"test/vscode:/vscode.git/clone" did not exist on "bd75690f4eef6b3140162a8b03af1f0a96a5e358"
test_modeling_common.py 57.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import gc
18
import inspect
19
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import random
21
import tempfile
thomwolf's avatar
thomwolf committed
22
import unittest
23
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
24

Sylvain Gugger's avatar
Sylvain Gugger committed
25
26
from huggingface_hub import HfApi
from requests.exceptions import HTTPError
27
from transformers import is_torch_available, logging
28
from transformers.file_utils import WEIGHTS_NAME
29
from transformers.models.auto import get_values
Sylvain Gugger's avatar
Sylvain Gugger committed
30
31
32
33
34
35
36
37
38
39
40
from transformers.testing_utils import (
    ENDPOINT_STAGING,
    PASS,
    USER,
    CaptureLogger,
    is_staging_test,
    require_torch,
    require_torch_multi_gpu,
    slow,
    torch_device,
)
41

Aymeric Augustin's avatar
Aymeric Augustin committed
42

43
if is_torch_available():
44
    import numpy as np
45
    import torch
thomwolf's avatar
thomwolf committed
46

47
    from transformers import (
48
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
49
        MODEL_FOR_CAUSAL_LM_MAPPING,
50
        MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
51
        MODEL_FOR_MASKED_LM_MAPPING,
52
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
53
        MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
54
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
55
56
57
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
58
        MODEL_MAPPING,
59
60
61
62
63
        AdaptiveEmbedding,
        BertConfig,
        BertModel,
        PretrainedConfig,
        PreTrainedModel,
64
        T5ForConditionalGeneration,
65
    )
thomwolf's avatar
thomwolf committed
66

67

68
69
70
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
71
        if "_range" in key or "_std" in key or "initializer_factor" in key:
Lysandre Debut's avatar
Lysandre Debut committed
72
            setattr(configs_no_init, key, 1e-10)
73
74
    return configs_no_init

thomwolf's avatar
thomwolf committed
75

76
77
78
TINY_T5 = "patrickvonplaten/t5-tiny-random"


79
80
81
82
83
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
84
    all_generative_model_classes = ()
Patrick von Platen's avatar
Patrick von Platen committed
85
86
87
88
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    test_head_masking = True
89
    test_missing_keys = True
90
    test_model_parallel = False
91
92
    is_encoder_decoder = False

93
94
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
95
        if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
96
            inputs_dict = {
97
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
98
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
99
                else v
100
101
                for k, v in inputs_dict.items()
            }
102
103

        if return_labels:
104
            if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
105
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
106
            elif model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
107
108
109
110
111
112
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
113
            elif model_class in [
114
115
116
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
117
            ]:
118
119
120
121
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
122
123
124
125
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
126
127
128
129
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
130
131
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
132
    def test_save_load(self):
133
134
135
136
137
138
139
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
140
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
141

142
            out_2 = outputs[0].cpu().numpy()
143
            out_2[np.isnan(out_2)] = 0
144

145
            with tempfile.TemporaryDirectory() as tmpdirname:
146
147
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
148
                model.to(torch_device)
149
                with torch.no_grad():
150
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
151

152
153
154
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
155
156
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
157

158
    def test_save_load__keys_to_ignore_on_save(self):
159
160
161
162
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
163
164
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
165
166
167
                continue

            # check the keys are in the original state_dict
168
            for k in _keys_to_ignore_on_save:
169
170
171
172
173
174
175
                self.assertIn(k, model.state_dict())

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
176
                for k in _keys_to_ignore_on_save:
177
178
                    self.assertNotIn(k, state_dict_saved)

Patrick von Platen's avatar
Patrick von Platen committed
179
    def test_initialization(self):
180
181
182
183
184
185
186
187
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
188
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
189
                        [0.0, 1.0],
190
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
191
                    )
thomwolf's avatar
thomwolf committed
192

Patrick von Platen's avatar
Patrick von Platen committed
193
    def test_determinism(self):
194
195
196
197
198
199
200
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
201
202
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
203

204
205
206
207
208
209
210
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
227
                expected_arg_names.extend(
228
229
                    ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
230
231
232
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
233
234
235
236
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

237
238
239
240
241
242
243
244
    def test_training(self):
        if not self.model_tester.is_training:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
245
            if model_class in get_values(MODEL_MAPPING):
246
247
248
249
250
251
252
253
254
255
256
257
258
259
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.model_tester.is_training or not hasattr(config, "gradient_checkpointing"):
            return

        config.gradient_checkpointing = True
260
        config.use_cache = False
261
262
263
        config.return_dict = True

        for model_class in self.all_model_classes:
264
            if model_class in get_values(MODEL_MAPPING):
265
266
267
268
269
270
271
272
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

Patrick von Platen's avatar
Patrick von Platen committed
273
    def test_attention_outputs(self):
274
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Weizhen's avatar
Weizhen committed
275
276
        config.return_dict = True

sshleifer's avatar
sshleifer committed
277
        seq_len = getattr(self.model_tester, "seq_length", None)
sshleifer's avatar
sshleifer committed
278
279
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
Weizhen's avatar
Weizhen committed
280
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
281
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Patrick von Platen's avatar
Patrick von Platen committed
282
283
284
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
285
286

        for model_class in self.all_model_classes:
287
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
288
            inputs_dict["output_hidden_states"] = False
289
            config.return_dict = True
290
291
292
293
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
294
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
295
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
296
297
298
299
300
301
302
303
304
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
305
306
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
307
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
308
309
310
311
312
313
314
315
316
317
318

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
319
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
320

321
            if self.is_encoder_decoder:
322
                correct_outlen = 5
323

324
325
326
327
                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
328
                if model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
329
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
330
331
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned
Weizhen's avatar
Weizhen committed
332

Sam Shleifer's avatar
Sam Shleifer committed
333
334
                self.assertEqual(out_len, correct_outlen)

335
                # decoder attentions
336
                decoder_attentions = outputs.decoder_attentions
Sam Shleifer's avatar
Sam Shleifer committed
337
                self.assertIsInstance(decoder_attentions, (list, tuple))
338
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
339
                self.assertListEqual(
340
341
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
342
                )
thomwolf's avatar
thomwolf committed
343

344
345
346
347
348
349
350
351
352
353
354
355
356
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

357
            # Check attention is always last and order is fine
358
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
359
            inputs_dict["output_hidden_states"] = True
360
361
362
363
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
364
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
365

Weizhen's avatar
Weizhen committed
366
367
368
369
370
371
372
373
            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

374
375
            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

376
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
377
378
379
380
381
382
383
384
385
386
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
387

Patrick von Platen's avatar
Patrick von Platen committed
388
    def test_torchscript(self):
389
390
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
391

Patrick von Platen's avatar
Patrick von Platen committed
392
    def test_torchscript_output_attentions(self):
393
394
395
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
396

Patrick von Platen's avatar
Patrick von Platen committed
397
    def test_torchscript_output_hidden_state(self):
398
399
400
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
401

402
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
403
        if not self.test_torchscript:
404
            return
405

406
407
408
409
410
411
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
412
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
413

414
            try:
415
                if model.config.is_encoder_decoder:
416
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
417
418
419
420
421
422
423
424
425
426
                    input_ids = inputs["input_ids"]
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]
                    traced_model = torch.jit.trace(
                        model, (input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
                    )
                else:
                    input_ids = inputs["input_ids"]
                    traced_model = torch.jit.trace(model, input_ids)
427
428
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
429

430
            with tempfile.TemporaryDirectory() as tmp_dir_name:
431
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
432

433
                try:
434
                    torch.jit.save(traced_model, pt_file_name)
435
436
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
437

438
439
440
441
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
442

443
444
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
445

446
447
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
448

449
450
451
452
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
453

454
            models_equal = True
455
456
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
457
458
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False
thomwolf's avatar
thomwolf committed
459

460
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
461

Patrick von Platen's avatar
Patrick von Platen committed
462
463
    def test_headmasking(self):
        if not self.test_head_masking:
464
            return
465

466
467
468
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
469

470
        inputs_dict["output_attentions"] = True
471
472
473
474
475
476
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
477

478
479
480
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
481
482
483
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
484
485
486
487
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
488
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
489
            inputs["head_mask"] = head_mask
490
491
492
493
494
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
495
496
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
497
            outputs = model(**inputs, return_dict=True)
498
499
500
501
502
503
504
505
506

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
528
                check_attentions_validity(outputs.cross_attentions)
529
530
            else:
                check_attentions_validity(outputs.attentions)
531

Patrick von Platen's avatar
Patrick von Platen committed
532
533
    def test_head_pruning(self):
        if not self.test_pruning:
534
535
536
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
537
538
539
540
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
541

542
543
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
544

545
            inputs_dict["output_attentions"] = True
546
547
548
549
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
550
551
552
553
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
554
555
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
556
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
557

558
            attentions = outputs[-1]
559

560
561
562
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
563

Patrick von Platen's avatar
Patrick von Platen committed
564
565
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
566
            return
LysandreJik's avatar
LysandreJik committed
567

568
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
569
570
571
572
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
573
574
575

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
576

577
            inputs_dict["output_attentions"] = True
578
579
580
581
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
582
583
584
585
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
586
            model.prune_heads(heads_to_prune)
587

588
            with tempfile.TemporaryDirectory() as temp_dir_name:
589
590
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
591
                model.to(torch_device)
592

593
            with torch.no_grad():
594
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
595
596
597
598
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
599

Patrick von Platen's avatar
Patrick von Platen committed
600
601
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
602
            return
603

604
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
605
606
607
608
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
609

610
611
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
612

613
            inputs_dict["output_attentions"] = True
614
            config.output_hidden_states = False
615

616
617
618
619
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
620
            config.pruned_heads = heads_to_prune
621

622
623
624
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
625

626
            with torch.no_grad():
627
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
628
            attentions = outputs[-1]
629

630
631
632
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
633

Patrick von Platen's avatar
Patrick von Platen committed
634
635
    def test_head_pruning_integration(self):
        if not self.test_pruning:
636
            return
637

638
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
639
640
641
642
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
643

644
645
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
646

647
            inputs_dict["output_attentions"] = True
648
            config.output_hidden_states = False
649

650
651
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
652

653
654
655
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
656

657
            with torch.no_grad():
658
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
659
            attentions = outputs[-1]
660

661
662
663
664
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
665

666
            with tempfile.TemporaryDirectory() as temp_dir_name:
667
668
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
669
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
670

671
            with torch.no_grad():
672
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
673
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
674

675
676
677
678
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
679

680
681
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
682

683
            with torch.no_grad():
684
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
685
            attentions = outputs[-1]
686

687
688
689
690
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
691

692
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
693

Patrick von Platen's avatar
Patrick von Platen committed
694
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
695
        def check_hidden_states_output(inputs_dict, config, model_class):
696
            model = model_class(config)
697
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
698
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
699

thomwolf's avatar
thomwolf committed
700
            with torch.no_grad():
701
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
702
703

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
704

Sylvain Gugger's avatar
Sylvain Gugger committed
705
706
707
708
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
709

Patrick von Platen's avatar
Patrick von Platen committed
710
711
712
713
714
715
716
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

717
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
718
719
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
720
            )
thomwolf's avatar
thomwolf committed
721

722
723
724
725
726
727
728
729
730
731
732
733
734
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
735
736
737
738
739
740
741
742
743
744
745
746
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

747
748
749
750
751
752
753
754
755
756
757
758
759
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
760
761

        print(outputs)
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_attentions = outputs.encoder_attentions[0]
            encoder_hidden_states.retain_grad()
            encoder_attentions.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_attentions = outputs.decoder_attentions[0]
            decoder_hidden_states.retain_grad()
            decoder_attentions.retain_grad()

            cross_attentions = outputs.cross_attentions[0]
            cross_attentions.retain_grad()

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(encoder_attentions.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
            self.assertIsNotNone(decoder_attentions.grad)
            self.assertIsNotNone(cross_attentions.grad)
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            attentions = outputs.attentions[0]

            hidden_states.retain_grad()
            attentions.retain_grad()

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
            self.assertIsNotNone(attentions.grad)

Pradhy729's avatar
Pradhy729 committed
799
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
800
801
802
803
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

Patrick von Platen's avatar
Patrick von Platen committed
822
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
823
824
825
826
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
827
        if not self.test_resize_embeddings:
828
829
830
831
832
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
833
            model.to(torch_device)
834

Patrick von Platen's avatar
Patrick von Platen committed
835
836
837
            if self.model_tester.is_training is False:
                model.eval()

838
839
840
841
842
843
844
845
846
847
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
848
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
849
            model(**self._prepare_for_class(inputs_dict, model_class))
850
851
852
853
854
855
856

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

857
858
859
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
860
861
862
863

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
864
            model(**self._prepare_for_class(inputs_dict, model_class))
865

866
867
868
869
870
871
872
873
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
925
    def test_model_common_attributes(self):
926
927
928
929
930
931
932
933
934
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(torch.nn.Embedding(10, 10))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, torch.nn.Linear))

935
    def test_correct_missing_keys(self):
936
937
        if not self.test_missing_keys:
            return
938
939
940
941
942
943
944
945
946
947
948
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)

949
                    with self.subTest(msg=f"Missing keys for {model.__class__.__name__}"):
950
951
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

1000
1001
1002
1003
    def test_model_outputs_equivalence(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
1004
1005
1006
1007
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
1021
1022
1023
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
1024
                            msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.",
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

Patrick von Platen's avatar
Patrick von Platen committed
1064
    def test_inputs_embeds(self):
1065
1066
1067
1068
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1069
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1070
            model.eval()
1071

1072
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
1073

1074
1075
1076
1077
1078
1079
1080
1081
1082
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

1083
1084
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
1085
                inputs["inputs_embeds"] = wte(input_ids)
1086
            else:
1087
1088
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
1089

thomwolf's avatar
thomwolf committed
1090
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
1091
                model(**inputs)[0]
1092

1093
1094
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
1095
1096
1097
1098
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
1099
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
            model = torch.nn.DataParallel(model)
            with torch.no_grad():
1116
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
1117

1118
1119
1120
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
1121
            return
1122

1123
        # a candidate for testing_utils
1124
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
1125
            """returns a list of cuda memory allocations per GPU in MBs"""
1126
1127
1128
1129
1130

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
1131
1132
1133
1134
1135
1136
1137
1138
1139

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

1140
1141
1142
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
1143

1144
1145
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
1146
1147
1148
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

1149
1150
1151
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

1152
            del model
1153
            gc.collect()
1154
1155
            torch.cuda.empty_cache()

1156
1157
1158
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
1159
1160

            # Spread model layers over multiple devices
1161
            model = model_class(config)
1162
1163
1164
1165
1166
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
            for n in range(torch.cuda.device_count()):
1167
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
1168

1169
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
1170
1171
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

1172
1173
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
1174
1175
1176
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
1177
            gc.collect()
1178
1179
1180
1181
1182
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
1183
            return
1184
1185
1186
1187
1188
1189

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

1190
            def cast_to_device(dictionary, device):
1191
1192
1193
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
1194
                        output[k] = v.to(device)
1195
1196
1197
1198
1199
                    else:
                        output[k] = v

                return output

1200
1201
1202
1203
1204
1205
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
1206
1207
1208
1209
1210
1211
1212
1213

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
    @require_torch_multi_gpu
    def test_model_parallel_beam_search(self):
        if not self.test_model_parallel:
            return

        all_generative_and_parallelizable_model_classes = tuple(
            set(self.all_generative_model_classes).intersection(self.all_parallelizable_model_classes)
        )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in all_generative_and_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            def cast_to_device(dictionary, device):
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
                        output[k] = v.to(device)
                    else:
                        output[k] = v

                return output

            model.parallelize()
            model.generate(**cast_to_device(inputs_dict, "cuda:0"), num_beams=2)

1242

1243
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
1244
1245


thomwolf's avatar
thomwolf committed
1246
def ids_tensor(shape, vocab_size, rng=None, name=None):
1247
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
1248
    if rng is None:
1249
        rng = global_rng
thomwolf's avatar
thomwolf committed
1250

thomwolf's avatar
thomwolf committed
1251
1252
1253
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
1254

thomwolf's avatar
thomwolf committed
1255
1256
1257
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
1258

1259
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
1260
1261


1262
1263
1264
1265
1266
1267
1268
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


1269
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
1270
    """Creates a random float32 tensor"""
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

1282
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
1283
1284


1285
@require_torch
thomwolf's avatar
thomwolf committed
1286
class ModelUtilsTest(unittest.TestCase):
1287
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
1288
    def test_model_from_pretrained(self):
1289
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
Lysandre Debut's avatar
Lysandre Debut committed
1302
1303
1304
1305

            # Not sure this is the intended behavior. TODO fix Lysandre & Thom
            config.name_or_path = model_name

thomwolf's avatar
thomwolf committed
1306
1307
1308
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
1309
1310
1311
1312
1313

    def test_model_from_pretrained_with_different_pretrained_model_name(self):
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertIsNotNone(model)

1314
1315
        logger = logging.get_logger("transformers.configuration_utils")
        with CaptureLogger(logger) as cl:
1316
            BertModel.from_pretrained(TINY_T5)
1317
        self.assertTrue("You are using a model of type t5 to instantiate a model of type bert" in cl.out)
Sylvain Gugger's avatar
Sylvain Gugger committed
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368


@require_torch
@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls._api = HfApi(endpoint=ENDPOINT_STAGING)
        cls._token = cls._api.login(username=USER, password=PASS)

    @classmethod
    def tearDownClass(cls):
        try:
            cls._api.delete_repo(token=cls._token, name="test-model")
        except HTTPError:
            pass

        try:
            cls._api.delete_repo(token=cls._token, name="test-model-org", organization="valid_org")
        except HTTPError:
            pass

    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, push_to_hub=True, repo_name="test-model", use_auth_token=self._token)

            new_model = BertModel.from_pretrained(f"{USER}/test-model")
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
                tmp_dir,
                push_to_hub=True,
                repo_name="test-model-org",
                use_auth_token=self._token,
                organization="valid_org",
            )

            new_model = BertModel.from_pretrained("valid_org/test-model-org")
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))