's avatar
LysandreJik committed
759

760
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
761
762
763
764
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
765
766
767

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
768

769
            inputs_dict["output_attentions"] = True
770
771
772
773
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
774
775
776
777
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
778
            model.prune_heads(heads_to_prune)
779

780
            with tempfile.TemporaryDirectory() as temp_dir_name:
781
782
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
783
                model.to(torch_device)
784

785
            with torch.no_grad():
786
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
787
788
789
790
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
791

Patrick von Platen's avatar
Patrick von Platen committed
792
793
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
794
            return
795

796
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
797
798
799
800
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
801

802
803
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
804

805
            inputs_dict["output_attentions"] = True
806
            config.output_hidden_states = False
807

808
809
810
811
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
812
            config.pruned_heads = heads_to_prune
813

814
815
816
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
817

818
            with torch.no_grad():
819
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
820
            attentions = outputs[-1]
821

822
823
824
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
825

Patrick von Platen's avatar
Patrick von Platen committed
826
827
    def test_head_pruning_integration(self):
        if not self.test_pruning:
828
            return
829

830
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
831
832
833
834
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
835

836
837
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
838

839
            inputs_dict["output_attentions"] = True
840
            config.output_hidden_states = False
841

842
843
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
844

845
846
847
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
848

849
            with torch.no_grad():
850
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
851
            attentions = outputs[-1]
852

853
854
855
856
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
857

858
            with tempfile.TemporaryDirectory() as temp_dir_name:
859
860
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
861
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
862

863
            with torch.no_grad():
864
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
865
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
866

867
868
869
870
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
871

872
873
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
874

875
            with torch.no_grad():
876
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
877
            attentions = outputs[-1]
878

879
880
881
882
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
883

884
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
885

Patrick von Platen's avatar
Patrick von Platen committed
886
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
887
        def check_hidden_states_output(inputs_dict, config, model_class):
888
            model = model_class(config)
889
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
890
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
891

thomwolf's avatar
thomwolf committed
892
            with torch.no_grad():
893
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
894
895

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
896

Sylvain Gugger's avatar
Sylvain Gugger committed
897
898
899
900
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
901

Patrick von Platen's avatar
Patrick von Platen committed
902
903
904
905
906
907
908
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

909
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
910
911
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
912
            )
thomwolf's avatar
thomwolf committed
913

914
915
916
917
918
919
920
921
922
923
924
925
926
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
927
928
929
930
931
932
933
934
935
936
937
938
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

939
940
941
942
943
944
945
946
947
948
949
950
951
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
952
953

        print(outputs)
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_attentions = outputs.encoder_attentions[0]
            encoder_hidden_states.retain_grad()
            encoder_attentions.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_attentions = outputs.decoder_attentions[0]
            decoder_hidden_states.retain_grad()
            decoder_attentions.retain_grad()

            cross_attentions = outputs.cross_attentions[0]
            cross_attentions.retain_grad()

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(encoder_attentions.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
            self.assertIsNotNone(decoder_attentions.grad)
            self.assertIsNotNone(cross_attentions.grad)
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            attentions = outputs.attentions[0]

            hidden_states.retain_grad()
            attentions.retain_grad()

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
            self.assertIsNotNone(attentions.grad)

Pradhy729's avatar
Pradhy729 committed
991
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
992
993
994
995
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

Patrick von Platen's avatar
Patrick von Platen committed
1014
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1015
1016
1017
1018
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1019
        if not self.test_resize_embeddings:
1020
1021
1022
1023
1024
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1025
            model.to(torch_device)
1026

Patrick von Platen's avatar
Patrick von Platen committed
1027
1028
1029
            if self.model_tester.is_training is False:
                model.eval()

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1040
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1041
            model(**self._prepare_for_class(inputs_dict, model_class))
1042
1043
1044
1045
1046
1047
1048

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1049
1050
1051
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1052
1053
1054
1055

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1056
            model(**self._prepare_for_class(inputs_dict, model_class))
1057

1058
1059
1060
1061
1062
1063
1064
1065
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
1117
    def test_model_common_attributes(self):
1118
1119
1120
1121
1122
1123
1124
1125
1126
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(torch.nn.Embedding(10, 10))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, torch.nn.Linear))

1127
    def test_correct_missing_keys(self):
1128
1129
        if not self.test_missing_keys:
            return
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1140
                    with self.subTest(msg=f"Missing keys for {model.__class__.__name__}"):
1141
1142
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

1191
1192
1193
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
1194
1195
1196
1197
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
1211
1212
1213
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
1214
                            msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.",
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

Patrick von Platen's avatar
Patrick von Platen committed
1254
    def test_inputs_embeds(self):
1255
1256
1257
1258
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1259
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1260
            model.eval()
1261

1262
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
1263

1264
1265
1266
1267
1268
1269
1270
1271
1272
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

1273
1274
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
1275
                inputs["inputs_embeds"] = wte(input_ids)
1276
            else:
1277
1278
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
1279

thomwolf's avatar
thomwolf committed
1280
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
1281
                model(**inputs)[0]
1282

1283
1284
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
1285
1286
1287
1288
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
1289
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
            model = torch.nn.DataParallel(model)
            with torch.no_grad():
1306
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
1307

1308
1309
1310
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
1311
            return
1312

1313
        # a candidate for testing_utils
1314
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
1315
            """returns a list of cuda memory allocations per GPU in MBs"""
1316
1317
1318
1319
1320

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
1321
1322
1323
1324
1325
1326
1327
1328
1329

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

1330
1331
1332
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
1333

1334
1335
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
1336
1337
1338
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

1339
1340
1341
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

1342
            del model
1343
            gc.collect()
1344
1345
            torch.cuda.empty_cache()

1346
1347
1348
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
1349
1350

            # Spread model layers over multiple devices
1351
            model = model_class(config)
1352
1353
1354
1355
1356
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
            for n in range(torch.cuda.device_count()):
1357
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
1358

1359
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
1360
1361
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

1362
1363
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
1364
1365
1366
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
1367
            gc.collect()
1368
1369
1370
1371
1372
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
1373
            return
1374
1375
1376
1377
1378
1379

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

1380
            def cast_to_device(dictionary, device):
1381
1382
1383
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
1384
                        output[k] = v.to(device)
1385
1386
1387
1388
1389
                    else:
                        output[k] = v

                return output

1390
1391
1392
1393
1394
1395
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
1396
1397
1398
1399
1400
1401
1402
1403

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
    @require_torch_multi_gpu
    def test_model_parallel_beam_search(self):
        if not self.test_model_parallel:
            return

        all_generative_and_parallelizable_model_classes = tuple(
            set(self.all_generative_model_classes).intersection(self.all_parallelizable_model_classes)
        )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in all_generative_and_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            def cast_to_device(dictionary, device):
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
                        output[k] = v.to(device)
                    else:
                        output[k] = v

                return output

            model.parallelize()
            model.generate(**cast_to_device(inputs_dict, "cuda:0"), num_beams=2)

1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
    def test_problem_types(self):
        if not self.test_sequence_classification_problem_types:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
            if model_class not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):

                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

                    loss = model(**inputs).loss
                    loss.backward()

1468

1469
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
1470
1471


thomwolf's avatar
thomwolf committed
1472
def ids_tensor(shape, vocab_size, rng=None, name=None):
1473
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
1474
    if rng is None:
1475
        rng = global_rng
thomwolf's avatar
thomwolf committed
1476

thomwolf's avatar
thomwolf committed
1477
1478
1479
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
1480

thomwolf's avatar
thomwolf committed
1481
1482
1483
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
1484

1485
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
1486
1487


1488
1489
1490
1491
1492
1493
1494
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


1495
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
1496
    """Creates a random float32 tensor"""
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

1508
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
1509
1510


1511
@require_torch
thomwolf's avatar
thomwolf committed
1512
class ModelUtilsTest(unittest.TestCase):
1513
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
1514
    def test_model_from_pretrained(self):
1515
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
Lysandre Debut's avatar
Lysandre Debut committed
1528
1529
1530
1531

            # Not sure this is the intended behavior. TODO fix Lysandre & Thom
            config.name_or_path = model_name

thomwolf's avatar
thomwolf committed
1532
1533
1534
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
1535
1536
1537
1538
1539

    def test_model_from_pretrained_with_different_pretrained_model_name(self):
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertIsNotNone(model)

1540
1541
        logger = logging.get_logger("transformers.configuration_utils")
        with CaptureLogger(logger) as cl:
1542
            BertModel.from_pretrained(TINY_T5)
1543
        self.assertTrue("You are using a model of type t5 to instantiate a model of type bert" in cl.out)
Sylvain Gugger's avatar
Sylvain Gugger committed
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594


@require_torch
@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls._api = HfApi(endpoint=ENDPOINT_STAGING)
        cls._token = cls._api.login(username=USER, password=PASS)

    @classmethod
    def tearDownClass(cls):
        try:
            cls._api.delete_repo(token=cls._token, name="test-model")
        except HTTPError:
            pass

        try:
            cls._api.delete_repo(token=cls._token, name="test-model-org", organization="valid_org")
        except HTTPError:
            pass

    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, push_to_hub=True, repo_name="test-model", use_auth_token=self._token)

            new_model = BertModel.from_pretrained(f"{USER}/test-model")
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
                tmp_dir,
                push_to_hub=True,
                repo_name="test-model-org",
                use_auth_token=self._token,
                organization="valid_org",
            )

            new_model = BertModel.from_pretrained("valid_org/test-model-org")
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))