"src/vscode:/vscode.git/clone" did not exist on "12617aeaa9c89963104d5e0ea956d796728c3464"
check_repo.py 33.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
import importlib
import inspect
import os
import re
20
import warnings
21
from collections import OrderedDict
22
from difflib import get_close_matches
23
from pathlib import Path
24

25
from transformers import is_flax_available, is_tf_available, is_torch_available
26
from transformers.models.auto import get_values
27
from transformers.utils import ENV_VARS_TRUE_VALUES
28

29
30
31
32
33

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
34
PATH_TO_DOC = "docs/source/en"
35

36
37
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
Jongjyh's avatar
Jongjyh committed
38
    "AltRobertaModel",
39
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
40
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
41
    "RealmBertModel",
42
    "T5Stack",
43
    "MT5Stack",
44
    "SwitchTransformersStack",
45
    "TFDPRSpanPredictor",
46
47
    "MaskFormerSwinModel",
    "MaskFormerSwinPreTrainedModel",
48
49
]

50
51
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
52
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
53
    # models to ignore for not tested
NielsRogge's avatar
NielsRogge committed
54
    "CLIPSegDecoder",  # Building part of bigger (tested) model.
55
56
    "TableTransformerEncoder",  # Building part of bigger (tested) model.
    "TableTransformerDecoder",  # Building part of bigger (tested) model.
57
58
    "TimeSeriesTransformerEncoder",  # Building part of bigger (tested) model.
    "TimeSeriesTransformerDecoder",  # Building part of bigger (tested) model.
59
60
    "JukeboxVQVAE",  # Building part of bigger (tested) model.
    "JukeboxPrior",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
61
62
    "DeformableDetrEncoder",  # Building part of bigger (tested) model.
    "DeformableDetrDecoder",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
63
    "OPTDecoder",  # Building part of bigger (tested) model.
64
65
    "WhisperDecoder",  # Building part of bigger (tested) model.
    "WhisperEncoder",  # Building part of bigger (tested) model.
66
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
67
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
68
69
70
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
71
72
73
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
74
75
76
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
77
78
    "ConditionalDetrEncoder",  # Building part of bigger (tested) model.
    "ConditionalDetrDecoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
79
80
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Chan Woo Kim's avatar
Chan Woo Kim committed
81
    "MCTCTEncoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
82
83
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
84
85
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
86
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
87
    "BartEncoder",  # Building part of bigger (tested) model.
88
    "BertLMHeadModel",  # Needs to be setup as decoder.
89
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
90
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
91
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
92
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
93
    "MBartEncoder",  # Building part of bigger (tested) model.
94
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
95
96
97
98
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
StevenTang1998's avatar
StevenTang1998 committed
99
100
    "MvpDecoderWrapper",  # Building part of bigger (tested) model.
    "MvpEncoder",  # Building part of bigger (tested) model.
101
    "PegasusEncoder",  # Building part of bigger (tested) model.
102
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
Jason Phang's avatar
Jason Phang committed
103
104
105
    "PegasusXEncoder",  # Building part of bigger (tested) model.
    "PegasusXDecoder",  # Building part of bigger (tested) model.
    "PegasusXDecoderWrapper",  # Building part of bigger (tested) model.
106
    "DPREncoder",  # Building part of bigger (tested) model.
107
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
108
109
110
111
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
112
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
113
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
114
    "TFDPREncoder",  # Building part of bigger (tested) model.
115
116
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
117
    "TFRobertaPreLayerNormForMultipleChoice",  # TODO: fix
118
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
amyeroberts's avatar
amyeroberts committed
119
120
    "TFWhisperEncoder",  # Building part of bigger (tested) model.
    "TFWhisperDecoder",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
121
    "SeparableConv1D",  # Building part of bigger (tested) model.
122
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
123
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
124
    "OPTDecoderWrapper",
125
    "TFSegformerDecodeHead",  # Not a regular model.
Jongjyh's avatar
Jongjyh committed
126
    "AltRobertaModel",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
127
    "BlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
128
129
130
131
132
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
148
149
]

150
151
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
152
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
153
    # models to ignore for model xxx mapping
154
    "GitVisionModel",
Younes Belkada's avatar
Younes Belkada committed
155
156
157
158
159
160
    "BlipForConditionalGeneration",
    "BlipForImageTextRetrieval",
    "BlipForQuestionAnswering",
    "BlipVisionModel",
    "BlipTextLMHeadModel",
    "BlipTextModel",
NielsRogge's avatar
NielsRogge committed
161
    "Swin2SRForImageSuperResolution",
NielsRogge's avatar
NielsRogge committed
162
163
164
    "CLIPSegForImageSegmentation",
    "CLIPSegVisionModel",
    "CLIPSegTextModel",
Matt's avatar
Matt committed
165
    "EsmForProteinFolding",
166
    "TimeSeriesTransformerForPrediction",
167
168
    "JukeboxVQVAE",
    "JukeboxPrior",
Jason Phang's avatar
Jason Phang committed
169
170
171
172
173
174
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
175
    "DPTForDepthEstimation",
176
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
177
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
178
179
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
180
    "ViltForTokenClassification",
NielsRogge's avatar
NielsRogge committed
181
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
182
183
184
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
185
186
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
187
    "SegformerDecodeHead",
188
    "TFSegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
189
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
190
191
192
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
193
    "BeitForMaskedImageModeling",
194
195
    "ChineseCLIPTextModel",
    "ChineseCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
196
    "CLIPTextModel",
197
    "CLIPTextModelWithProjection",
Suraj Patil's avatar
Suraj Patil committed
198
    "CLIPVisionModel",
199
    "CLIPVisionModelWithProjection",
200
201
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
202
203
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
204
205
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
Suraj Patil's avatar
Suraj Patil committed
206
207
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
208
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
209
    "DetrForSegmentation",
210
    "ConditionalDetrForSegmentation",
211
212
    "DPRReader",
    "FlaubertForQuestionAnswering",
213
214
215
216
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
217
    "GPT2DoubleHeadsModel",
218
    "GPTSw3DoubleHeadsModel",
219
    "LayoutLMForQuestionAnswering",
Ryokan RI's avatar
Ryokan RI committed
220
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
221
222
223
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
224
    "OpenAIGPTDoubleHeadsModel",
225
226
227
    "OwlViTTextModel",
    "OwlViTVisionModel",
    "OwlViTForObjectDetection",
228
229
230
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
231
232
233
234
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
235
    "TFDPRReader",
236
    "TFGPT2DoubleHeadsModel",
237
    "TFLayoutLMForQuestionAnswering",
238
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
239
240
241
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
242
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
243
    "HubertForCTC",
244
245
    "SEWForCTC",
    "SEWDForCTC",
246
247
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
248
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
249
250
251
252
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
253
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
254
    "TFHubertForCTC",
NielsRogge's avatar
NielsRogge committed
255
256
    "XCLIPVisionModel",
    "XCLIPTextModel",
Jongjyh's avatar
Jongjyh committed
257
258
259
    "AltCLIPTextModel",
    "AltCLIPVisionModel",
    "AltRobertaModel",
260
261
]

262
263
264
265
266
267
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
268
        ("data2vec-vision", "data2vec"),
NielsRogge's avatar
NielsRogge committed
269
        ("donut-swin", "donut"),
270
271
272
273
    ]
)


274
275
276
277
278
279
280
281
282
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()


283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

    missing_models = sorted(list(set(_models).difference(models)))
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


303
304
305
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
306
    """Get the model modules inside the transformers library."""
307
308
309
310
311
312
313
314
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
315
        "modeling_flax_auto",
316
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
317
        "modeling_flax_utils",
318
        "modeling_speech_encoder_decoder",
319
        "modeling_flax_speech_encoder_decoder",
320
        "modeling_flax_vision_encoder_decoder",
321
322
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
323
        "modeling_tf_encoder_decoder",
324
325
326
327
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
328
        "modeling_tf_vision_encoder_decoder",
329
        "modeling_vision_encoder_decoder",
330
331
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
332
333
334
335
336
337
338
339
340
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
341
342
343
    return modules


344
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
345
    """Get the objects in module that are models."""
346
    models = []
347
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
348
    for attr_name in dir(module):
349
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
350
351
352
353
354
355
356
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


387
388
389
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Yih-Dar's avatar
Yih-Dar committed
390
391
392
393
394
395
    """Get the model test files.

    The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
    considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
    """

396
397
398
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
399
        "test_modeling_flax_encoder_decoder",
400
        "test_modeling_flax_speech_encoder_decoder",
401
402
        "test_modeling_marian",
        "test_modeling_tf_common",
403
        "test_modeling_tf_encoder_decoder",
404
405
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    # Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
                if "test_modeling" in filename and not os.path.splitext(filename)[0] in _ignore_files:
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

423
424
425
426
427
428
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
429
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
430
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
431
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
432
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
433
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
434
435
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
436
    if len(all_models) > 0:
437
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
438
439
440
441
442
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
443
444
445
446
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
447
    """Check models defined in module are tested in test_file."""
448
    # XxxPreTrainedModel are not tested
449
450
451
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
452
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
472
    """Check all models are properly tested."""
473
474
475
476
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
477
478
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
479
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
480
481
482
483
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
484
485
486
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
487
488
489
490
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


491
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
492
    """Return the list of all models in at least one auto class."""
493
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
494
495
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
496
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
497
498
499
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
500
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
501
502
503
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
504
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
505
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
506
    return [cls for cls in result]
507
508


509
510
511
512
513
514
515
516
517
518
519
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


520
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
521
    """Check models defined in module are each in an auto class."""
522
523
524
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
525
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
526
527
528
529
530
531
532
533
534
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
535
    """Check all models are each in an auto class."""
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
557
558
559
560
561
562
563
564
565
566
567
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
568
569
570
571
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
572
    """Check that in the test file `filename` the slow decorator is always last."""
573
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
590
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
591
592
593
594
595
596
597
598
599
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
600
601
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
602
603
604
        )


605
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
606
    """Parse the content of all doc files to detect which classes and functions it documents"""
607
608
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
609
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
610
611
612
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
613
614
615
616
617
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
618
619
620
621
622
623
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
624
    "BartPretrainedModel",
625
626
    "DataCollator",
    "DataCollatorForSOP",
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
642
    "TFBartPretrainedModel",
643
644
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
645
    "Wav2Vec2ForMaskedLM",
646
    "Wav2Vec2Tokenizer",
647
648
649
650
651
652
653
654
655
656
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
657
658
    "TFTrainer",
    "TFTrainingArguments",
659
660
661
662
663
664
665
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
666
    "CharacterTokenizer",  # Internal, should never have been in the main init.
667
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
668
    "DummyObject",  # Just picked by mistake sometimes.
669
    "MecabTokenizer",  # Internal, should never have been in the main init.
670
671
672
673
674
675
676
677
678
679
680
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
681
    "requires_backends",  # Internal function
Jongjyh's avatar
Jongjyh committed
682
    "AltRobertaModel",  # Internal module
683
684
685
686
687
688
689
690
691
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
NielsRogge's avatar
NielsRogge committed
692
    "BitBackbone",
693
    "MaskFormerSwinBackbone",
694
695
    "ResNetBackbone",
    "AutoBackbone",
696
697
    "DinatBackbone",
    "NatBackbone",
698
699
    "MaskFormerSwinConfig",
    "MaskFormerSwinModel",
NielsRogge's avatar
NielsRogge committed
700
    "SwinBackbone",
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
743
    """Check all models are properly documented."""
744
    documented_objs = find_all_documented_objects()
745
746
747
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
748
749
750
751
752
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
753
    check_docstrings_are_in_md()
754
755
756
757
758
759
760
761
762
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
763
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
809
        with open(file, encoding="utf-8") as f:
810
811
812
813
814
815
816
817
818
819
820
821
822
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
823
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
824
825
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
826
827


828
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
829
    """Check all models are properly tested and documented."""
830
831
    print("Checking all models are included.")
    check_model_list()
832
833
    print("Checking all models are public.")
    check_models_are_in_init()
834
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
835
    check_all_decorator_order()
836
    check_all_models_are_tested()
837
    print("Checking all objects are properly documented.")
838
    check_all_objects_are_documented()
839
840
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
841
842
843
844


if __name__ == "__main__":
    check_repo_quality()