modeling_utils.py 148 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

17
import gc
Sylvain Gugger's avatar
Sylvain Gugger committed
18
import json
19
import os
20
import re
Sylvain Gugger's avatar
Sylvain Gugger committed
21
22
import shutil
import tempfile
23
import warnings
24
from contextlib import contextmanager
25
from dataclasses import dataclass
26
from functools import partial
27
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
28
29

import torch
30
from packaging import version
31
from torch import Tensor, device, nn
32
from torch.nn import CrossEntropyLoss
33

Arthur's avatar
Arthur committed
34
from transformers.utils.hub import convert_file_size_to_int, get_checkpoint_shard_files
35
from transformers.utils.import_utils import is_sagemaker_mp_enabled
36

37
from .activations import get_activation
38
from .configuration_utils import PretrainedConfig
39
from .deepspeed import deepspeed_config, is_deepspeed_zero3_enabled
40
from .dynamic_module_utils import custom_object_save
41
from .generation import GenerationMixin
42
43
44
45
46
47
48
49
from .pytorch_utils import (  # noqa: F401
    Conv1D,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
    prune_conv1d_layer,
    prune_layer,
    prune_linear_layer,
)
50
from .utils import (
Aymeric Augustin's avatar
Aymeric Augustin committed
51
    DUMMY_INPUTS,
52
    FLAX_WEIGHTS_NAME,
53
54
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
55
56
    TF2_WEIGHTS_NAME,
    TF_WEIGHTS_NAME,
Sylvain Gugger's avatar
Sylvain Gugger committed
57
    WEIGHTS_INDEX_NAME,
58
    WEIGHTS_NAME,
59
    ContextManagers,
60
    ModelOutput,
Sylvain Gugger's avatar
Sylvain Gugger committed
61
    PushToHubMixin,
62
    cached_file,
63
    copy_func,
64
    download_url,
65
    has_file,
66
    is_accelerate_available,
67
    is_bitsandbytes_available,
68
    is_offline_mode,
69
    is_remote_url,
70
    is_safetensors_available,
71
    logging,
Sylvain Gugger's avatar
Sylvain Gugger committed
72
    replace_return_docstrings,
73
)
74
from .utils.versions import require_version_core
75

Aymeric Augustin's avatar
Aymeric Augustin committed
76

77
if is_accelerate_available():
78
    from accelerate import __version__ as accelerate_version
79
80
81
82
83
84
85
86
    from accelerate import dispatch_model, infer_auto_device_map, init_empty_weights
    from accelerate.utils import (
        load_offloaded_weights,
        offload_weight,
        save_offload_index,
        set_module_tensor_to_device,
    )

87
88
89
90
91
    if version.parse(accelerate_version) > version.parse("0.11.0"):
        from accelerate.utils import get_balanced_memory
    else:
        get_balanced_memory = None

92
93
94
95
if is_safetensors_available():
    from safetensors import safe_open
    from safetensors.torch import load_file as safe_load_file
    from safetensors.torch import save_file as safe_save_file
96

Lysandre Debut's avatar
Lysandre Debut committed
97
logger = logging.get_logger(__name__)
98

99
100
101
102

_init_weights = True


103
104
105
106
107
108
109
110
111
if is_sagemaker_mp_enabled():
    import smdistributed.modelparallel.torch as smp
    from smdistributed.modelparallel import __version__ as SMP_VERSION

    IS_SAGEMAKER_MP_POST_1_10 = version.parse(SMP_VERSION) >= version.parse("1.10")
else:
    IS_SAGEMAKER_MP_POST_1_10 = False


112
113
114
115
116
117
118
119
@contextmanager
def no_init_weights(_enable=True):
    """
    Context manager to globally disable weight initialization to speed up loading large models.

    TODO(Patrick): Delete safety argument `_enable=True` at next major version. .
    """
    global _init_weights
120
    old_init_weights = _init_weights
121
122
123
124
125
    if _enable:
        _init_weights = False
    try:
        yield
    finally:
126
        _init_weights = old_init_weights
127
128


thomwolf's avatar
thomwolf committed
129
130
131
132
133
try:
    from torch.nn import Identity
except ImportError:
    # Older PyTorch compatibility
    class Identity(nn.Module):
Lysandre's avatar
Lysandre committed
134
        r"""A placeholder identity operator that is argument-insensitive."""
135

thomwolf's avatar
thomwolf committed
136
        def __init__(self, *args, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
137
            super().__init__()
thomwolf's avatar
thomwolf committed
138
139
140
141

        def forward(self, input):
            return input

142

Lysandre Debut's avatar
Lysandre Debut committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
def get_parameter_device(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    try:
        return next(parameter.parameters()).device
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


158
159
160
161
def get_first_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    """
    Returns the first parameter dtype (can be non-floating) or asserts if none were found.
    """
Lysandre Debut's avatar
Lysandre Debut committed
162
163
164
    try:
        return next(parameter.parameters()).dtype
    except StopIteration:
Sylvain Gugger's avatar
Sylvain Gugger committed
165
        # For nn.DataParallel compatibility in PyTorch > 1.5
Lysandre Debut's avatar
Lysandre Debut committed
166
167
168
169
170
171
172
173
174
175

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


176
177
def get_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
178
    Returns the first found floating dtype in parameters if there is one, otherwise returns the last dtype it found.
179
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
180
181
182
183
184
    last_dtype = None
    for t in parameter.parameters():
        last_dtype = t.dtype
        if t.is_floating_point():
            return t.dtype
185

Sylvain Gugger's avatar
Sylvain Gugger committed
186
187
188
    if last_dtype is not None:
        # if no floating dtype was found return whatever the first dtype is
        return last_dtype
189

Sylvain Gugger's avatar
Sylvain Gugger committed
190
191
    else:
        # For nn.DataParallel compatibility in PyTorch > 1.5
192
193
194
195
196
        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
Sylvain Gugger's avatar
Sylvain Gugger committed
197
        last_tuple = None
198
        for tuple in gen:
Sylvain Gugger's avatar
Sylvain Gugger committed
199
            last_tuple = tuple
200
201
            if tuple[1].is_floating_point():
                return tuple[1].dtype
Sylvain Gugger's avatar
Sylvain Gugger committed
202
203
204

        # fallback to the last dtype
        return last_tuple[1].dtype
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219


def get_state_dict_float_dtype(state_dict):
    """
    Returns the first found floating dtype in `state_dict` or asserts if none were found.
    """
    for t in state_dict.values():
        if t.is_floating_point():
            return t.dtype

    raise ValueError("couldn't find any floating point dtypes in state_dict")


def get_state_dict_dtype(state_dict):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
220
    Returns the first found floating dtype in `state_dict` if there is one, otherwise returns the first dtype.
221
222
223
224
225
226
227
    """
    for t in state_dict.values():
        if t.is_floating_point():
            return t.dtype

    # if no floating dtype was found return whatever the first dtype is
    else:
Sylvain Gugger's avatar
Sylvain Gugger committed
228
        return next(state_dict.values()).dtype
229
230


Sylvain Gugger's avatar
Sylvain Gugger committed
231
232
233
234
235
236
237
238
239
240
241
242
243
def dtype_byte_size(dtype):
    """
    Returns the size (in bytes) occupied by one parameter of type `dtype`.

    Example:

    ```py
    >>> dtype_byte_size(torch.float32)
    4
    ```
    """
    if dtype == torch.bool:
        return 1 / 8
244
    bit_search = re.search(r"[^\d](\d+)$", str(dtype))
Sylvain Gugger's avatar
Sylvain Gugger committed
245
246
247
248
249
250
    if bit_search is None:
        raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
    bit_size = int(bit_search.groups()[0])
    return bit_size // 8


251
252
253
def shard_checkpoint(
    state_dict: Dict[str, torch.Tensor], max_shard_size: Union[int, str] = "10GB", weights_name: str = WEIGHTS_NAME
):
Sylvain Gugger's avatar
Sylvain Gugger committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
    """
    Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
    given size.

    The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no
    optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the
    limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB],
    [6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB].

    <Tip warning={true}>

    If one of the model's weight is bigger that `max_sahrd_size`, it will end up in its own sub-checkpoint which will
    have a size greater than `max_shard_size`.

    </Tip>

    Args:
        state_dict (`Dict[str, torch.Tensor]`): The state dictionary of a model to save.
        max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
            The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit
            (like `"5MB"`).
275
276
        weights_name (`str`, *optional*, defaults to `"pytorch_model.bin"`):
            The name of the model save file.
Sylvain Gugger's avatar
Sylvain Gugger committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    """
    max_shard_size = convert_file_size_to_int(max_shard_size)

    sharded_state_dicts = []
    current_block = {}
    current_block_size = 0
    total_size = 0

    for key, weight in state_dict.items():
        weight_size = weight.numel() * dtype_byte_size(weight.dtype)

        # If this weight is going to tip up over the maximal size, we split.
        if current_block_size + weight_size > max_shard_size:
            sharded_state_dicts.append(current_block)
            current_block = {}
            current_block_size = 0

        current_block[key] = weight
        current_block_size += weight_size
        total_size += weight_size

    # Add the last block
    sharded_state_dicts.append(current_block)

    # If we only have one shard, we return it
    if len(sharded_state_dicts) == 1:
303
        return {weights_name: sharded_state_dicts[0]}, None
Sylvain Gugger's avatar
Sylvain Gugger committed
304
305
306
307
308

    # Otherwise, let's build the index
    weight_map = {}
    shards = {}
    for idx, shard in enumerate(sharded_state_dicts):
309
310
311
312
        shard_file = weights_name.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin")
        shard_file = shard_file.replace(
            ".safetensors", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.safetensors"
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
313
314
315
316
317
318
319
320
321
322
        shards[shard_file] = shard
        for key in shard.keys():
            weight_map[key] = shard_file

    # Add the metadata
    metadata = {"total_size": total_size}
    index = {"metadata": metadata, "weight_map": weight_map}
    return shards, index


323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
def load_sharded_checkpoint(model, folder, strict=True):
    """
    This is the same as
    [`torch.nn.Module.load_state_dict`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html?highlight=load_state_dict#torch.nn.Module.load_state_dict)
    but for a sharded checkpoint.

    This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being
    loaded in the model.

    Args:
        model (`torch.nn.Module`): The model in which to load the checkpoint.
        folder (`str` or `os.PathLike`): A path to a folder containing the sharded checkpoint.
        strict (`bool`, *optional`, defaults to `True`):
            Whether to strictly enforce that the keys in the model state dict match the keys in the sharded checkpoint.

    Returns:
        `NamedTuple`: A named tuple with `missing_keys` and `unexpected_keys` fields
            - `missing_keys` is a list of str containing the missing keys
            - `unexpected_keys` is a list of str containing the unexpected keys
    """
    # Load the index
    index_file = os.path.join(folder, WEIGHTS_INDEX_NAME)
    if not os.path.isfile(index_file):
        raise ValueError(f"Can't find a checkpoint index ({WEIGHTS_INDEX_NAME}) in {folder}.")

    with open(index_file, "r", encoding="utf-8") as f:
        index = json.load(f)

    shard_files = list(set(index["weight_map"].values()))

    # If strict=True, error before loading any of the state dicts.
    loaded_keys = index["weight_map"].keys()
    model_keys = model.state_dict().keys()
    missing_keys = [key for key in model_keys if key not in loaded_keys]
    unexpected_keys = [key for key in loaded_keys if key not in model_keys]
    if strict and (len(missing_keys) > 0 or len(unexpected_keys) > 0):
        error_message = f"Error(s) in loading state_dict for {model.__class__.__name__}"
        if len(missing_keys) > 0:
            str_missing_keys = ",".join([f'"{k}"' for k in missing_keys])
            error_message += f"\nMissing key(s): {str_missing_keys}."
        if len(unexpected_keys) > 0:
            str_unexpected_keys = ",".join([f'"{k}"' for k in unexpected_keys])
            error_message += f"\nMissing key(s): {str_unexpected_keys}."
        raise RuntimeError(error_message)

    for shard_file in shard_files:
        state_dict = torch.load(os.path.join(folder, shard_file))
        model.load_state_dict(state_dict, strict=False)

        # Make sure memory is fred before we load the next state dict.
        del state_dict
        gc.collect()

    # Return the same thing as PyTorch load_state_dict function.
    return torch.nn.modules.module._IncompatibleKeys(missing_keys, unexpected_keys)


Sylvain Gugger's avatar
Sylvain Gugger committed
380
381
382
383
def load_state_dict(checkpoint_file: Union[str, os.PathLike]):
    """
    Reads a PyTorch checkpoint file, returning properly formatted errors if they arise.
    """
384
385
386
387
388
389
390
391
392
393
394
395
396
397
    if checkpoint_file.endswith(".safetensors") and is_safetensors_available():
        # Check format of the archive
        with safe_open(checkpoint_file, framework="pt") as f:
            metadata = f.metadata()
        if metadata.get("format") not in ["pt", "tf", "flax"]:
            raise OSError(
                f"The safetensors archive passed at {checkpoint_file} does not contain the valid metadata. Make sure "
                "you save your model with the `save_pretrained` method."
            )
        elif metadata["format"] != "pt":
            raise NotImplementedError(
                f"Conversion from a {metadata['format']} safetensors archive to PyTorch is not implemented yet."
            )
        return safe_load_file(checkpoint_file)
Sylvain Gugger's avatar
Sylvain Gugger committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
    try:
        return torch.load(checkpoint_file, map_location="cpu")
    except Exception as e:
        try:
            with open(checkpoint_file) as f:
                if f.read().startswith("version"):
                    raise OSError(
                        "You seem to have cloned a repository without having git-lfs installed. Please install "
                        "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
                        "you cloned."
                    )
                else:
                    raise ValueError(
                        f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
                        "model. Make sure you have saved the model properly."
                    ) from e
        except (UnicodeDecodeError, ValueError):
            raise OSError(
                f"Unable to load weights from pytorch checkpoint file for '{checkpoint_file}' "
                f"at '{checkpoint_file}'. "
                "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
            )


def _load_state_dict_into_model(model_to_load, state_dict, start_prefix):
    # Convert old format to new format if needed from a PyTorch state_dict
    old_keys = []
    new_keys = []
    for key in state_dict.keys():
        new_key = None
        if "gamma" in key:
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        state_dict[new_key] = state_dict.pop(old_key)

    # copy state_dict so _load_from_state_dict can modify it
    metadata = getattr(state_dict, "_metadata", None)
    state_dict = state_dict.copy()
    if metadata is not None:
        state_dict._metadata = metadata

    error_msgs = []

    # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
    # so we need to apply the function recursively.
448
    def load(module: nn.Module, state_dict, prefix=""):
Sylvain Gugger's avatar
Sylvain Gugger committed
449
450
        local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
        args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
        # Parameters of module and children will start with prefix. We can exit early if there are none in this
        # state_dict
        if len([key for key in state_dict if key.startswith(prefix)]) > 0:
            if is_deepspeed_zero3_enabled():
                import deepspeed

                # In sharded models, each shard has only part of the full state_dict, so only gather
                # parameters that are in the current state_dict.
                named_parameters = dict(module.named_parameters(prefix=prefix[:-1], recurse=False))
                params_to_gather = [named_parameters[k] for k in state_dict.keys() if k in named_parameters]
                if len(params_to_gather) > 0:
                    # because zero3 puts placeholders in model params, this context
                    # manager gathers (unpartitions) the params of the current layer, then loads from
                    # the state dict and then re-partitions them again
                    with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=0):
                        if torch.distributed.get_rank() == 0:
                            module._load_from_state_dict(*args)
            else:
                module._load_from_state_dict(*args)
Sylvain Gugger's avatar
Sylvain Gugger committed
470
471
472

        for name, child in module._modules.items():
            if child is not None:
473
                load(child, state_dict, prefix + name + ".")
Sylvain Gugger's avatar
Sylvain Gugger committed
474

475
476
477
478
    load(model_to_load, state_dict, prefix=start_prefix)
    # Delete `state_dict` so it could be collected by GC earlier. Note that `state_dict` is a copy of the argument, so
    # it's safe to delete it.
    del state_dict
Sylvain Gugger's avatar
Sylvain Gugger committed
479
480
481
482

    return error_msgs


483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
def find_submodule_and_param_name(model, long_key, start_prefix):
    """
    A helper util to find the last sub-module and the param/buffer name. If `start_prefix` is supplied it'll be removed
    from the start of the key
    """

    if len(start_prefix) > 0 and long_key.startswith(start_prefix):
        long_key = ".".join(long_key.split(".")[1:])

    split_key = long_key.split(".")
    submodule = model
    while len(split_key) > 1:
        if hasattr(submodule, split_key[0]):
            submodule = getattr(submodule, split_key[0])
            del split_key[0]
        else:
            submodule = None
            break
    if submodule == model:
        submodule = None
    return submodule, split_key[0]


def _move_model_to_meta(model, loaded_state_dict_keys, start_prefix):
    """
    Moves `loaded_state_dict_keys` in model to meta device which frees up the memory taken by those params.

    `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
    `bert.pooler.dense.weight`

    """

    # meta device was added in pt=1.9
    require_version_core("torch>=1.9")

    # dematerialize param storage for keys that are going to be replaced by state_dict, by
    # putting those on the meta device
    for k in loaded_state_dict_keys:
        submodule, param_name = find_submodule_and_param_name(model, k, start_prefix)
        if submodule is not None:
            # selectively switch to the meta device only those params/buffers that will
            # be next replaced from state_dict. This a complex way to do p.to_("meta")
            # since we have no in-place to_ for tensors.
            new_val = getattr(submodule, param_name)
            if isinstance(new_val, torch.nn.Parameter):
                # isinstance returns False for Params on meta device, so switch after the check
                new_val = torch.nn.Parameter(new_val.to("meta"))
            else:
                new_val = new_val.to("meta")
            setattr(submodule, param_name, new_val)


535
536
537
538
539
540
541
542
543
544
545
546
def _load_state_dict_into_meta_model(
    model,
    state_dict,
    loaded_state_dict_keys,  # left for now but could be removed, see below
    start_prefix,
    expected_keys,
    device_map=None,
    offload_folder=None,
    offload_index=None,
    state_dict_folder=None,
    state_dict_index=None,
    dtype=None,
547
    load_in_8bit=False,
548
):
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
    """
    This is somewhat similar to `_load_state_dict_into_model`, but deals with a model that has some or all of its
    params on a `meta` device. It replaces the model params with the data from the `state_dict`, while moving the
    params back to the normal device, but only for `loaded_state_dict_keys`.

    `start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
    `bert.pooler.dense.weight`

    """

    # XXX: remaining features to implement to be fully compatible with _load_state_dict_into_model
    # - deepspeed zero 3 support
    # - need to copy metadata if any - see _load_state_dict_into_model
    # - handling error_msgs - mimicking the error handling in module._load_from_state_dict()
    # - Is there a situation where some keys aren't in `loaded_state_dict_keys` and in which case
    #   they won't get loaded.

566
567
568
    if load_in_8bit:
        from .utils.bitsandbytes import set_module_8bit_tensor_to_device

569
570
    error_msgs = []

571
572
573
574
575
576
577
578
579
580
581
582
583
    old_keys = []
    new_keys = []
    for key in state_dict.keys():
        new_key = None
        if "gamma" in key:
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        state_dict[new_key] = state_dict.pop(old_key)
584

585
586
587
588
589
590
591
592
593
    for param_name, param in state_dict.items():
        # First part of the test is always true as load_state_dict_keys always contains state_dict keys.
        if param_name not in loaded_state_dict_keys or param_name not in expected_keys:
            continue

        if param_name.startswith(start_prefix):
            param_name = param_name[len(start_prefix) :]

        module_name = param_name
594
595
596
597

        # We convert floating dtypes to the `dtype` passed.We want to keep the buffers/params
        # in int/uint/bool and not cast them.
        if dtype is not None and torch.is_floating_point(param):
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
            param = param.to(dtype)

        if device_map is None:
            param_device = "cpu"
        else:
            # find next higher level module that is defined in device_map:
            # bert.lm_head.weight -> bert.lm_head -> bert -> ''
            while len(module_name) > 0 and module_name not in device_map:
                module_name = ".".join(module_name.split(".")[:-1])
            if module_name == "" and "" not in device_map:
                # TODO: group all errors and raise at the end.
                raise ValueError(f"{param_name} doesn't have any device set.")
            param_device = device_map[module_name]
        if param_device == "disk":
            offload_index = offload_weight(param, param_name, offload_folder, offload_index)
        elif param_device == "cpu" and state_dict_index is not None:
            state_dict_index = offload_weight(param, param_name, state_dict_folder, state_dict_index)
615
        elif not load_in_8bit:
Sylvain Gugger's avatar
Sylvain Gugger committed
616
            set_module_tensor_to_device(model, param_name, param_device, value=param)
617
618
        else:
            set_module_8bit_tensor_to_device(model, param_name, param_device, value=param)
619
620

    return error_msgs, offload_index, state_dict_index
621
622


623
class ModuleUtilsMixin:
Julien Chaumond's avatar
Julien Chaumond committed
624
    """
625
    A few utilities for `torch.nn.Modules`, to be used as a mixin.
Julien Chaumond's avatar
Julien Chaumond committed
626
627
    """

628
629
630
631
    @staticmethod
    def _hook_rss_memory_pre_forward(module, *args, **kwargs):
        try:
            import psutil
Sylvain Gugger's avatar
Sylvain Gugger committed
632
        except ImportError:
633
634
635
636
637
638
639
640
641
642
643
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_pre_forward = mem.rss
        return None

    @staticmethod
    def _hook_rss_memory_post_forward(module, *args, **kwargs):
        try:
            import psutil
Sylvain Gugger's avatar
Sylvain Gugger committed
644
        except ImportError:
645
646
647
648
649
650
651
652
653
654
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_post_forward = mem.rss
        mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward
        module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0)
        return None

    def add_memory_hooks(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
655
656
657
        """
        Add a memory hook before and after each sub-module forward pass to record increase in memory consumption.

Sylvain Gugger's avatar
Sylvain Gugger committed
658
659
        Increase in memory consumption is stored in a `mem_rss_diff` attribute for each module and can be reset to zero
        with `model.reset_memory_hooks_state()`.
660
661
662
663
664
665
666
        """
        for module in self.modules():
            module.register_forward_pre_hook(self._hook_rss_memory_pre_forward)
            module.register_forward_hook(self._hook_rss_memory_post_forward)
        self.reset_memory_hooks_state()

    def reset_memory_hooks_state(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
667
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
668
        Reset the `mem_rss_diff` attribute of each module (see [`~modeling_utils.ModuleUtilsMixin.add_memory_hooks`]).
Sylvain Gugger's avatar
Sylvain Gugger committed
669
        """
670
671
672
673
674
        for module in self.modules():
            module.mem_rss_diff = 0
            module.mem_rss_post_forward = 0
            module.mem_rss_pre_forward = 0

675
    @property
676
    def device(self) -> device:
677
        """
678
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
679
        device).
680
        """
Lysandre Debut's avatar
Lysandre Debut committed
681
        return get_parameter_device(self)
682

683
    @property
684
    def dtype(self) -> torch.dtype:
685
        """
686
        `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
687
        """
Lysandre Debut's avatar
Lysandre Debut committed
688
        return get_parameter_dtype(self)
689
690

    def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
691
692
693
694
        """
        Invert an attention mask (e.g., switches 0. and 1.).

        Args:
695
            encoder_attention_mask (`torch.Tensor`): An attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
696
697

        Returns:
698
            `torch.Tensor`: The inverted attention mask.
Sylvain Gugger's avatar
Sylvain Gugger committed
699
        """
700
701
702
703
704
705
706
707
708
709
        if encoder_attention_mask.dim() == 3:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
        if encoder_attention_mask.dim() == 2:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
        # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
        # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
        # /transformer/transformer_layers.py#L270
        # encoder_extended_attention_mask = (encoder_extended_attention_mask ==
        # encoder_extended_attention_mask.transpose(-1, -2))
        encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
Yih-Dar's avatar
Yih-Dar committed
710
        encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * torch.finfo(self.dtype).min
711

712
713
        return encoder_extended_attention_mask

714
    @staticmethod
715
716
717
718
719
720
721
    def create_extended_attention_mask_for_decoder(input_shape, attention_mask, device=None):
        if device is not None:
            warnings.warn(
                "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
            )
        else:
            device = attention_mask.device
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
        batch_size, seq_length = input_shape
        seq_ids = torch.arange(seq_length, device=device)
        causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
        # in case past_key_values are used we need to add a prefix ones mask to the causal mask
        # causal and attention masks must have same type with pytorch version < 1.3
        causal_mask = causal_mask.to(attention_mask.dtype)

        if causal_mask.shape[1] < attention_mask.shape[1]:
            prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
            causal_mask = torch.cat(
                [
                    torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
                    causal_mask,
                ],
                axis=-1,
            )

        extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
        return extended_attention_mask

742
    def get_extended_attention_mask(
Yih-Dar's avatar
Yih-Dar committed
743
        self, attention_mask: Tensor, input_shape: Tuple[int], device: device = None, dtype: torch.float = None
744
    ) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
745
746
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
747
748

        Arguments:
749
            attention_mask (`torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
750
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
751
            input_shape (`Tuple[int]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
752
                The shape of the input to the model.
753
754

        Returns:
755
            `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
756
        """
Yih-Dar's avatar
Yih-Dar committed
757
758
759
        if dtype is None:
            dtype = self.dtype

760
761
762
763
764
765
        if not (attention_mask.dim() == 2 and self.config.is_decoder):
            # show warning only if it won't be shown in `create_extended_attention_mask_for_decoder`
            if device is not None:
                warnings.warn(
                    "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
                )
766
767
768
769
770
771
772
773
774
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            if self.config.is_decoder:
775
                extended_attention_mask = ModuleUtilsMixin.create_extended_attention_mask_for_decoder(
776
777
                    input_shape, attention_mask, device
                )
778
779
780
781
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
782
                f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
783
784
785
786
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
787
        # positions we want to attend and the dtype's smallest value for masked positions.
788
789
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
Yih-Dar's avatar
Yih-Dar committed
790
791
        extended_attention_mask = extended_attention_mask.to(dtype=dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min
792
793
        return extended_attention_mask

Sylvain Gugger's avatar
Sylvain Gugger committed
794
795
796
    def get_head_mask(
        self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
    ) -> Tensor:
797
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
798
799
800
        Prepare the head mask if needed.

        Args:
801
            head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
802
                The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
803
            num_hidden_layers (`int`):
Sylvain Gugger's avatar
Sylvain Gugger committed
804
                The number of hidden layers in the model.
805
            is_attention_chunked: (`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
806
807
                Whether or not the attentions scores are computed by chunks or not.

808
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
809
810
            `torch.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with
            `[None]` for each layer.
811
812
813
        """
        if head_mask is not None:
            head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
814
815
            if is_attention_chunked is True:
                head_mask = head_mask.unsqueeze(-1)
816
817
818
819
820
821
822
823
824
825
826
827
828
        else:
            head_mask = [None] * num_hidden_layers

        return head_mask

    def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
        """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
        if head_mask.dim() == 1:
            head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
            head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1)
        elif head_mask.dim() == 2:
            head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
        assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
829
        head_mask = head_mask.to(dtype=self.dtype)  # switch to float if need + fp16 compatibility
830
831
        return head_mask

832
833
834
835
836
    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
        Get number of (optionally, trainable or non-embeddings) parameters in the module.

        Args:
837
            only_trainable (`bool`, *optional*, defaults to `False`):
838
839
                Whether or not to return only the number of trainable parameters

840
            exclude_embeddings (`bool`, *optional*, defaults to `False`):
841
842
843
                Whether or not to return only the number of non-embeddings parameters

        Returns:
844
            `int`: The number of parameters.
845
846
        """

847
848
849
850
851
852
853
854
855
856
        if exclude_embeddings:
            embedding_param_names = [
                f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding)
            ]
            non_embedding_parameters = [
                parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
            ]
            return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable)
        else:
            return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable)
857
858
859
860
861
862

    def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int:
        """
        Helper function to estimate the total number of tokens from the model inputs.

        Args:
863
            inputs (`dict`): The model inputs.
864
865

        Returns:
866
            `int`: The total number of tokens.
867
        """
868
869
        if not hasattr(self, "warnings_issued"):
            self.warnings_issued = {}
870
871
        if self.main_input_name in input_dict:
            return input_dict[self.main_input_name].numel()
872
        elif "estimate_tokens" not in self.warnings_issued:
873
            logger.warning(
874
875
                "Could not estimate the number of tokens of the input, floating-point operations will not be computed"
            )
876
877
            self.warnings_issued["estimate_tokens"] = True
        return 0
878
879
880
881
882
883
884

    def floating_point_ops(
        self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True
    ) -> int:
        """
        Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a
        batch with this transformer model. Default approximation neglects the quadratic dependency on the number of
Sylvain Gugger's avatar
Sylvain Gugger committed
885
886
        tokens (valid if `12 * d_model << sequence_length`) as laid out in [this
        paper](https://arxiv.org/pdf/2001.08361.pdf) section 2.1. Should be overridden for transformers with parameter
Sylvain Gugger's avatar
Sylvain Gugger committed
887
        re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths.
888
889

        Args:
890
            batch_size (`int`):
891
892
                The batch size for the forward pass.

893
            sequence_length (`int`):
894
895
                The number of tokens in each line of the batch.

896
            exclude_embeddings (`bool`, *optional*, defaults to `True`):
897
898
899
                Whether or not to count embedding and softmax operations.

        Returns:
900
            `int`: The number of floating-point operations.
901
902
903
904
        """

        return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings)

Julien Chaumond's avatar
Julien Chaumond committed
905

Sylvain Gugger's avatar
Sylvain Gugger committed
906
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin):
907
908
    r"""
    Base class for all models.
909

Sylvain Gugger's avatar
Sylvain Gugger committed
910
911
    [`PreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading,
    downloading and saving models as well as a few methods common to all models to:
912

913
914
        - resize the input embeddings,
        - prune heads in the self-attention heads.
915

916
    Class attributes (overridden by derived classes):
Sylvain Gugger's avatar
Sylvain Gugger committed
917

Sylvain Gugger's avatar
Sylvain Gugger committed
918
919
920
921
        - **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class
          for this model architecture.
        - **load_tf_weights** (`Callable`) -- A python *method* for loading a TensorFlow checkpoint in a PyTorch model,
          taking as arguments:
922

Sylvain Gugger's avatar
Sylvain Gugger committed
923
924
            - **model** ([`PreTrainedModel`]) -- An instance of the model on which to load the TensorFlow checkpoint.
            - **config** ([`PreTrainedConfig`]) -- An instance of the configuration associated to the model.
925
            - **path** (`str`) -- A path to the TensorFlow checkpoint.
926

Sylvain Gugger's avatar
Sylvain Gugger committed
927
928
        - **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived
          classes of the same architecture adding modules on top of the base model.
929
        - **is_parallelizable** (`bool`) -- A flag indicating whether this model supports model parallelization.
Sylvain Gugger's avatar
Sylvain Gugger committed
930
931
        - **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP
          models, `pixel_values` for vision models and `input_values` for speech models).
932
    """
933
    config_class = None
934
    base_model_prefix = ""
935
    main_input_name = "input_ids"
936
    _auto_class = None
937
    _no_split_modules = None
938

939
940
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of missing
    # keys we find (keys inside the model but not in the checkpoint) and avoid unnecessary warnings.
941
    _keys_to_ignore_on_load_missing = None
942
943
944
    # a list of `re` patterns of `state_dict` keys that should be removed from the list of
    # unexpected keys we find (keys inside the checkpoint but not the model) and avoid unnecessary
    # warnings.
945
    _keys_to_ignore_on_load_unexpected = None
946
947
    # a list of `state_dict` keys to ignore when saving the model (useful for keys that aren't
    # trained, but which are either deterministic or tied variables)
948
    _keys_to_ignore_on_save = None
949

950
    is_parallelizable = False
951
    supports_gradient_checkpointing = False
952

953
    @property
954
    def dummy_inputs(self) -> Dict[str, torch.Tensor]:
955
        """
956
        `Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network.
957
        """
958
        return {"input_ids": torch.tensor(DUMMY_INPUTS)}
959

960
961
962
963
964
965
966
    @property
    def framework(self) -> str:
        """
        :str: Identifies that this is a PyTorch model.
        """
        return "pt"

967
    def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
968
        super().__init__()
969
970
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
971
972
973
                f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
                "`PretrainedConfig`. To create a model from a pretrained model use "
                f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
974
            )
975
        # Save config and origin of the pretrained weights if given in model
976
        self.config = config
977
        self.name_or_path = config.name_or_path
978
        self.warnings_issued = {}
979
980
981
982
983
984
985
986
987
988
989
990
991
992

    def post_init(self):
        """
        A method executed at the end of each Transformer model initialization, to execute code that needs the model's
        modules properly initialized (such as weight initialization).
        """
        self.init_weights()
        self._backward_compatibility_gradient_checkpointing()

    def _backward_compatibility_gradient_checkpointing(self):
        if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False):
            self.gradient_checkpointing_enable()
            # Remove the attribute now that is has been consumed, so it's no saved in the config.
            delattr(self.config, "gradient_checkpointing")
993

994
995
996
997
998
999
    @classmethod
    def _from_config(cls, config, **kwargs):
        """
        All context managers that the model should be initialized under go here.

        Args:
1000
1001
            torch_dtype (`torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype.
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
        """
        torch_dtype = kwargs.pop("torch_dtype", None)

        # override default dtype if needed
        dtype_orig = None
        if torch_dtype is not None:
            dtype_orig = cls._set_default_torch_dtype(torch_dtype)

        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
            # this immediately partitions the model across all gpus, to avoid the overhead in time
            # and memory copying it on CPU or each GPU first
1016
            with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
                model = cls(config, **kwargs)
        else:
            model = cls(config, **kwargs)

        # restore default dtype if it was modified
        if dtype_orig is not None:
            torch.set_default_dtype(dtype_orig)

        return model

    @classmethod
    def _set_default_torch_dtype(cls, dtype: torch.dtype) -> torch.dtype:
        """
        Change the default dtype and return the previous one. This is needed when wanting to instantiate the model
        under specific dtype.

        Args:
1034
            dtype (`torch.dtype`):
1035
1036
1037
                a floating dtype to set to.

        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1038
1039
            `torch.dtype`: the original `dtype` that can be used to restore `torch.set_default_dtype(dtype)` if it was
            modified. If it wasn't, returns `None`.
1040

1041
1042
        Note `set_default_dtype` currently only works with floating-point types and asserts if for example,
        `torch.int64` is passed. So if a non-float `dtype` is passed this functions will throw an exception.
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
        """
        if not dtype.is_floating_point:
            raise ValueError(
                f"Can't instantiate {cls.__name__} model under dtype={dtype} since it is not a floating point dtype"
            )

        logger.info(f"Instantiating {cls.__name__} model under default dtype {dtype}.")
        dtype_orig = torch.get_default_dtype()
        torch.set_default_dtype(dtype)
        return dtype_orig

1054
    @property
1055
1056
    def base_model(self) -> nn.Module:
        """
1057
        `torch.nn.Module`: The main body of the model.
1058
        """
1059
        return getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
1060

1061
    def get_input_embeddings(self) -> nn.Module:
1062
1063
1064
1065
        """
        Returns the model's input embeddings.

        Returns:
1066
            `nn.Module`: A torch module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
1067
        """
1068
        base_model = getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
1069
1070
1071
1072
        if base_model is not self:
            return base_model.get_input_embeddings()
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
1073

1074
    def set_input_embeddings(self, value: nn.Module):
1075
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1076
        Set model's input embeddings.
1077
1078

        Args:
1079
            value (`nn.Module`): A module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
1080
1081
1082
1083
1084
1085
        """
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            base_model.set_input_embeddings(value)
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
1086

1087
    def get_output_embeddings(self) -> nn.Module:
1088
1089
1090
1091
        """
        Returns the model's output embeddings.

        Returns:
1092
            `nn.Module`: A torch module mapping hidden states to vocabulary.
thomwolf's avatar
thomwolf committed
1093
        """
1094
        return None  # Overwrite for models with output embeddings
thomwolf's avatar
thomwolf committed
1095

1096
1097
1098
1099
    def _init_weights(self, module):
        """
        Initialize the weights. This method should be overridden by derived class.
        """
1100
        raise NotImplementedError(f"Make sure `_init_weights` is implemented for {self.__class__}")
1101

1102
    def tie_weights(self):
1103
1104
        """
        Tie the weights between the input embeddings and the output embeddings.
1105

Sylvain Gugger's avatar
Sylvain Gugger committed
1106
1107
        If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
        weights instead.
thomwolf's avatar
thomwolf committed
1108
        """
1109
1110
1111
1112
        if getattr(self.config, "tie_word_embeddings", True):
            output_embeddings = self.get_output_embeddings()
            if output_embeddings is not None:
                self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
thomwolf's avatar
thomwolf committed
1113

1114
        if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False):
Weizhen's avatar
Weizhen committed
1115
1116
            if hasattr(self, self.base_model_prefix):
                self = getattr(self, self.base_model_prefix)
1117
1118
            self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix)

Sylvain Gugger's avatar
Sylvain Gugger committed
1119
1120
1121
1122
        for module in self.modules():
            if hasattr(module, "_tie_weights"):
                module._tie_weights()

1123
1124
1125
    @staticmethod
    def _tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str):
        uninitialized_encoder_weights: List[str] = []
Weizhen's avatar
Weizhen committed
1126
1127
        if decoder.__class__ != encoder.__class__:
            logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
1128
1129
                f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder"
                " weights are correctly initialized."
Weizhen's avatar
Weizhen committed
1130
            )
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140

        def tie_encoder_to_decoder_recursively(
            decoder_pointer: nn.Module,
            encoder_pointer: nn.Module,
            module_name: str,
            uninitialized_encoder_weights: List[str],
            depth=0,
        ):
            assert isinstance(decoder_pointer, nn.Module) and isinstance(
                encoder_pointer, nn.Module
1141
            ), f"{decoder_pointer} and {encoder_pointer} have to be of type nn.Module"
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
            if hasattr(decoder_pointer, "weight"):
                assert hasattr(encoder_pointer, "weight")
                encoder_pointer.weight = decoder_pointer.weight
                if hasattr(decoder_pointer, "bias"):
                    assert hasattr(encoder_pointer, "bias")
                    encoder_pointer.bias = decoder_pointer.bias
                return

            encoder_modules = encoder_pointer._modules
            decoder_modules = decoder_pointer._modules
            if len(decoder_modules) > 0:
                assert (
                    len(encoder_modules) > 0
                ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"

                all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()])
                encoder_layer_pos = 0
                for name, module in decoder_modules.items():
                    if name.isdigit():
                        encoder_name = str(int(name) + encoder_layer_pos)
                        decoder_name = name
Weizhen's avatar
Weizhen committed
1163
1164
1165
                        if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
                            encoder_modules
                        ) != len(decoder_modules):
1166
1167
                            # this can happen if the name corresponds to the position in a list module list of layers
                            # in this case the decoder has added a cross-attention that the encoder does not have
1168
                            # thus skip this step and subtract one layer pos from encoder
1169
1170
1171
1172
1173
1174
                            encoder_layer_pos -= 1
                            continue
                    elif name not in encoder_modules:
                        continue
                    elif depth > 500:
                        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1175
1176
                            "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is"
                            " a circular dependency between two or more `nn.Modules` of your model."
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
                        )
                    else:
                        decoder_name = encoder_name = name
                    tie_encoder_to_decoder_recursively(
                        decoder_modules[decoder_name],
                        encoder_modules[encoder_name],
                        module_name + "/" + name,
                        uninitialized_encoder_weights,
                        depth=depth + 1,
                    )
                    all_encoder_weights.remove(module_name + "/" + encoder_name)

                uninitialized_encoder_weights += list(all_encoder_weights)

        # tie weights recursively
        tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights)
        if len(uninitialized_encoder_weights) > 0:
            logger.warning(
                f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}"
            )

1198
    def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
Lysandre's avatar
Lysandre committed
1199
        """Tie or clone module weights depending of whether we are using TorchScript or not"""
thomwolf's avatar
thomwolf committed
1200
        if self.config.torchscript:
1201
            output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
thomwolf's avatar
thomwolf committed
1202
        else:
1203
            output_embeddings.weight = input_embeddings.weight
thomwolf's avatar
thomwolf committed
1204

Sam Shleifer's avatar
Sam Shleifer committed
1205
        if getattr(output_embeddings, "bias", None) is not None:
1206
            output_embeddings.bias.data = nn.functional.pad(
1207
                output_embeddings.bias.data,
Lysandre's avatar
Lysandre committed
1208
1209
1210
1211
                (
                    0,
                    output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],
                ),
1212
1213
                "constant",
                0,
1214
            )
1215
        if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
1216
            output_embeddings.out_features = input_embeddings.num_embeddings
1217

1218
    def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding:
1219
        """
1220
        Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
1221

1222
        Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
thomwolf's avatar
thomwolf committed
1223

1224
        Arguments:
1225
            new_num_tokens (`int`, *optional*):
1226
                The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
Sylvain Gugger's avatar
Sylvain Gugger committed
1227
1228
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
                returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
1229
1230

        Return:
1231
            `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
thomwolf's avatar
thomwolf committed
1232
        """
1233
        model_embeds = self._resize_token_embeddings(new_num_tokens)
thomwolf's avatar
thomwolf committed
1234
1235
        if new_num_tokens is None:
            return model_embeds
thomwolf's avatar
thomwolf committed
1236
1237
1238

        # Update base model and current model config
        self.config.vocab_size = new_num_tokens
1239
        self.vocab_size = new_num_tokens
thomwolf's avatar
thomwolf committed
1240
1241

        # Tie weights again if needed
1242
        self.tie_weights()
thomwolf's avatar
thomwolf committed
1243

thomwolf's avatar
thomwolf committed
1244
1245
        return model_embeds

1246
    def _resize_token_embeddings(self, new_num_tokens):
thomwolf's avatar
thomwolf committed
1247
1248
1249
        old_embeddings = self.get_input_embeddings()
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.set_input_embeddings(new_embeddings)
1250
1251
1252
1253
1254
1255
1256

        # if word embeddings are not tied, make sure that lm head is resized as well
        if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings:
            old_lm_head = self.get_output_embeddings()
            new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens)
            self.set_output_embeddings(new_lm_head)

thomwolf's avatar
thomwolf committed
1257
        return self.get_input_embeddings()
1258

1259
    def _get_resized_embeddings(
1260
1261
        self, old_embeddings: nn.Embedding, new_num_tokens: Optional[int] = None
    ) -> nn.Embedding:
1262
1263
1264
        """
        Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly
        initialized vectors at the end. Reducing the size will remove vectors from the end
1265
1266

        Args:
1267
            old_embeddings (`torch.nn.Embedding`):
1268
                Old embeddings to be resized.
1269
            new_num_tokens (`int`, *optional*):
1270
                New number of tokens in the embedding matrix.
1271
1272

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1273
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
1274
                `torch.nn.Embedding` module of the model without doing anything.
1275
1276

        Return:
1277
1278
            `torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if
            `new_num_tokens` is `None`
1279
1280
1281
1282
        """
        if new_num_tokens is None:
            return old_embeddings

1283
1284
1285
1286
1287
1288
1289
1290
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=None):
                old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
        else:
            old_num_tokens, old_embedding_dim = old_embeddings.weight.size()

1291
1292
1293
        if old_num_tokens == new_num_tokens:
            return old_embeddings

1294
1295
        if not isinstance(old_embeddings, nn.Embedding):
            raise TypeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1296
1297
1298
                f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}. You"
                " should either use a different resize function or make sure that `old_embeddings` are an instance of"
                f" {nn.Embedding}."
1299
1300
            )

1301
        # Build new embeddings
1302
        new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim)
1303
        new_embeddings.to(old_embeddings.weight.device, dtype=old_embeddings.weight.dtype)
1304
1305
1306
1307

        # initialize all new embeddings (in particular added tokens)
        self._init_weights(new_embeddings)

1308
        # Copy token embeddings from the previous weights
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

        # numbers of tokens to copy
        n = min(old_num_tokens, new_num_tokens)
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=0):
                if torch.distributed.get_rank() == 0:
                    new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
        else:
            new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
1320
1321
1322

        return new_embeddings

1323
    def _get_resized_lm_head(
1324
1325
        self, old_lm_head: nn.Linear, new_num_tokens: Optional[int] = None, transposed: Optional[bool] = False
    ) -> nn.Linear:
1326
1327
1328
1329
1330
        """
        Build a resized Linear Module from a provided old Linear Module. Increasing the size will add newly initialized
        vectors at the end. Reducing the size will remove vectors from the end

        Args:
1331
            old_lm_head (`torch.nn.Linear`):
1332
                Old lm head liner layer to be resized.
1333
            new_num_tokens (`int`, *optional*):
1334
1335
1336
                New number of tokens in the linear matrix.

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
1337
                vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
1338
1339
1340
                `torch.nn.Linear` module of the model without doing anything. transposed (`bool`, *optional*, defaults
                to `False`): Whether `old_lm_head` is transposed or not. If True `old_lm_head.size()` is `lm_head_dim,
                vocab_size` else `vocab_size, lm_head_dim`.
1341
1342

        Return:
Sylvain Gugger's avatar
Sylvain Gugger committed
1343
1344
            `torch.nn.Linear`: Pointer to the resized Linear Module or the old Linear Module if `new_num_tokens` is
            `None`
1345
1346
1347
1348
        """
        if new_num_tokens is None:
            return old_lm_head

1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_lm_head.weight, modifier_rank=None):
                old_num_tokens, old_lm_head_dim = (
                    old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
                )
        else:
            old_num_tokens, old_lm_head_dim = (
                old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
            )
1360
1361
1362
1363
1364
1365

        if old_num_tokens == new_num_tokens:
            return old_lm_head

        if not isinstance(old_lm_head, nn.Linear):
            raise TypeError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1366
1367
1368
                f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}. You"
                " should either use a different resize function or make sure that `old_lm_head` are an instance of"
                f" {nn.Linear}."
1369
1370
1371
1372
1373
            )

        # Build new lm head
        new_lm_head_shape = (old_lm_head_dim, new_num_tokens) if not transposed else (new_num_tokens, old_lm_head_dim)
        has_new_lm_head_bias = old_lm_head.bias is not None
1374
        new_lm_head = nn.Linear(*new_lm_head_shape, bias=has_new_lm_head_bias)
1375
        new_lm_head = new_lm_head.to(old_lm_head.weight.device, dtype=old_lm_head.weight.dtype)
1376
1377
1378
1379
1380
1381

        # initialize new lm head (in particular added tokens)
        self._init_weights(new_lm_head)

        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)

1382
1383
1384
1385
        # XXX: put the long block of code in a wrapper
        if is_deepspeed_zero3_enabled():
            import deepspeed

1386
1387
            params = [old_lm_head.weight, old_lm_head.bias, new_lm_head.weight, new_lm_head.bias]
            with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
                if torch.distributed.get_rank() == 0:
                    # Copy old lm head weights to new lm head
                    if not transposed:
                        new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[
                            :num_tokens_to_copy, :
                        ]
                    else:
                        new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[
                            :, :num_tokens_to_copy
                        ]

                    # Copy bias weights to new lm head
                    if has_new_lm_head_bias:
                        new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]
1402
        else:
1403
1404
1405
1406
1407
            # Copy old lm head weights to new lm head
            if not transposed:
                new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :]
            else:
                new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy]
1408

1409
1410
1411
            # Copy bias weights to new lm head
            if has_new_lm_head_bias:
                new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]
1412
1413
1414

        return new_lm_head

1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
    def resize_position_embeddings(self, new_num_position_embeddings: int):
        raise NotImplementedError(
            f"`resize_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

    def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
        raise NotImplementedError(
            f"`get_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
            f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
        )

1427
    def init_weights(self):
1428
        """
1429
        If needed prunes and maybe initializes weights.
1430
        """
1431
1432
1433
1434
        # Prune heads if needed
        if self.config.pruned_heads:
            self.prune_heads(self.config.pruned_heads)

1435
1436
1437
1438
1439
1440
1441
        if _init_weights:
            # Initialize weights
            self.apply(self._init_weights)

            # Tie weights should be skipped when not initializing all weights
            # since from_pretrained(...) calls tie weights anyways
            self.tie_weights()
1442

1443
1444
1445
    def prune_heads(self, heads_to_prune: Dict[int, List[int]]):
        """
        Prunes heads of the base model.
1446

1447
        Arguments:
1448
            heads_to_prune (`Dict[int, List[int]]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1449
1450
1451
                Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads
                to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on
                layer 1 and heads 2 and 3 on layer 2.
thomwolf's avatar
thomwolf committed
1452
        """
1453
        # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
1454
        for layer, heads in heads_to_prune.items():
1455
1456
1457
            union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
            self.config.pruned_heads[layer] = list(union_heads)  # Unfortunately we have to store it as list for JSON

1458
        self.base_model._prune_heads(heads_to_prune)
thomwolf's avatar
thomwolf committed
1459

1460
    def gradient_checkpointing_enable(self):
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
        """
        Activates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        if not self.supports_gradient_checkpointing:
            raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
        self.apply(partial(self._set_gradient_checkpointing, value=True))

1471
    def gradient_checkpointing_disable(self):
1472
1473
1474
1475
1476
1477
1478
1479
1480
        """
        Deactivates gradient checkpointing for the current model.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        if self.supports_gradient_checkpointing:
            self.apply(partial(self._set_gradient_checkpointing, value=False))

1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
    @property
    def is_gradient_checkpointing(self) -> bool:
        """
        Whether gradient checkpointing is activated for this model or not.

        Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
        activations".
        """
        return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())

1491
1492
1493
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
1494
        is_main_process: bool = True,
1495
1496
        state_dict: Optional[dict] = None,
        save_function: Callable = torch.save,
Sylvain Gugger's avatar
Sylvain Gugger committed
1497
        push_to_hub: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
1498
        max_shard_size: Union[int, str] = "10GB",
1499
        safe_serialization: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
1500
        **kwargs,
1501
    ):
1502
1503
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
1504
        [`~PreTrainedModel.from_pretrained`] class method.
1505

1506
        Arguments:
1507
            save_directory (`str` or `os.PathLike`):
1508
                Directory to which to save. Will be created if it doesn't exist.
1509
1510
1511
1512
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful when in distributed training like
                TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
                the main process to avoid race conditions.
1513
            state_dict (nested dictionary of `torch.Tensor`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1514
1515
1516
                The state dictionary of the model to save. Will default to `self.state_dict()`, but can be used to only
                save parts of the model or if special precautions need to be taken when recovering the state dictionary
                of a model (like when using model parallelism).
1517
            save_function (`Callable`):
1518
                The function to use to save the state dictionary. Useful on distributed training like TPUs when one
1519
1520
                need to replace `torch.save` by another method.
            push_to_hub (`bool`, *optional*, defaults to `False`):
1521
1522
1523
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
Sylvain Gugger's avatar
Sylvain Gugger committed
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
            max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).

                <Tip warning={true}>

                If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
                which will be bigger than `max_shard_size`.

                </Tip>

1535
1536
1537
            safe_serialization (`bool`, *optional*, defaults to `False`):
                Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).

Sylvain Gugger's avatar
Sylvain Gugger committed
1538
            kwargs:
1539
                Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
1540
        """
1541
1542
1543
1544
1545
1546
1547
1548
        # Checks if the model has been loaded in 8-bit
        if getattr(self, "is_loaded_in_8bit", False):
            warnings.warn(
                "You are calling `save_pretrained` to a 8-bit converted model you may likely encounter unexepected"
                " behaviors. ",
                UserWarning,
            )

1549
1550
1551
1552
1553
        if "save_config" in kwargs:
            warnings.warn(
                "`save_config` is deprecated and will be removed in v5 of Transformers. Use `is_main_process` instead."
            )
            is_main_process = kwargs.pop("save_config")
1554
1555
        if safe_serialization and not is_safetensors_available():
            raise ImportError("`safe_serialization` requires the `safetensors library: `pip install safetensors`.")
1556

1557
        if os.path.isfile(save_directory):
1558
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
1559
            return
1560

1561
1562
        os.makedirs(save_directory, exist_ok=True)

1563
1564
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
1565
1566
1567
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id, token = self._create_repo(repo_id, **kwargs)
            files_timestamps = self._get_files_timestamps(save_directory)
1568

Julien Chaumond's avatar
Julien Chaumond committed
1569
        # Only save the model itself if we are using distributed training
1570
        model_to_save = unwrap_model(self)
1571

1572
1573
1574
1575
1576
        # save the string version of dtype to the config, e.g. convert torch.float32 => "float32"
        # we currently don't use this setting automatically, but may start to use with v5
        dtype = get_parameter_dtype(model_to_save)
        model_to_save.config.torch_dtype = str(dtype).split(".")[1]

Julien Chaumond's avatar
Julien Chaumond committed
1577
1578
1579
        # Attach architecture to the config
        model_to_save.config.architectures = [model_to_save.__class__.__name__]

1580
1581
1582
1583
1584
        # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
        # loaded from the Hub.
        if self._auto_class is not None:
            custom_object_save(self, save_directory, config=self.config)

1585
        # Save the config
1586
        if is_main_process:
1587
1588
1589
1590
1591
            model_to_save.config.save_pretrained(save_directory)

        # Save the model
        if state_dict is None:
            state_dict = model_to_save.state_dict()
1592

1593
1594
1595
1596
1597
        # Translate state_dict from smp to hf if saving with smp >= 1.10
        if IS_SAGEMAKER_MP_POST_1_10:
            for smp_to_hf, _ in smp.state.module_manager.translate_functions:
                state_dict = smp_to_hf(state_dict)

1598
        # Handle the case where some state_dict keys shouldn't be saved
1599
        if self._keys_to_ignore_on_save is not None:
1600
            for ignore_key in self._keys_to_ignore_on_save:
1601
1602
                if ignore_key in state_dict.keys():
                    del state_dict[ignore_key]
1603

Sylvain Gugger's avatar
Sylvain Gugger committed
1604
        # Shard the model if it is too big.
1605
1606
        weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
        shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size, weights_name=weights_name)
Sylvain Gugger's avatar
Sylvain Gugger committed
1607
1608
1609
1610

        # Clean the folder from a previous save
        for filename in os.listdir(save_directory):
            full_filename = os.path.join(save_directory, filename)
1611
1612
            # If we have a shard file that is not going to be replaced, we delete it, but only from the main process
            # in distributed settings to avoid race conditions.
1613
            weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "")
1614
            if (
1615
                filename.startswith(weights_no_suffix)
1616
1617
1618
1619
                and os.path.isfile(full_filename)
                and filename not in shards.keys()
                and is_main_process
            ):
Sylvain Gugger's avatar
Sylvain Gugger committed
1620
                os.remove(full_filename)
1621

Sylvain Gugger's avatar
Sylvain Gugger committed
1622
1623
        # Save the model
        for shard_file, shard in shards.items():
1624
1625
1626
1627
1628
1629
            if safe_serialization:
                # At some point we will need to deal better with save_function (used for TPU and other distributed
                # joyfulness), but for now this enough.
                safe_save_file(shard, os.path.join(save_directory, shard_file), metadata={"format": "pt"})
            else:
                save_function(shard, os.path.join(save_directory, shard_file))
Sylvain Gugger's avatar
Sylvain Gugger committed
1630
1631
1632
1633

        if index is None:
            logger.info(f"Model weights saved in {os.path.join(save_directory, WEIGHTS_NAME)}")
        else:
1634
1635
            save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME
            save_index_file = os.path.join(save_directory, save_index_file)
Sylvain Gugger's avatar
Sylvain Gugger committed
1636
1637
1638
1639
1640
1641
1642
1643
1644
            # Save the index as well
            with open(save_index_file, "w", encoding="utf-8") as f:
                content = json.dumps(index, indent=2, sort_keys=True) + "\n"
                f.write(content)
            logger.info(
                f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
                f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
                f"index located at {save_index_file}."
            )
1645

Sylvain Gugger's avatar
Sylvain Gugger committed
1646
        if push_to_hub:
1647
1648
1649
            self._upload_modified_files(
                save_directory, repo_id, files_timestamps, commit_message=commit_message, token=token
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
1650

1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
    def get_memory_footprint(self, return_buffers=True):
        r"""
        Get the memory footprint of a model. This will return the memory footprint of the current model in bytes.
        Useful to benchmark the memory footprint of the current model and design some tests. Solution inspired from the
        PyTorch discussions: https://discuss.pytorch.org/t/gpu-memory-that-model-uses/56822/2

        Arguments:
            return_buffers (`bool`, *optional*, defaults to `True`):
                Whether to return the size of the buffer tensors in the computation of the memory footprint. Buffers
                are tensors that do not require gradients and not registered as parameters. E.g. mean and std in batch
                norm layers. Please see: https://discuss.pytorch.org/t/what-pytorch-means-by-buffers/120266/2
        """
        mem = sum([param.nelement() * param.element_size() for param in self.parameters()])
        if return_buffers:
            mem_bufs = sum([buf.nelement() * buf.element_size() for buf in self.buffers()])
            mem = mem + mem_bufs
        return mem

1669
    @classmethod
1670
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
1671
1672
        r"""
        Instantiate a pretrained pytorch model from a pre-trained model configuration.
1673

Sylvain Gugger's avatar
Sylvain Gugger committed
1674
1675
        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
        the model, you should first set it back in training mode with `model.train()`.
1676

1677
        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
1678
1679
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.
1680

1681
        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
1682
        weights are discarded.
1683

1684
        Parameters:
1685
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
1686
1687
                Can be either:

1688
                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
Sylvain Gugger's avatar
Sylvain Gugger committed
1689
1690
                      Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                      user or organization name, like `dbmdz/bert-base-german-cased`.
1691
1692
1693
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
                    - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
Sylvain Gugger's avatar
Sylvain Gugger committed
1694
1695
1696
                      this case, `from_tf` should be set to `True` and a configuration object should be provided as
                      `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
                      PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
1697
                    - A path or url to a model folder containing a *flax checkpoint file* in *.msgpack* format (e.g,
Sylvain Gugger's avatar
Sylvain Gugger committed
1698
1699
                      `./flax_model/` containing `flax_model.msgpack`). In this case, `from_flax` should be set to
                      `True`.
1700
1701
1702
1703
1704
                    - `None` if you are both providing the configuration and state dictionary (resp. with keyword
                      arguments `config` and `state_dict`).
            model_args (sequence of positional arguments, *optional*):
                All remaining positional arguments will be passed to the underlying model's `__init__` method.
            config (`Union[PretrainedConfig, str, os.PathLike]`, *optional*):
1705
1706
                Can be either:

1707
1708
                    - an instance of a class derived from [`PretrainedConfig`],
                    - a string or path valid as input to [`~PretrainedConfig.from_pretrained`].
1709

1710
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
1711
1712
                be automatically loaded when:

1713
                    - The model is a model provided by the library (loaded with the *model id* string of a pretrained
1714
                      model).
Sylvain Gugger's avatar
Sylvain Gugger committed
1715
1716
                    - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
                      save directory.
1717
1718
1719
                    - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
                      configuration JSON file named *config.json* is found in the directory.
            state_dict (`Dict[str, torch.Tensor]`, *optional*):
1720
1721
1722
                A state dictionary to use instead of a state dictionary loaded from saved weights file.

                This option can be used if you want to create a model from a pretrained configuration but load your own
Sylvain Gugger's avatar
Sylvain Gugger committed
1723
                weights. In this case though, you should check if using [`~PreTrainedModel.save_pretrained`] and
1724
1725
                [`~PreTrainedModel.from_pretrained`] is not a simpler option.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
1726
1727
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
1728
            from_tf (`bool`, *optional*, defaults to `False`):
1729
                Load the model weights from a TensorFlow checkpoint save file (see docstring of
1730
1731
                `pretrained_model_name_or_path` argument).
            from_flax (`bool`, *optional*, defaults to `False`):
1732
                Load the model weights from a Flax checkpoint save file (see docstring of
1733
1734
                `pretrained_model_name_or_path` argument).
            ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
1735
1736
1737
                Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
                as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
                checkpoint with 3 labels).
1738
            force_download (`bool`, *optional*, defaults to `False`):
1739
1740
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
1741
            resume_download (`bool`, *optional*, defaults to `False`):
1742
1743
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
1744
            proxies (`Dict[str, str]`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1745
1746
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
1747
            output_loading_info(`bool`, *optional*, defaults to `False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1748
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
1749
            local_files_only(`bool`, *optional*, defaults to `False`):
Stas Bekman's avatar
Stas Bekman committed
1750
                Whether or not to only look at local files (i.e., do not try to download the model).
1751
1752
1753
            use_auth_token (`str` or `bool`, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
                the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
1754
            revision (`str`, *optional*, defaults to `"main"`):
Julien Chaumond's avatar
Julien Chaumond committed
1755
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
1756
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
Julien Chaumond's avatar
Julien Chaumond committed
1757
                identifier allowed by git.
1758
1759
1760
1761
1762
1763
1764
1765


                <Tip>

                To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".

                </Tip>

1766
            mirror (`str`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
1767
1768
1769
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.
1770
            _fast_init(`bool`, *optional*, defaults to `True`):
1771
1772
                Whether or not to disable fast initialization.

1773
1774
                <Tip warning={true}>

Sylvain Gugger's avatar
Sylvain Gugger committed
1775
1776
1777
                One should only disable *_fast_init* to ensure backwards compatibility with `transformers.__version__ <
                4.6.0` for seeded model initialization. This argument will be removed at the next major version. See
                [pull request 11471](https://github.com/huggingface/transformers/pull/11471) for more information.
1778

1779
                </Tip>
1780

1781
1782
1783
            > Parameters for big model inference

            low_cpu_mem_usage(`bool`, *optional*):
1784
1785
1786
1787
1788
                Tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                This is an experimental feature and a subject to change at any moment.
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
                will be automatically derived from the model's weights.
1789
1790
1791
1792
1793
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
                A map that specifies where each submodule should go. It doesn't need to be refined to each
                parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
                same device.

1794
1795
                To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
                more information about each option see [designing a device
Patrick von Platen's avatar
Patrick von Platen committed
1796
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
1797
1798
1799
            max_memory (`Dict`, *optional*):
                A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
                GPU and the available CPU RAM if unset.
1800
1801
            offload_folder (`str` or `os.PathLike`, *optional*):
                If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
1802
            offload_state_dict (`bool`, *optional*):
1803
                If `True`, will temporarily offload the CPU state dict to the hard drive to avoid getting out of CPU
1804
1805
                RAM if the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to
                `True` when there is some disk offload.
1806
1807
1808
1809
1810
1811
            load_in_8bit (`bool`, *optional*, defaults to `False`):
                If `True`, will convert the loaded model into mixed-8bit quantized model. To use this feature please
                install `bitsandbytes` compiled with your CUDA version by running `pip install -i
                https://test.pypi.org/simple/ bitsandbytes-cudaXXX` where XXX is your CUDA version (e.g. 11.6 = 116).
                Make also sure that you have enough GPU RAM to store half of the model size since the 8bit modules are
                not compiled and adapted for CPUs.
1812
            load_in_8bit_threshold (`float`, *optional*, defaults to 6):
1813
1814
1815
1816
1817
1818
1819
1820
1821
                Works together with `load_in_8bit`. This corresponds to the outlier threshold for outlier detection as
                described in `GPT3.int8() : 8-bit Matrix Multiplication for Transformers at Scale` paper. Any hidden
                states value that is above this threshold will be considered an outlier and the operation on those
                values will be done in fp16. Values are usually normally distributed, that is, most values are in the
                range [-3.5, 3.5], but there are some exceptional systematic outliers that are very differently
                distributed for large models. These outliers are often in the interval [-60, -6] or [6, 60]. Int8
                quantization works well for values of magnitude ~5, but beyond that, there is a significant performance
                penalty. A good default threshold is 6, but a lower threshold might be needed for more unstable models
                (small models, fine-tuning).
1822
1823
1824
            load_in_8bit_skip_modules (`List[str]`, *optional*):
                An explicit list of the modules that we do not want to convert in 8-bit. This is useful for models such
                as Jukebox that has several heads in different places and not necessarily at the last position.
1825
1826
1827
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
                specify the folder name here.
1828

1829
            kwargs (remaining dictionary of keyword arguments, *optional*):
1830
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
1831
                `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
1832
1833
                automatically loaded:

1834
1835
                    - If a configuration is provided with `config`, `**kwargs` will be directly passed to the
                      underlying model's `__init__` method (we assume all relevant updates to the configuration have
1836
                      already been done)
1837
                    - If a configuration is not provided, `kwargs` will be first passed to the configuration class
Sylvain Gugger's avatar
Sylvain Gugger committed
1838
1839
1840
1841
                      initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
                      corresponds to a configuration attribute will be used to override said attribute with the
                      supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
                      will be passed to the underlying model's `__init__` function.
1842
1843
1844

        <Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
1845
1846
        Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
        use this method in a firewalled environment.
1847
1848
1849
1850
1851
1852
1853

        </Tip>

        Examples:

        ```python
        >>> from transformers import BertConfig, BertModel
Sylvain Gugger's avatar
Sylvain Gugger committed
1854

1855
        >>> # Download model and configuration from huggingface.co and cache.
Sylvain Gugger's avatar
Sylvain Gugger committed
1856
        >>> model = BertModel.from_pretrained("bert-base-uncased")
1857
        >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
1858
        >>> model = BertModel.from_pretrained("./test/saved_model/")
1859
        >>> # Update configuration during loading.
Sylvain Gugger's avatar
Sylvain Gugger committed
1860
        >>> model = BertModel.from_pretrained("bert-base-uncased", output_attentions=True)
1861
1862
        >>> assert model.config.output_attentions == True
        >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
Sylvain Gugger's avatar
Sylvain Gugger committed
1863
1864
        >>> config = BertConfig.from_json_file("./tf_model/my_tf_model_config.json")
        >>> model = BertModel.from_pretrained("./tf_model/my_tf_checkpoint.ckpt.index", from_tf=True, config=config)
1865
        >>> # Loading from a Flax checkpoint file instead of a PyTorch model (slower)
Sylvain Gugger's avatar
Sylvain Gugger committed
1866
        >>> model = BertModel.from_pretrained("bert-base-uncased", from_flax=True)
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
        ```

        * `low_cpu_mem_usage` algorithm:

        This is an experimental function that loads the model using ~1x model size CPU memory

        Here is how it works:

        1. save which state_dict keys we have
        2. drop state_dict before the model is created, since the latter takes 1x model size CPU memory
        3. after the model has been instantiated switch to the meta device all params/buffers that
        are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

        Currently, it can't handle deepspeed ZeRO stage 3 and ignores loading errors

        """
1885
1886
1887
1888
        config = kwargs.pop("config", None)
        state_dict = kwargs.pop("state_dict", None)
        cache_dir = kwargs.pop("cache_dir", None)
        from_tf = kwargs.pop("from_tf", False)
1889
        from_flax = kwargs.pop("from_flax", False)
1890
        ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
1891
1892
1893
1894
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
1895
        local_files_only = kwargs.pop("local_files_only", False)
1896
        use_auth_token = kwargs.pop("use_auth_token", None)
Julien Chaumond's avatar
Julien Chaumond committed
1897
        revision = kwargs.pop("revision", None)
1898
        trust_remote_code = kwargs.pop("trust_remote_code", None)
Sylvain Gugger's avatar
Sylvain Gugger committed
1899
        _ = kwargs.pop("mirror", None)
1900
1901
        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)
1902
        _fast_init = kwargs.pop("_fast_init", True)
1903
        torch_dtype = kwargs.pop("torch_dtype", None)
1904
1905
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", None)
        device_map = kwargs.pop("device_map", None)
1906
        max_memory = kwargs.pop("max_memory", None)
1907
        offload_folder = kwargs.pop("offload_folder", None)
1908
1909
        offload_state_dict = kwargs.pop("offload_state_dict", False)
        load_in_8bit = kwargs.pop("load_in_8bit", False)
1910
1911
        load_in_8bit_threshold = kwargs.pop("load_in_8bit_threshold", 6.0)
        load_in_8bit_skip_modules = kwargs.pop("load_in_8bit_skip_modules", None)
1912
        subfolder = kwargs.pop("subfolder", "")
1913
        commit_hash = kwargs.pop("_commit_hash", None)
1914

1915
1916
1917
1918
1919
        if trust_remote_code is True:
            logger.warning(
                "The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is"
                " ignored."
            )
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
        if device_map is not None:
            if low_cpu_mem_usage is None:
                low_cpu_mem_usage = True
            elif not low_cpu_mem_usage:
                raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`")

        if low_cpu_mem_usage:
            # low_cpu_mem_usage requires PyTorch >= 1.9 to have the meta device.
            require_version_core("torch>=1.9")

            if is_deepspeed_zero3_enabled():
                raise ValueError(
                    "DeepSpeed Zero-3 is not compatible with `low_cpu_mem_usage=True` or with passing a `device_map`."
                )
            elif not is_accelerate_available():
                raise ImportError(
                    "Using `low_cpu_mem_usage=True` or a `device_map` requires Accelerate: `pip install accelerate`"
                )
1938

1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
        if load_in_8bit:
            if not (is_accelerate_available() and is_bitsandbytes_available()):
                raise ImportError(
                    "Using `load_in_8bit=True` requires Accelerate: `pip install accelerate` and the latest version of"
                    " bitsandbytes `pip install -i https://test.pypi.org/simple/ bitsandbytes` or"
                    " pip install bitsandbytes` "
                )
            if torch_dtype == "auto" or torch_dtype != torch.float16:
                # We force the `dtype` to be float16, this is a requirement from `bitsandbytes`
                torch_dtype = torch.float16
                logger.info("Loading the model in mixed int8 - forcing the weights to be casted in float16")
            if device_map is None:
                raise ValueError(
                    "A device map needs to be passed to run convert models into mixed-int8 format. Please run"
                    "`.from_pretrained` with `device_map='auto'`"
                )
            if from_tf or from_flax:
                raise ValueError(
                    "Converting into mixed 8-bit weights from tf/flax weights is currently not supported, please make"
                    " sure the weights are in PyTorch format."
                )

1961
        from_pt = not (from_tf | from_flax)
1962
1963
1964
1965

        user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline
thomwolf's avatar
thomwolf committed
1966

1967
1968
1969
1970
        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

1971
1972
1973
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
1974
            config, model_kwargs = cls.config_class.from_pretrained(
1975
1976
1977
                config_path,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
1978
                force_download=force_download,
1979
                resume_download=resume_download,
1980
                proxies=proxies,
1981
                local_files_only=local_files_only,
1982
                use_auth_token=use_auth_token,
Julien Chaumond's avatar
Julien Chaumond committed
1983
                revision=revision,
1984
                subfolder=subfolder,
1985
1986
                _from_auto=from_auto_class,
                _from_pipeline=from_pipeline,
1987
                **kwargs,
1988
1989
1990
            )
        else:
            model_kwargs = kwargs
1991

1992
1993
1994
        if commit_hash is None:
            commit_hash = getattr(config, "_commit_hash", None)

Sylvain Gugger's avatar
Sylvain Gugger committed
1995
1996
1997
1998
        # This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
        # index of the files.
        is_sharded = False
        sharded_metadata = None
thomwolf's avatar
thomwolf committed
1999
        # Load model
Yih-Dar's avatar
Yih-Dar committed
2000
2001
        loading_info = None

thomwolf's avatar
thomwolf committed
2002
        if pretrained_model_name_or_path is not None:
2003
            pretrained_model_name_or_path = str(pretrained_model_name_or_path)
2004
2005
            is_local = os.path.isdir(pretrained_model_name_or_path)
            if is_local:
2006
2007
2008
                if from_tf and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                ):
2009
                    # Load from a TF 1.0 checkpoint in priority if from_tf
2010
2011
2012
2013
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                elif from_tf and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)
                ):
2014
                    # Load from a TF 2.0 checkpoint in priority if from_tf
2015
2016
2017
2018
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)
                elif from_flax and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
                ):
2019
                    # Load from a Flax checkpoint in priority if from_flax
2020
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
                elif is_safetensors_available() and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, SAFE_WEIGHTS_NAME)
                ):
                    # Load from a safetensors checkpoint
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, SAFE_WEIGHTS_NAME)
                elif is_safetensors_available() and os.path.isfile(
                    os.path.join(pretrained_model_name_or_path, subfolder, SAFE_WEIGHTS_INDEX_NAME)
                ):
                    # Load from a sharded safetensors checkpoint
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, SAFE_WEIGHTS_INDEX_NAME)
                    is_sharded = True
2032
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, WEIGHTS_NAME)):
thomwolf's avatar
thomwolf committed
2033
                    # Load from a PyTorch checkpoint
2034
2035
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, WEIGHTS_NAME)
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, WEIGHTS_INDEX_NAME)):
Sylvain Gugger's avatar
Sylvain Gugger committed
2036
                    # Load from a sharded PyTorch checkpoint
2037
                    archive_file = os.path.join(pretrained_model_name_or_path, subfolder, WEIGHTS_INDEX_NAME)
Sylvain Gugger's avatar
Sylvain Gugger committed
2038
                    is_sharded = True
2039
2040
                # At this stage we don't have a weight file so we will raise an error.
                elif os.path.isfile(
2041
2042
                    os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
                ) or os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)):
2043
2044
2045
2046
2047
                    raise EnvironmentError(
                        f"Error no file named {WEIGHTS_NAME} found in directory {pretrained_model_name_or_path} but "
                        "there is a file for TensorFlow weights. Use `from_tf=True` to load this model from those "
                        "weights."
                    )
2048
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)):
2049
2050
2051
2052
2053
                    raise EnvironmentError(
                        f"Error no file named {WEIGHTS_NAME} found in directory {pretrained_model_name_or_path} but "
                        "there is a file for Flax weights. Use `from_flax=True` to load this model from those "
                        "weights."
                    )
thomwolf's avatar
thomwolf committed
2054
                else:
2055
                    raise EnvironmentError(
2056
2057
                        f"Error no file named {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME + '.index'} or "
                        f"{FLAX_WEIGHTS_NAME} found in directory {pretrained_model_name_or_path}."
2058
                    )
2059
            elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)):
2060
                archive_file = pretrained_model_name_or_path
2061
                is_local = True
2062
            elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path + ".index")):
2063
2064
2065
2066
2067
                if not from_tf:
                    raise ValueError(
                        f"We found a TensorFlow checkpoint at {pretrained_model_name_or_path + '.index'}, please set "
                        "from_tf to True to load from this checkpoint."
                    )
2068
                archive_file = os.path.join(subfolder, pretrained_model_name_or_path + ".index")
2069
                is_local = True
2070
            elif is_remote_url(pretrained_model_name_or_path):
2071
                filename = pretrained_model_name_or_path
2072
                resolved_archive_file = download_url(pretrained_model_name_or_path)
2073
            else:
2074
2075
2076
2077
2078
                # set correct filename
                if from_tf:
                    filename = TF2_WEIGHTS_NAME
                elif from_flax:
                    filename = FLAX_WEIGHTS_NAME
2079
2080
                elif is_safetensors_available():
                    filename = SAFE_WEIGHTS_NAME
2081
2082
2083
                else:
                    filename = WEIGHTS_NAME

2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
                try:
                    # Load from URL or cache if already cached
                    cached_file_kwargs = dict(
                        cache_dir=cache_dir,
                        force_download=force_download,
                        proxies=proxies,
                        resume_download=resume_download,
                        local_files_only=local_files_only,
                        use_auth_token=use_auth_token,
                        user_agent=user_agent,
                        revision=revision,
                        subfolder=subfolder,
                        _raise_exceptions_for_missing_entries=False,
2097
                        _commit_hash=commit_hash,
2098
2099
                    )
                    resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)
2100

2101
                    # Since we set _raise_exceptions_for_missing_entries=False, we don't get an exception but a None
2102
                    # result when internet is up, the repo and revision exist, but the file does not.
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
                    if resolved_archive_file is None and filename == SAFE_WEIGHTS_NAME:
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
                        resolved_archive_file = cached_file(
                            pretrained_model_name_or_path, SAFE_WEIGHTS_INDEX_NAME, **cached_file_kwargs
                        )
                        if resolved_archive_file is not None:
                            is_sharded = True
                        else:
                            # This repo has no safetensors file of any kind, we switch to PyTorch.
                            filename = WEIGHTS_NAME
                            resolved_archive_file = cached_file(
                                pretrained_model_name_or_path, WEIGHTS_NAME, **cached_file_kwargs
                            )
2116
                    if resolved_archive_file is None and filename == WEIGHTS_NAME:
Sylvain Gugger's avatar
Sylvain Gugger committed
2117
                        # Maybe the checkpoint is sharded, we try to grab the index name in this case.
2118
2119
                        resolved_archive_file = cached_file(
                            pretrained_model_name_or_path, WEIGHTS_INDEX_NAME, **cached_file_kwargs
2120
                        )
2121
2122
2123
                        if resolved_archive_file is not None:
                            is_sharded = True
                    if resolved_archive_file is None:
Sylvain Gugger's avatar
Sylvain Gugger committed
2124
2125
2126
2127
2128
2129
2130
2131
2132
                        # Otherwise, maybe there is a TF or Flax model file.  We try those to give a helpful error
                        # message.
                        has_file_kwargs = {
                            "revision": revision,
                            "proxies": proxies,
                            "use_auth_token": use_auth_token,
                        }
                        if has_file(pretrained_model_name_or_path, TF2_WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
Sylvain Gugger's avatar
Sylvain Gugger committed
2133
2134
2135
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
                                f" {WEIGHTS_NAME} but there is a file for TensorFlow weights. Use `from_tf=True` to"
                                " load this model from those weights."
Sylvain Gugger's avatar
Sylvain Gugger committed
2136
2137
2138
                            )
                        elif has_file(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME, **has_file_kwargs):
                            raise EnvironmentError(
Sylvain Gugger's avatar
Sylvain Gugger committed
2139
2140
2141
                                f"{pretrained_model_name_or_path} does not appear to have a file named"
                                f" {WEIGHTS_NAME} but there is a file for Flax weights. Use `from_flax=True` to load"
                                " this model from those weights."
Sylvain Gugger's avatar
Sylvain Gugger committed
2142
2143
2144
                            )
                        else:
                            raise EnvironmentError(
Sylvain Gugger's avatar
Sylvain Gugger committed
2145
2146
                                f"{pretrained_model_name_or_path} does not appear to have a file named {WEIGHTS_NAME},"
                                f" {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or {FLAX_WEIGHTS_NAME}."
Sylvain Gugger's avatar
Sylvain Gugger committed
2147
                            )
2148
2149
2150
2151
2152
2153
                except EnvironmentError:
                    # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
                    # to the original exception.
                    raise
                except Exception:
                    # For any other exception, we throw a generic error.
2154
                    raise EnvironmentError(
2155
2156
2157
2158
2159
                        f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it"
                        " from 'https://huggingface.co/models', make sure you don't have a local directory with the"
                        f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
                        f" directory containing a file named {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or"
                        f" {FLAX_WEIGHTS_NAME}."
2160
                    )
2161

2162
            if is_local:
2163
                logger.info(f"loading weights file {archive_file}")
2164
                resolved_archive_file = archive_file
2165
            else:
2166
                logger.info(f"loading weights file {filename} from cache at {resolved_archive_file}")
2167
        else:
thomwolf's avatar
thomwolf committed
2168
            resolved_archive_file = None
2169

Sylvain Gugger's avatar
Sylvain Gugger committed
2170
2171
        # We'll need to download and cache each checkpoint shard if the checkpoint is sharded.
        if is_sharded:
2172
            # rsolved_archive_file becomes a list of files that point to the different checkpoint shards in this case.
Sylvain Gugger's avatar
Sylvain Gugger committed
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
            resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
                pretrained_model_name_or_path,
                resolved_archive_file,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                user_agent=user_agent,
                revision=revision,
2184
                subfolder=subfolder,
2185
                _commit_hash=commit_hash,
Sylvain Gugger's avatar
Sylvain Gugger committed
2186
2187
            )

2188
2189
        # load pt weights early so that we know which dtype to init the model under
        if from_pt:
2190
            if not is_sharded and state_dict is None:
Sylvain Gugger's avatar
Sylvain Gugger committed
2191
2192
                # Time to load the checkpoint
                state_dict = load_state_dict(resolved_archive_file)
2193

2194
2195
2196
            # set dtype to instantiate the model under:
            # 1. If torch_dtype is not None, we use that dtype
            # 2. If torch_dtype is "auto", we auto-detect dtype from the loaded state_dict, by checking its first
2197
            #    weights entry that is of a floating type - we assume all floating dtype weights are of the same dtype
2198
2199
2200
2201
2202
            # we also may have config.torch_dtype available, but we won't rely on it till v5
            dtype_orig = None
            if torch_dtype is not None:
                if isinstance(torch_dtype, str):
                    if torch_dtype == "auto":
Sylvain Gugger's avatar
Sylvain Gugger committed
2203
2204
2205
                        if is_sharded and "dtype" in sharded_metadata:
                            torch_dtype = sharded_metadata["dtype"]
                        elif not is_sharded:
2206
                            torch_dtype = get_state_dict_dtype(state_dict)
Sylvain Gugger's avatar
Sylvain Gugger committed
2207
                        else:
2208
                            one_state_dict = load_state_dict(resolved_archive_file[0])
2209
                            torch_dtype = get_state_dict_dtype(one_state_dict)
Sylvain Gugger's avatar
Sylvain Gugger committed
2210
                            del one_state_dict  # free CPU memory
2211
2212
2213
2214
2215
2216
                    else:
                        raise ValueError(
                            f"`torch_dtype` can be either a `torch.dtype` or `auto`, but received {torch_dtype}"
                        )
                dtype_orig = cls._set_default_torch_dtype(torch_dtype)

2217
2218
2219
2220
            if is_sharded:
                loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
            else:
                loaded_state_dict_keys = [k for k in state_dict.keys()]
2221
            if low_cpu_mem_usage:
2222
                state_dict = None
2223

2224
2225
        config.name_or_path = pretrained_model_name_or_path

2226
        # Instantiate model.
2227
2228
        init_contexts = [no_init_weights(_enable=_fast_init)]

2229
2230
2231
2232
        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
2233
            init_contexts = [deepspeed.zero.Init(config_dict_or_path=deepspeed_config())] + init_contexts
2234
        elif load_in_8bit or low_cpu_mem_usage:
2235
2236
2237
2238
2239
            init_contexts.append(init_empty_weights())

        with ContextManagers(init_contexts):
            model = cls(config, *model_args, **model_kwargs)

2240
        if load_in_8bit:
2241
            from .utils.bitsandbytes import get_keys_to_not_convert, replace_8bit_linear
2242

2243
2244
            logger.info("Detected 8-bit loading: activating 8-bit loading for this model")

2245
2246
2247
2248
2249
2250
2251
2252
            # We keep some modules such as the lm_head in their original dtype for numerical stability reasons
            if load_in_8bit_skip_modules is None:
                modules_to_not_convert = get_keys_to_not_convert(model)
            else:
                modules_to_not_convert = load_in_8bit_skip_modules
            model = replace_8bit_linear(
                model, threshold=load_in_8bit_threshold, modules_to_not_convert=modules_to_not_convert
            )
2253

2254
        if isinstance(device_map, str):
2255
            if model._no_split_modules is None:
2256
                raise ValueError(f"{model.__class__.__name__} does not support `device_map='{device_map}'` yet.")
2257
            no_split_modules = model._no_split_modules
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
            if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
                raise ValueError(
                    "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or "
                    "'sequential'."
                )
            elif device_map in ["balanced", "balanced_low_0"] and get_balanced_memory is None:
                raise ValueError(f"`device_map={device_map}` requires a source install of Accelerate.")
            if device_map != "sequential" and get_balanced_memory is not None:
                max_memory = get_balanced_memory(
                    model,
                    max_memory=max_memory,
                    no_split_module_classes=no_split_modules,
                    dtype=torch_dtype,
                    low_zero=(device_map == "balanced_low_0"),
                )
2273
2274
            # Make sure tied weights are tied before creating the device map.
            model.tie_weights()
2275
            device_map = infer_auto_device_map(
2276
2277
2278
2279
                model,
                no_split_module_classes=no_split_modules,
                dtype=torch_dtype if not load_in_8bit else torch.int8,
                max_memory=max_memory,
2280
            )
2281

2282
            if load_in_8bit:
2283
                # The LM head / tied weights or any last module can stay on disk / CPU
2284
                device_map_without_lm_head = {
2285
                    key: device_map[key] for key in device_map.keys() if key not in modules_to_not_convert
2286
2287
                }
                if "cpu" in device_map_without_lm_head.values() or "disk" in device_map_without_lm_head.values():
2288
2289
2290
2291
2292
2293
2294
                    raise ValueError(
                        """
                        Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit
                        the quantized model. If you have set a value for `max_memory` you should increase that. To have
                        an idea of the modules that are set on the CPU or RAM you can print model.hf_device_map.
                        """
                    )
2295
2296
                del device_map_without_lm_head

2297
        if from_tf:
2298
            if resolved_archive_file.endswith(".index"):
2299
2300
2301
2302
2303
                # Load from a TensorFlow 1.X checkpoint - provided by original authors
                model = cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
            else:
                # Load from our TensorFlow 2.0 checkpoints
                try:
2304
                    from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model
2305

Yih-Dar's avatar
Yih-Dar committed
2306
2307
2308
                    model, loading_info = load_tf2_checkpoint_in_pytorch_model(
                        model, resolved_archive_file, allow_missing_keys=True, output_loading_info=True
                    )
2309
                except ImportError:
2310
                    logger.error(
Sylvain Gugger's avatar
Sylvain Gugger committed
2311
2312
2313
                        "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed."
                        " Please see https://pytorch.org/ and https://www.tensorflow.org/install/ for installation"
                        " instructions."
2314
                    )
2315
                    raise
2316
2317
2318
2319
2320
2321
2322
        elif from_flax:
            try:
                from .modeling_flax_pytorch_utils import load_flax_checkpoint_in_pytorch_model

                model = load_flax_checkpoint_in_pytorch_model(model, resolved_archive_file)
            except ImportError:
                logger.error(
Sylvain Gugger's avatar
Sylvain Gugger committed
2323
2324
2325
                    "Loading a Flax model in PyTorch, requires both PyTorch and Flax to be installed. Please see"
                    " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for"
                    " installation instructions."
2326
2327
                )
                raise
2328
        elif from_pt:
2329

2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
            # restore default dtype
            if dtype_orig is not None:
                torch.set_default_dtype(dtype_orig)

            model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
                model,
                state_dict,
                loaded_state_dict_keys,  # XXX: rename?
                resolved_archive_file,
                pretrained_model_name_or_path,
                ignore_mismatched_sizes=ignore_mismatched_sizes,
                sharded_metadata=sharded_metadata,
                _fast_init=_fast_init,
                low_cpu_mem_usage=low_cpu_mem_usage,
2344
2345
2346
2347
                device_map=device_map,
                offload_folder=offload_folder,
                offload_state_dict=offload_state_dict,
                dtype=torch_dtype,
2348
                load_in_8bit=load_in_8bit,
2349
            )
2350

2351
2352
        cls.is_loaded_in_8bit = load_in_8bit

2353
2354
        # make sure token embedding weights are still tied if needed
        model.tie_weights()
2355

2356
        # Set model in evaluation mode to deactivate DropOut modules by default
2357
2358
        model.eval()

2359
2360
2361
2362
        # Dispatch model with hooks on all devices if necessary
        if device_map is not None:
            dispatch_model(model, device_map=device_map, offload_dir=offload_folder)

thomwolf's avatar
thomwolf committed
2363
        if output_loading_info:
Yih-Dar's avatar
Yih-Dar committed
2364
2365
2366
2367
2368
2369
2370
            if loading_info is None:
                loading_info = {
                    "missing_keys": missing_keys,
                    "unexpected_keys": unexpected_keys,
                    "mismatched_keys": mismatched_keys,
                    "error_msgs": error_msgs,
                }
thomwolf's avatar
thomwolf committed
2371
2372
            return model, loading_info

2373
2374
        return model

2375
    @classmethod
Sylvain Gugger's avatar
Sylvain Gugger committed
2376
2377
2378
2379
    def _load_pretrained_model(
        cls,
        model,
        state_dict,
2380
        loaded_keys,
Sylvain Gugger's avatar
Sylvain Gugger committed
2381
2382
2383
2384
2385
        resolved_archive_file,
        pretrained_model_name_or_path,
        ignore_mismatched_sizes=False,
        sharded_metadata=None,
        _fast_init=True,
2386
        low_cpu_mem_usage=False,
2387
2388
        device_map=None,
        offload_folder=None,
2389
        offload_state_dict=None,
2390
        dtype=None,
2391
        load_in_8bit=False,
2392
    ):
2393
2394
2395
        if load_in_8bit:
            from .utils.bitsandbytes import set_module_8bit_tensor_to_device

Sylvain Gugger's avatar
Sylvain Gugger committed
2396
2397
2398
2399
2400
2401
2402
        if device_map is not None and "disk" in device_map.values():
            if offload_folder is None:
                raise ValueError(
                    "The current `device_map` had weights offloaded to the disk. Please provide an `offload_folder`"
                    " for them."
                )
            os.makedirs(offload_folder, exist_ok=True)
2403
2404
2405
            if offload_state_dict is None:
                offload_state_dict = True

2406
        # Retrieve missing & unexpected_keys
2407
2408
        model_state_dict = model.state_dict()
        expected_keys = list(model_state_dict.keys())
2409
2410
        prefix = model.base_model_prefix

Sylvain Gugger's avatar
Sylvain Gugger committed
2411
2412
2413
2414
2415
2416
2417
        def _fix_key(key):
            if "beta" in key:
                return key.replace("beta", "bias")
            if "gamma" in key:
                return key.replace("gamma", "weight")
            return key

2418
        original_loaded_keys = loaded_keys
Sylvain Gugger's avatar
Sylvain Gugger committed
2419
2420
        loaded_keys = [_fix_key(key) for key in loaded_keys]

2421
2422
2423
2424
2425
2426
        if len(prefix) > 0:
            has_prefix_module = any(s.startswith(prefix) for s in loaded_keys)
            expects_prefix_module = any(s.startswith(prefix) for s in expected_keys)
        else:
            has_prefix_module = False
            expects_prefix_module = False
Patrick von Platen's avatar
Patrick von Platen committed
2427
2428
2429

        # key re-naming operations are never done on the keys
        # that are loaded, but always on the keys of the newly initialized model
2430
2431
        remove_prefix_from_model = not has_prefix_module and expects_prefix_module
        add_prefix_to_model = has_prefix_module and not expects_prefix_module
2432

2433
        if remove_prefix_from_model:
2434
2435
2436
            _prefix = f"{prefix}."
            expected_keys_not_prefixed = [s for s in expected_keys if not s.startswith(_prefix)]
            expected_keys = [s[len(_prefix) :] if s.startswith(_prefix) else s for s in expected_keys]
2437
        elif add_prefix_to_model:
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
            expected_keys = [".".join([prefix, s]) for s in expected_keys]

        missing_keys = list(set(expected_keys) - set(loaded_keys))
        unexpected_keys = list(set(loaded_keys) - set(expected_keys))

        # Some models may have keys that are not in the state by design, removing them before needlessly warning
        # the user.
        if cls._keys_to_ignore_on_load_missing is not None:
            for pat in cls._keys_to_ignore_on_load_missing:
                missing_keys = [k for k in missing_keys if re.search(pat, k) is None]

        if cls._keys_to_ignore_on_load_unexpected is not None:
            for pat in cls._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

2453
2454
2455
2456
2457
2458
2459
2460
        # retrieve weights on meta device and put them back on CPU.
        # This is not ideal in terms of memory, but if we don't do that not, we can't initialize them in the next step
        if low_cpu_mem_usage:
            for key in missing_keys:
                if key.startswith(prefix):
                    key = ".".join(key.split(".")[1:])
                param = model_state_dict[key]
                if param.device == torch.device("meta"):
2461
                    if not load_in_8bit:
2462
                        set_module_tensor_to_device(model, key, "cpu", torch.empty(*param.size(), dtype=dtype))
2463
                    else:
2464
                        set_module_8bit_tensor_to_device(model, key, "cpu", torch.empty(*param.size(), dtype=dtype))
2465
2466

        # retrieve unintialized modules and initialize before maybe overriding that with the pretrained weights.
2467
        if _fast_init:
2468
            uninitialized_modules = model.retrieve_modules_from_names(
2469
                missing_keys, add_prefix=add_prefix_to_model, remove_prefix=remove_prefix_from_model
2470
            )
2471
            for module in uninitialized_modules:
2472
2473
                model._init_weights(module)

2474
2475
2476
        # Make sure we are able to load base models as well as derived models (with heads)
        start_prefix = ""
        model_to_load = model
2477
        if len(cls.base_model_prefix) > 0 and not hasattr(model, cls.base_model_prefix) and has_prefix_module:
2478
            start_prefix = cls.base_model_prefix + "."
2479
        if len(cls.base_model_prefix) > 0 and hasattr(model, cls.base_model_prefix) and not has_prefix_module:
2480
            model_to_load = getattr(model, cls.base_model_prefix)
Sylvain Gugger's avatar
Sylvain Gugger committed
2481
2482
            base_model_expected_keys = list(model_to_load.state_dict().keys())
            if any(key in expected_keys_not_prefixed and key not in base_model_expected_keys for key in loaded_keys):
2483
                raise ValueError(
2484
                    "The state dictionary of the model you are trying to load is corrupted. Are you sure it was "
2485
2486
                    "properly saved?"
                )
2487
2488
            if device_map is not None:
                device_map = {k.replace(f"{cls.base_model_prefix}.", ""): v for k, v in device_map.items()}
2489

2490
2491
2492
2493
2494
2495
2496
2497
        def _find_mismatched_keys(
            state_dict,
            model_state_dict,
            loaded_keys,
            add_prefix_to_model,
            remove_prefix_from_model,
            ignore_mismatched_sizes,
        ):
Sylvain Gugger's avatar
Sylvain Gugger committed
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
            mismatched_keys = []
            if ignore_mismatched_sizes:
                for checkpoint_key in loaded_keys:
                    model_key = checkpoint_key
                    if remove_prefix_from_model:
                        # The model key starts with `prefix` but `checkpoint_key` doesn't so we add it.
                        model_key = f"{prefix}.{checkpoint_key}"
                    elif add_prefix_to_model:
                        # The model key doesn't start with `prefix` but `checkpoint_key` does so we remove it.
                        model_key = ".".join(checkpoint_key.split(".")[1:])

                    if (
                        model_key in model_state_dict
                        and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
                    ):
                        mismatched_keys.append(
                            (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
                        )
                        del state_dict[checkpoint_key]
2517
2518
2519
2520
2521
2522
2523
            return mismatched_keys

        if state_dict is not None:
            # Whole checkpoint
            mismatched_keys = _find_mismatched_keys(
                state_dict,
                model_state_dict,
2524
                original_loaded_keys,
2525
2526
2527
2528
                add_prefix_to_model,
                remove_prefix_from_model,
                ignore_mismatched_sizes,
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
2529
2530
            error_msgs = _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
        else:
2531
2532
            # Sharded checkpoint or whole but low_cpu_mem_usage==True

Sylvain Gugger's avatar
Sylvain Gugger committed
2533
2534
2535
2536
2537
            # This should always be a list but, just to be sure.
            if not isinstance(resolved_archive_file, list):
                resolved_archive_file = [resolved_archive_file]

            error_msgs = []
2538
            mismatched_keys = []
2539
2540
2541
2542
2543
2544
2545
2546
            offload_index = {} if device_map is not None and "disk" in device_map.values() else None
            if offload_state_dict:
                state_dict_folder = tempfile.mkdtemp()
                state_dict_index = {}
            else:
                state_dict_folder = None
                state_dict_index = None

Sylvain Gugger's avatar
Sylvain Gugger committed
2547
2548
            for shard_file in resolved_archive_file:
                state_dict = load_state_dict(shard_file)
2549

Sylvain Gugger's avatar
Sylvain Gugger committed
2550
2551
                # Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not
                # matching the weights in the model.
2552
2553
2554
                mismatched_keys += _find_mismatched_keys(
                    state_dict,
                    model_state_dict,
2555
                    original_loaded_keys,
2556
2557
2558
2559
                    add_prefix_to_model,
                    remove_prefix_from_model,
                    ignore_mismatched_sizes,
                )
2560
2561

                if low_cpu_mem_usage:
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
                    new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(
                        model_to_load,
                        state_dict,
                        loaded_keys,
                        start_prefix,
                        expected_keys,
                        device_map=device_map,
                        offload_folder=offload_folder,
                        offload_index=offload_index,
                        state_dict_folder=state_dict_folder,
                        state_dict_index=state_dict_index,
                        dtype=dtype,
2574
                        load_in_8bit=load_in_8bit,
2575
                    )
2576
                    error_msgs += new_error_msgs
2577
2578
                else:
                    error_msgs += _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
2579

2580
2581
2582
2583
                # force memory release
                del state_dict
                gc.collect()

2584
            if offload_index is not None and len(offload_index) > 0:
Sylvain Gugger's avatar
Sylvain Gugger committed
2585
2586
2587
2588
2589
2590
2591
2592
2593
                if model != model_to_load:
                    # We need to add the prefix of the base model
                    prefix = cls.base_model_prefix
                    for weight_name in offload_index:
                        shutil.move(
                            os.path.join(offload_folder, f"{weight_name}.dat"),
                            os.path.join(offload_folder, f"{prefix}.{weight_name}.dat"),
                        )
                    offload_index = {f"{prefix}.{key}": value for key, value in offload_index.items()}
2594
                save_offload_index(offload_index, offload_folder)
2595
2596
2597

            if offload_state_dict:
                # Load back temporarily offloaded state dict
2598
                load_offloaded_weights(model_to_load, state_dict_index, state_dict_folder)
2599
2600
                shutil.rmtree(state_dict_folder)

2601
2602
        if len(error_msgs) > 0:
            error_msg = "\n\t".join(error_msgs)
2603
2604
2605
2606
            if "size mismatch" in error_msg:
                error_msg += (
                    "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
                )
2607
2608
            raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")

2609
2610
        if len(unexpected_keys) > 0:
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
2611
2612
2613
2614
2615
2616
2617
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
                f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
                f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or"
                " with another architecture (e.g. initializing a BertForSequenceClassification model from a"
                " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
                f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical"
                " (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
2618
2619
2620
2621
2622
            )
        else:
            logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
2623
2624
2625
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
                " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
2626
            )
2627
        elif len(mismatched_keys) == 0:
2628
            logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
2629
2630
2631
2632
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint"
                f" was trained on, you can already use {model.__class__.__name__} for predictions without further"
                " training."
2633
            )
2634
2635
2636
2637
2638
2639
2640
2641
        if len(mismatched_keys) > 0:
            mismatched_warning = "\n".join(
                [
                    f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
                    for key, shape1, shape2 in mismatched_keys
                ]
            )
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
2642
2643
2644
2645
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
                f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
                f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able"
                " to use it for predictions and inference."
2646
            )
2647

2648
        return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs
2649
2650
2651
2652

    def retrieve_modules_from_names(self, names, add_prefix=False, remove_prefix=False):
        module_keys = set([".".join(key.split(".")[:-1]) for key in names])

Patrick von Platen's avatar
Patrick von Platen committed
2653
2654
        # torch.nn.ParameterList is a special case where two parameter keywords
        # are appended to the module name, *e.g.* bert.special_embeddings.0
2655
2656
2657
        module_keys = module_keys.union(
            set([".".join(key.split(".")[:-2]) for key in names if len(key) > 0 and key[-1].isdigit()])
        )
Patrick von Platen's avatar
Patrick von Platen committed
2658

2659
2660
2661
2662
        retrieved_modules = []
        # retrieve all modules that has at least one missing weight name
        for name, module in self.named_modules():
            if remove_prefix:
2663
2664
                _prefix = f"{self.base_model_prefix}."
                name = name[len(_prefix) :] if name.startswith(_prefix) else name
2665
            elif add_prefix:
Patrick von Platen's avatar
Patrick von Platen committed
2666
                name = ".".join([self.base_model_prefix, name]) if len(name) > 0 else self.base_model_prefix
2667
2668
2669
2670
2671
2672

            if name in module_keys:
                retrieved_modules.append(module)

        return retrieved_modules

2673
    @staticmethod
2674
    def _load_pretrained_model_low_mem(model, loaded_state_dict_keys, resolved_archive_file, start_prefix=""):
2675
2676
2677
        """
        This is an experimental function that loads the model using ~1.x model size CPU memory

2678
        Before you call it do:
2679

2680
        1. save which state_dict keys are available
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
        2. drop state_dict before model is created, since the latter takes 1x model size memory

        Here then we continue:

        3. switch to the meta device all params/buffers that are going to be replaced from the loaded state_dict
        4. load state_dict 2nd time
        5. replace the params/buffers from the state_dict

        Currently, it doesn't handle missing_keys, unexpected_keys, mismatched_keys. It can't handle deepspeed.
        """

2692
2693
2694
2695
        _move_model_to_meta(model, loaded_state_dict_keys, start_prefix)
        state_dict = load_state_dict(resolved_archive_file)
        error_msgs = _load_state_dict_into_meta_model(model, state_dict, loaded_state_dict_keys, start_prefix)
        return error_msgs
2696

2697
2698
2699
2700
2701
2702
    @classmethod
    def register_for_auto_class(cls, auto_class="AutoModel"):
        """
        Register this class with a given auto class. This should only be used for custom models as the ones in the
        library are already mapped with an auto class.

2703
2704
2705
2706
2707
2708
        <Tip warning={true}>

        This API is experimental and may have some slight breaking changes in the next releases.

        </Tip>

2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
        Args:
            auto_class (`str` or `type`, *optional*, defaults to `"AutoModel"`):
                The auto class to register this new model with.
        """
        if not isinstance(auto_class, str):
            auto_class = auto_class.__name__

        import transformers.models.auto as auto_module

        if not hasattr(auto_module, auto_class):
            raise ValueError(f"{auto_class} is not a valid auto class.")

        cls._auto_class = auto_class

thomwolf's avatar
thomwolf committed
2723

2724
2725
2726
2727
PreTrainedModel.push_to_hub = copy_func(PreTrainedModel.push_to_hub)
PreTrainedModel.push_to_hub.__doc__ = PreTrainedModel.push_to_hub.__doc__.format(
    object="model", object_class="AutoModel", object_files="model file"
)
2728
2729


thomwolf's avatar
thomwolf committed
2730
class PoolerStartLogits(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
2731
2732
    """
    Compute SQuAD start logits from sequence hidden states.
2733

Sylvain Gugger's avatar
Sylvain Gugger committed
2734
    Args:
2735
2736
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
2737
2738
2739
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
2740
        super().__init__()
thomwolf's avatar
thomwolf committed
2741
2742
        self.dense = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
2743
2744
2745
2746
2747
    def forward(
        self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None
    ) -> torch.FloatTensor:
        """
        Args:
2748
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2749
                The final hidden states of the model.
2750
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2751
2752
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
2753
2754

        Returns:
2755
            `torch.FloatTensor`: The start logits for SQuAD.
thomwolf's avatar
thomwolf committed
2756
        """
thomwolf's avatar
thomwolf committed
2757
2758
2759
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
2760
            if get_parameter_dtype(self) == torch.float16:
2761
2762
2763
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
2764
2765
2766
2767
2768
2769

        return x


class PoolerEndLogits(nn.Module):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
2770
    Compute SQuAD end logits from sequence hidden states.
2771

Sylvain Gugger's avatar
Sylvain Gugger committed
2772
    Args:
2773
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
2774
2775
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
Sylvain Gugger's avatar
Sylvain Gugger committed
2776
2777
2778
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
2779
        super().__init__()
thomwolf's avatar
thomwolf committed
2780
2781
2782
2783
2784
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
2785
2786
2787
2788
2789
2790
2791
2792
2793
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        """
        Args:
2794
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2795
                The final hidden states of the model.
2796
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2797
                The hidden states of the first tokens for the labeled span.
2798
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2799
                The position of the first token for the labeled span.
2800
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2801
2802
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
2803

2804
        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
2805

Stas Bekman's avatar
Stas Bekman committed
2806
2807
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
2808
2809

        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
2810
2811

        Returns:
2812
            `torch.FloatTensor`: The end logits for SQuAD.
thomwolf's avatar
thomwolf committed
2813
        """
2814
2815
2816
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
2817
        if start_positions is not None:
2818
            slen, hsz = hidden_states.shape[-2:]
2819
2820
2821
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions)  # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1)  # shape (bsz, slen, hsz)
thomwolf's avatar
thomwolf committed
2822
2823
2824
2825
2826
2827
2828

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
2829
            if get_parameter_dtype(self) == torch.float16:
2830
2831
2832
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
2833
2834
2835
2836
2837

        return x


class PoolerAnswerClass(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
2838
2839
2840
2841
    """
    Compute SQuAD 2.0 answer class from classification and start tokens hidden states.

    Args:
2842
2843
        config ([`PretrainedConfig`]):
            The config used by the model, will be used to grab the `hidden_size` of the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
2844
    """
2845

thomwolf's avatar
thomwolf committed
2846
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
2847
        super().__init__()
thomwolf's avatar
thomwolf committed
2848
2849
2850
2851
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

Sylvain Gugger's avatar
Sylvain Gugger committed
2852
2853
2854
2855
2856
2857
2858
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
    ) -> torch.FloatTensor:
2859
2860
        """
        Args:
2861
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Sylvain Gugger's avatar
Sylvain Gugger committed
2862
                The final hidden states of the model.
2863
            start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2864
                The hidden states of the first tokens for the labeled span.
2865
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2866
                The position of the first token for the labeled span.
2867
2868
2869
2870
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.

        <Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
2871

Stas Bekman's avatar
Stas Bekman committed
2872
2873
        One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
        `start_states`.
Sylvain Gugger's avatar
Sylvain Gugger committed
2874

2875
        </Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
2876
2877

        Returns:
2878
            `torch.FloatTensor`: The SQuAD 2.0 answer class.
thomwolf's avatar
thomwolf committed
2879
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
2880
        # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample.
2881
        hsz = hidden_states.shape[-1]
2882
2883
2884
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
2885
        if start_positions is not None:
2886
2887
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
2888
2889

        if cls_index is not None:
2890
2891
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
2892
        else:
2893
            cls_token_state = hidden_states[:, -1, :]  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
2894
2895
2896
2897
2898
2899
2900
2901

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


2902
2903
2904
@dataclass
class SquadHeadOutput(ModelOutput):
    """
2905
    Base class for outputs of question answering models using a [`~modeling_utils.SQuADHead`].
2906
2907

    Args:
2908
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
Sylvain Gugger's avatar
Sylvain Gugger committed
2909
2910
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification
            losses.
2911
        start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
2912
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
2913
        start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
2914
            Indices for the top config.start_n_top start token possibilities (beam-search).
2915
2916
        end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
Sylvain Gugger's avatar
Sylvain Gugger committed
2917
            (beam-search).
2918
2919
2920
2921
        end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
        cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
            Log probabilities for the `is_impossible` label of the answers.
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932

    """

    loss: Optional[torch.FloatTensor] = None
    start_top_log_probs: Optional[torch.FloatTensor] = None
    start_top_index: Optional[torch.LongTensor] = None
    end_top_log_probs: Optional[torch.FloatTensor] = None
    end_top_index: Optional[torch.LongTensor] = None
    cls_logits: Optional[torch.FloatTensor] = None


thomwolf's avatar
thomwolf committed
2933
class SQuADHead(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
2934
2935
    r"""
    A SQuAD head inspired by XLNet.
2936

Sylvain Gugger's avatar
Sylvain Gugger committed
2937
    Args:
2938
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
2939
2940
            The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
            to use.
thomwolf's avatar
thomwolf committed
2941
    """
2942

thomwolf's avatar
thomwolf committed
2943
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
2944
        super().__init__()
thomwolf's avatar
thomwolf committed
2945
2946
2947
2948
2949
2950
2951
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

Sylvain Gugger's avatar
Sylvain Gugger committed
2952
    @replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig)
2953
    def forward(
2954
        self,
Sylvain Gugger's avatar
Sylvain Gugger committed
2955
2956
2957
2958
2959
2960
        hidden_states: torch.FloatTensor,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
        is_impossible: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
2961
        return_dict: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
2962
2963
    ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]:
        """
Lysandre's avatar
Lysandre committed
2964
        Args:
2965
            hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
Lysandre's avatar
Lysandre committed
2966
                Final hidden states of the model on the sequence tokens.
2967
            start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
2968
                Positions of the first token for the labeled span.
2969
            end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
2970
                Positions of the last token for the labeled span.
2971
2972
2973
            cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
                Position of the CLS token for each sentence in the batch. If `None`, takes the last token.
            is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Lysandre's avatar
Lysandre committed
2974
                Whether the question has a possible answer in the paragraph or not.
2975
            p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
2976
2977
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
2978
            return_dict (`bool`, *optional*, defaults to `False`):
2979
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Sylvain Gugger's avatar
Sylvain Gugger committed
2980

Lysandre's avatar
Lysandre committed
2981
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
2982
        """
thomwolf's avatar
thomwolf committed
2983
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
3007

3008
            return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,)
thomwolf's avatar
thomwolf committed
3009
3010
3011
3012

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
3013
            start_log_probs = nn.functional.softmax(start_logits, dim=-1)  # shape (bsz, slen)
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024

            start_top_log_probs, start_top_index = torch.topk(
                start_log_probs, self.start_n_top, dim=-1
            )  # shape (bsz, start_n_top)
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz)  # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp)  # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1)  # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
                start_states
            )  # shape (bsz, slen, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
3025
3026
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
3027
            end_log_probs = nn.functional.softmax(end_logits, dim=1)  # shape (bsz, slen, start_n_top)
thomwolf's avatar
thomwolf committed
3028

3029
3030
3031
            end_top_log_probs, end_top_index = torch.topk(
                end_log_probs, self.end_n_top, dim=1
            )  # shape (bsz, end_n_top, start_n_top)
thomwolf's avatar
thomwolf committed
3032
3033
3034
3035
3036
3037
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

3038
            if not return_dict:
3039
3040
3041
3042
3043
3044
3045
3046
3047
                return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
            else:
                return SquadHeadOutput(
                    start_top_log_probs=start_top_log_probs,
                    start_top_index=start_top_index,
                    end_top_log_probs=end_top_log_probs,
                    end_top_index=end_top_index,
                    cls_logits=cls_logits,
                )
thomwolf's avatar
thomwolf committed
3048
3049
3050


class SequenceSummary(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
3051
3052
3053
3054
    r"""
    Compute a single vector summary of a sequence hidden states.

    Args:
3055
        config ([`PretrainedConfig`]):
Sylvain Gugger's avatar
Sylvain Gugger committed
3056
3057
            The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
            config class of your model for the default values it uses):
Sylvain Gugger's avatar
Sylvain Gugger committed
3058

3059
            - **summary_type** (`str`) -- The method to use to make this summary. Accepted values are:
Sylvain Gugger's avatar
Sylvain Gugger committed
3060

3061
3062
3063
3064
3065
                - `"last"` -- Take the last token hidden state (like XLNet)
                - `"first"` -- Take the first token hidden state (like Bert)
                - `"mean"` -- Take the mean of all tokens hidden states
                - `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
                - `"attn"` -- Not implemented now, use multi-head attention
Sylvain Gugger's avatar
Sylvain Gugger committed
3066

3067
            - **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
Sylvain Gugger's avatar
Sylvain Gugger committed
3068
3069
3070
3071
3072
3073
            - **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
              (otherwise to `config.hidden_size`).
            - **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
              another string or `None` will add no activation.
            - **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
            - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
thomwolf's avatar
thomwolf committed
3074
    """
3075

3076
    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
3077
        super().__init__()
thomwolf's avatar
thomwolf committed
3078

3079
        self.summary_type = getattr(config, "summary_type", "last")
3080
        if self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
3081
3082
3083
3084
3085
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

thomwolf's avatar
thomwolf committed
3086
        self.summary = Identity()
3087
3088
        if hasattr(config, "summary_use_proj") and config.summary_use_proj:
            if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
3089
                num_classes = config.num_labels
thomwolf's avatar
thomwolf committed
3090
3091
3092
3093
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

3094
        activation_string = getattr(config, "summary_activation", None)
Lysandre's avatar
Lysandre committed
3095
        self.activation: Callable = get_activation(activation_string) if activation_string else Identity()
thomwolf's avatar
thomwolf committed
3096

thomwolf's avatar
thomwolf committed
3097
        self.first_dropout = Identity()
3098
        if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
3099
3100
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

thomwolf's avatar
thomwolf committed
3101
        self.last_dropout = Identity()
3102
        if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
3103
            self.last_dropout = nn.Dropout(config.summary_last_dropout)
thomwolf's avatar
thomwolf committed
3104

Sylvain Gugger's avatar
Sylvain Gugger committed
3105
3106
3107
3108
3109
3110
3111
    def forward(
        self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None
    ) -> torch.FloatTensor:
        """
        Compute a single vector summary of a sequence hidden states.

        Args:
3112
            hidden_states (`torch.FloatTensor` of shape `[batch_size, seq_len, hidden_size]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
3113
                The hidden states of the last layer.
3114
            cls_index (`torch.LongTensor` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
3115
                Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
Sylvain Gugger's avatar
Sylvain Gugger committed
3116
3117

        Returns:
3118
            `torch.FloatTensor`: The summary of the sequence hidden states.
thomwolf's avatar
thomwolf committed
3119
        """
3120
        if self.summary_type == "last":
thomwolf's avatar
thomwolf committed
3121
            output = hidden_states[:, -1]
3122
        elif self.summary_type == "first":
thomwolf's avatar
thomwolf committed
3123
            output = hidden_states[:, 0]
3124
        elif self.summary_type == "mean":
thomwolf's avatar
thomwolf committed
3125
            output = hidden_states.mean(dim=1)
3126
        elif self.summary_type == "cls_index":
thomwolf's avatar
thomwolf committed
3127
            if cls_index is None:
Lysandre's avatar
Lysandre committed
3128
3129
3130
3131
3132
                cls_index = torch.full_like(
                    hidden_states[..., :1, :],
                    hidden_states.shape[-2] - 1,
                    dtype=torch.long,
                )
thomwolf's avatar
thomwolf committed
3133
            else:
thomwolf's avatar
thomwolf committed
3134
                cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
3135
                cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
thomwolf's avatar
thomwolf committed
3136
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
3137
3138
            output = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, XX, hidden_size)
        elif self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
3139
3140
            raise NotImplementedError

3141
        output = self.first_dropout(output)
thomwolf's avatar
thomwolf committed
3142
3143
        output = self.summary(output)
        output = self.activation(output)
3144
        output = self.last_dropout(output)
thomwolf's avatar
thomwolf committed
3145
3146
3147
3148

        return output


3149
def unwrap_model(model: nn.Module) -> nn.Module:
3150
3151
3152
3153
    """
    Recursively unwraps a model from potential containers (as used in distributed training).

    Args:
3154
        model (`torch.nn.Module`): The model to unwrap.
3155
3156
3157
3158
3159
3160
    """
    # since there could be multiple levels of wrapping, unwrap recursively
    if hasattr(model, "module"):
        return unwrap_model(model.module)
    else:
        return model