check_repo.py 33.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
import importlib
import inspect
import os
import re
20
import warnings
21
from collections import OrderedDict
22
from difflib import get_close_matches
23
from pathlib import Path
24

25
from transformers import is_flax_available, is_tf_available, is_torch_available
26
from transformers.models.auto import get_values
27
from transformers.utils import ENV_VARS_TRUE_VALUES
28

29
30
31
32
33

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
34
PATH_TO_DOC = "docs/source/en"
35

36
37
38
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
39
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
40
    "RealmBertModel",
41
    "T5Stack",
42
    "SwitchTransformersStack",
43
    "TFDPRSpanPredictor",
44
45
    "MaskFormerSwinModel",
    "MaskFormerSwinPreTrainedModel",
46
47
]

48
49
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
50
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
51
    # models to ignore for not tested
NielsRogge's avatar
NielsRogge committed
52
    "CLIPSegDecoder",  # Building part of bigger (tested) model.
53
54
    "TableTransformerEncoder",  # Building part of bigger (tested) model.
    "TableTransformerDecoder",  # Building part of bigger (tested) model.
55
56
    "TimeSeriesTransformerEncoder",  # Building part of bigger (tested) model.
    "TimeSeriesTransformerDecoder",  # Building part of bigger (tested) model.
57
58
    "JukeboxVQVAE",  # Building part of bigger (tested) model.
    "JukeboxPrior",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
59
60
    "DeformableDetrEncoder",  # Building part of bigger (tested) model.
    "DeformableDetrDecoder",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
61
    "OPTDecoder",  # Building part of bigger (tested) model.
62
63
    "WhisperDecoder",  # Building part of bigger (tested) model.
    "WhisperEncoder",  # Building part of bigger (tested) model.
64
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
65
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
66
67
68
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
69
70
71
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
72
73
74
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
75
76
    "ConditionalDetrEncoder",  # Building part of bigger (tested) model.
    "ConditionalDetrDecoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
77
78
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Chan Woo Kim's avatar
Chan Woo Kim committed
79
    "MCTCTEncoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
80
81
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
82
83
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
84
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
85
    "BartEncoder",  # Building part of bigger (tested) model.
86
    "BertLMHeadModel",  # Needs to be setup as decoder.
87
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
88
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
89
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
90
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
91
    "MBartEncoder",  # Building part of bigger (tested) model.
92
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
93
94
95
96
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
StevenTang1998's avatar
StevenTang1998 committed
97
98
    "MvpDecoderWrapper",  # Building part of bigger (tested) model.
    "MvpEncoder",  # Building part of bigger (tested) model.
99
    "PegasusEncoder",  # Building part of bigger (tested) model.
100
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
Jason Phang's avatar
Jason Phang committed
101
102
103
    "PegasusXEncoder",  # Building part of bigger (tested) model.
    "PegasusXDecoder",  # Building part of bigger (tested) model.
    "PegasusXDecoderWrapper",  # Building part of bigger (tested) model.
104
    "DPREncoder",  # Building part of bigger (tested) model.
105
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
106
107
108
109
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
110
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
111
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
112
    "TFDPREncoder",  # Building part of bigger (tested) model.
113
114
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
115
    "TFRobertaPreLayerNormForMultipleChoice",  # TODO: fix
116
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
amyeroberts's avatar
amyeroberts committed
117
118
    "TFWhisperEncoder",  # Building part of bigger (tested) model.
    "TFWhisperDecoder",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
119
    "SeparableConv1D",  # Building part of bigger (tested) model.
120
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
121
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
122
    "OPTDecoderWrapper",
123
    "TFSegformerDecodeHead",  # Not a regular model.
Younes Belkada's avatar
Younes Belkada committed
124
    "BlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
125
126
127
128
129
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
145
146
]

147
148
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
149
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
150
    # models to ignore for model xxx mapping
Younes Belkada's avatar
Younes Belkada committed
151
152
153
154
155
156
    "BlipForConditionalGeneration",
    "BlipForImageTextRetrieval",
    "BlipForQuestionAnswering",
    "BlipVisionModel",
    "BlipTextLMHeadModel",
    "BlipTextModel",
NielsRogge's avatar
NielsRogge committed
157
    "Swin2SRForImageSuperResolution",
NielsRogge's avatar
NielsRogge committed
158
159
160
    "CLIPSegForImageSegmentation",
    "CLIPSegVisionModel",
    "CLIPSegTextModel",
Matt's avatar
Matt committed
161
    "EsmForProteinFolding",
162
    "TimeSeriesTransformerForPrediction",
163
164
    "JukeboxVQVAE",
    "JukeboxPrior",
Jason Phang's avatar
Jason Phang committed
165
166
167
168
169
170
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
171
    "DPTForDepthEstimation",
172
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
173
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
174
175
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
176
    "ViltForTokenClassification",
NielsRogge's avatar
NielsRogge committed
177
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
178
179
180
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
181
182
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
183
    "SegformerDecodeHead",
184
    "TFSegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
185
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
186
187
188
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
189
    "BeitForMaskedImageModeling",
190
191
    "ChineseCLIPTextModel",
    "ChineseCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
192
    "CLIPTextModel",
193
    "CLIPTextModelWithProjection",
Suraj Patil's avatar
Suraj Patil committed
194
    "CLIPVisionModel",
195
    "CLIPVisionModelWithProjection",
196
197
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
198
199
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
200
201
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
Suraj Patil's avatar
Suraj Patil committed
202
203
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
204
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
205
    "DetrForSegmentation",
206
    "ConditionalDetrForSegmentation",
207
208
    "DPRReader",
    "FlaubertForQuestionAnswering",
209
210
211
212
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
213
    "GPT2DoubleHeadsModel",
214
    "GPTSw3DoubleHeadsModel",
215
    "LayoutLMForQuestionAnswering",
Ryokan RI's avatar
Ryokan RI committed
216
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
217
218
219
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
220
    "OpenAIGPTDoubleHeadsModel",
221
222
223
    "OwlViTTextModel",
    "OwlViTVisionModel",
    "OwlViTForObjectDetection",
224
225
226
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
227
228
229
230
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
231
    "TFDPRReader",
232
    "TFGPT2DoubleHeadsModel",
233
    "TFLayoutLMForQuestionAnswering",
234
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
235
236
237
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
238
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
239
    "HubertForCTC",
240
241
    "SEWForCTC",
    "SEWDForCTC",
242
243
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
244
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
245
246
247
248
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
249
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
250
    "TFHubertForCTC",
NielsRogge's avatar
NielsRogge committed
251
252
    "XCLIPVisionModel",
    "XCLIPTextModel",
253
254
]

255
256
257
258
259
260
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
261
        ("data2vec-vision", "data2vec"),
NielsRogge's avatar
NielsRogge committed
262
        ("donut-swin", "donut"),
263
264
265
266
    ]
)


267
268
269
270
271
272
273
274
275
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()


276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

    missing_models = sorted(list(set(_models).difference(models)))
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


296
297
298
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
299
    """Get the model modules inside the transformers library."""
300
301
302
303
304
305
306
307
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
308
        "modeling_flax_auto",
309
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
310
        "modeling_flax_utils",
311
        "modeling_speech_encoder_decoder",
312
        "modeling_flax_speech_encoder_decoder",
313
        "modeling_flax_vision_encoder_decoder",
314
315
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
316
        "modeling_tf_encoder_decoder",
317
318
319
320
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
321
        "modeling_tf_vision_encoder_decoder",
322
        "modeling_vision_encoder_decoder",
323
324
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
325
326
327
328
329
330
331
332
333
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
334
335
336
    return modules


337
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
338
    """Get the objects in module that are models."""
339
    models = []
340
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
341
    for attr_name in dir(module):
342
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
343
344
345
346
347
348
349
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


380
381
382
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Yih-Dar's avatar
Yih-Dar committed
383
384
385
386
387
388
    """Get the model test files.

    The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
    considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
    """

389
390
391
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
392
        "test_modeling_flax_encoder_decoder",
393
        "test_modeling_flax_speech_encoder_decoder",
394
395
        "test_modeling_marian",
        "test_modeling_tf_common",
396
        "test_modeling_tf_encoder_decoder",
397
398
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    # Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
                if "test_modeling" in filename and not os.path.splitext(filename)[0] in _ignore_files:
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

416
417
418
419
420
421
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
422
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
423
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
424
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
425
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
426
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
427
428
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
429
    if len(all_models) > 0:
430
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
431
432
433
434
435
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
436
437
438
439
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
440
    """Check models defined in module are tested in test_file."""
441
    # XxxPreTrainedModel are not tested
442
443
444
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
445
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
465
    """Check all models are properly tested."""
466
467
468
469
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
470
471
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
472
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
473
474
475
476
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
477
478
479
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
480
481
482
483
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


484
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
485
    """Return the list of all models in at least one auto class."""
486
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
487
488
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
489
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
490
491
492
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
493
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
494
495
496
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
497
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
498
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
499
    return [cls for cls in result]
500
501


502
503
504
505
506
507
508
509
510
511
512
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


513
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
514
    """Check models defined in module are each in an auto class."""
515
516
517
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
518
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
519
520
521
522
523
524
525
526
527
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
528
    """Check all models are each in an auto class."""
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
550
551
552
553
554
555
556
557
558
559
560
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
561
562
563
564
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
565
    """Check that in the test file `filename` the slow decorator is always last."""
566
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
583
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
584
585
586
587
588
589
590
591
592
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
593
594
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
595
596
597
        )


598
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
599
    """Parse the content of all doc files to detect which classes and functions it documents"""
600
601
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
602
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
603
604
605
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
606
607
608
609
610
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
611
612
613
614
615
616
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
617
    "BartPretrainedModel",
618
619
    "DataCollator",
    "DataCollatorForSOP",
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
635
    "TFBartPretrainedModel",
636
637
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
638
    "Wav2Vec2ForMaskedLM",
639
    "Wav2Vec2Tokenizer",
640
641
642
643
644
645
646
647
648
649
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
650
651
    "TFTrainer",
    "TFTrainingArguments",
652
653
654
655
656
657
658
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
659
    "CharacterTokenizer",  # Internal, should never have been in the main init.
660
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
661
    "DummyObject",  # Just picked by mistake sometimes.
662
    "MecabTokenizer",  # Internal, should never have been in the main init.
663
664
665
666
667
668
669
670
671
672
673
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
674
    "requires_backends",  # Internal function
675
676
677
678
679
680
681
682
683
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
NielsRogge's avatar
NielsRogge committed
684
    "BitBackbone",
685
    "MaskFormerSwinBackbone",
686
687
    "ResNetBackbone",
    "AutoBackbone",
688
689
    "DinatBackbone",
    "NatBackbone",
690
691
    "MaskFormerSwinConfig",
    "MaskFormerSwinModel",
NielsRogge's avatar
NielsRogge committed
692
    "SwinBackbone",
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
735
    """Check all models are properly documented."""
736
    documented_objs = find_all_documented_objects()
737
738
739
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
740
741
742
743
744
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
745
    check_docstrings_are_in_md()
746
747
748
749
750
751
752
753
754
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
755
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
801
        with open(file, encoding="utf-8") as f:
802
803
804
805
806
807
808
809
810
811
812
813
814
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
815
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
816
817
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
818
819


820
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
821
    """Check all models are properly tested and documented."""
822
823
    print("Checking all models are included.")
    check_model_list()
824
825
    print("Checking all models are public.")
    check_models_are_in_init()
826
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
827
    check_all_decorator_order()
828
    check_all_models_are_tested()
829
    print("Checking all objects are properly documented.")
830
    check_all_objects_are_documented()
831
832
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
833
834
835
836


if __name__ == "__main__":
    check_repo_quality()