samplers.py 27.9 KB
Newer Older
1
from .k_diffusion import sampling as k_diffusion_sampling
2
from .extra_samplers import uni_pc
comfyanonymous's avatar
comfyanonymous committed
3
import torch
4
import enum
5
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
6
import math
7
from comfy import model_base
8
import comfy.utils
9
import comfy.conds
10
11


comfyanonymous's avatar
comfyanonymous committed
12
#The main sampling function shared by all the samplers
comfyanonymous's avatar
comfyanonymous committed
13
#Returns denoised
14
def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None):
15
        def get_area_and_mult(conds, x_in, timestep_in):
16
17
            area = (x_in.shape[2], x_in.shape[3], 0, 0)
            strength = 1.0
18
19
20

            if 'timestep_start' in conds:
                timestep_start = conds['timestep_start']
21
                if timestep_in[0] > timestep_start:
22
                    return None
23
24
            if 'timestep_end' in conds:
                timestep_end = conds['timestep_end']
25
                if timestep_in[0] < timestep_end:
26
                    return None
27
28
29
30
            if 'area' in conds:
                area = conds['area']
            if 'strength' in conds:
                strength = conds['strength']
31

32
            input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
33
            if 'mask' in conds:
Jacob Segal's avatar
Jacob Segal committed
34
35
                # Scale the mask to the size of the input
                # The mask should have been resized as we began the sampling process
36
                mask_strength = 1.0
37
38
39
                if "mask_strength" in conds:
                    mask_strength = conds["mask_strength"]
                mask = conds['mask']
Jacob Segal's avatar
Jacob Segal committed
40
41
                assert(mask.shape[1] == x_in.shape[2])
                assert(mask.shape[2] == x_in.shape[3])
42
                mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
Jacob Segal's avatar
Jacob Segal committed
43
                mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
Jacob Segal's avatar
Jacob Segal committed
44
45
46
47
            else:
                mask = torch.ones_like(input_x)
            mult = mask * strength

48
            if 'mask' not in conds:
Jacob Segal's avatar
Jacob Segal committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
                rr = 8
                if area[2] != 0:
                    for t in range(rr):
                        mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
                if (area[0] + area[2]) < x_in.shape[2]:
                    for t in range(rr):
                        mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
                if area[3] != 0:
                    for t in range(rr):
                        mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
                if (area[1] + area[3]) < x_in.shape[3]:
                    for t in range(rr):
                        mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))

comfyanonymous's avatar
comfyanonymous committed
63
            conditionning = {}
64
65
66
            model_conds = conds["model_conds"]
            for c in model_conds:
                conditionning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area)
67

comfyanonymous's avatar
comfyanonymous committed
68
            control = None
69
70
            if 'control' in conds:
                control = conds['control']
71
72

            patches = None
73
74
            if 'gligen' in conds:
                gligen = conds['gligen']
75
76
77
78
                patches = {}
                gligen_type = gligen[0]
                gligen_model = gligen[1]
                if gligen_type == "position":
comfyanonymous's avatar
comfyanonymous committed
79
                    gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device)
80
                else:
comfyanonymous's avatar
comfyanonymous committed
81
                    gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device)
82
83
84
85

                patches['middle_patch'] = [gligen_patch]

            return (input_x, mult, conditionning, area, control, patches)
comfyanonymous's avatar
comfyanonymous committed
86
87

        def cond_equal_size(c1, c2):
comfyanonymous's avatar
comfyanonymous committed
88
89
            if c1 is c2:
                return True
comfyanonymous's avatar
comfyanonymous committed
90
91
            if c1.keys() != c2.keys():
                return False
92
93
            for k in c1:
                if not c1[k].can_concat(c2[k]):
94
                    return False
comfyanonymous's avatar
comfyanonymous committed
95
96
            return True

comfyanonymous's avatar
comfyanonymous committed
97
98
99
        def can_concat_cond(c1, c2):
            if c1[0].shape != c2[0].shape:
                return False
100
101

            #control
comfyanonymous's avatar
comfyanonymous committed
102
103
104
105
106
107
            if (c1[4] is None) != (c2[4] is None):
                return False
            if c1[4] is not None:
                if c1[4] is not c2[4]:
                    return False

108
109
110
111
112
113
114
            #patches
            if (c1[5] is None) != (c2[5] is None):
                return False
            if (c1[5] is not None):
                if c1[5] is not c2[5]:
                    return False

comfyanonymous's avatar
comfyanonymous committed
115
116
            return cond_equal_size(c1[2], c2[2])

comfyanonymous's avatar
comfyanonymous committed
117
118
119
        def cond_cat(c_list):
            c_crossattn = []
            c_concat = []
120
            c_adm = []
comfyanonymous's avatar
comfyanonymous committed
121
            crossattn_max_len = 0
122
123

            temp = {}
comfyanonymous's avatar
comfyanonymous committed
124
            for x in c_list:
125
126
127
128
129
                for k in x:
                    cur = temp.get(k, [])
                    cur.append(x[k])
                    temp[k] = cur

comfyanonymous's avatar
comfyanonymous committed
130
            out = {}
131
132
133
134
            for k in temp:
                conds = temp[k]
                out[k] = conds[0].concat(conds[1:])

comfyanonymous's avatar
comfyanonymous committed
135
136
            return out

137
        def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options):
comfyanonymous's avatar
comfyanonymous committed
138
            out_cond = torch.zeros_like(x_in)
comfyanonymous's avatar
comfyanonymous committed
139
            out_count = torch.ones_like(x_in) * 1e-37
140
141

            out_uncond = torch.zeros_like(x_in)
comfyanonymous's avatar
comfyanonymous committed
142
            out_uncond_count = torch.ones_like(x_in) * 1e-37
143
144
145

            COND = 0
            UNCOND = 1
comfyanonymous's avatar
comfyanonymous committed
146

147
            to_run = []
comfyanonymous's avatar
comfyanonymous committed
148
            for x in cond:
149
                p = get_area_and_mult(x, x_in, timestep)
150
                if p is None:
comfyanonymous's avatar
comfyanonymous committed
151
                    continue
152
153

                to_run += [(p, COND)]
154
155
            if uncond is not None:
                for x in uncond:
156
                    p = get_area_and_mult(x, x_in, timestep)
157
158
                    if p is None:
                        continue
159

160
                    to_run += [(p, UNCOND)]
161
162
163
164

            while len(to_run) > 0:
                first = to_run[0]
                first_shape = first[0][0].shape
165
                to_batch_temp = []
166
                for x in range(len(to_run)):
comfyanonymous's avatar
comfyanonymous committed
167
168
                    if can_concat_cond(to_run[x][0], first[0]):
                        to_batch_temp += [x]
169
170
171
172

                to_batch_temp.reverse()
                to_batch = to_batch_temp[:1]

173
                free_memory = model_management.get_free_memory(x_in.device)
174
175
                for i in range(1, len(to_batch_temp) + 1):
                    batch_amount = to_batch_temp[:len(to_batch_temp)//i]
176
177
                    input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
                    if model.memory_required(input_shape) < free_memory:
178
179
                        to_batch = batch_amount
                        break
180
181
182
183
184
185

                input_x = []
                mult = []
                c = []
                cond_or_uncond = []
                area = []
comfyanonymous's avatar
comfyanonymous committed
186
                control = None
187
                patches = None
188
189
190
191
192
193
194
195
                for x in to_batch:
                    o = to_run.pop(x)
                    p = o[0]
                    input_x += [p[0]]
                    mult += [p[1]]
                    c += [p[2]]
                    area += [p[3]]
                    cond_or_uncond += [o[1]]
comfyanonymous's avatar
comfyanonymous committed
196
                    control = p[4]
197
                    patches = p[5]
198
199
200

                batch_chunks = len(cond_or_uncond)
                input_x = torch.cat(input_x)
comfyanonymous's avatar
comfyanonymous committed
201
                c = cond_cat(c)
comfyanonymous's avatar
comfyanonymous committed
202
                timestep_ = torch.cat([timestep] * batch_chunks)
203

comfyanonymous's avatar
comfyanonymous committed
204
                if control is not None:
205
                    c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))
comfyanonymous's avatar
comfyanonymous committed
206

207
                transformer_options = {}
208
                if 'transformer_options' in model_options:
209
210
211
                    transformer_options = model_options['transformer_options'].copy()

                if patches is not None:
212
213
214
215
216
217
218
219
220
                    if "patches" in transformer_options:
                        cur_patches = transformer_options["patches"].copy()
                        for p in patches:
                            if p in cur_patches:
                                cur_patches[p] = cur_patches[p] + patches[p]
                            else:
                                cur_patches[p] = patches[p]
                    else:
                        transformer_options["patches"] = patches
221

222
                transformer_options["cond_or_uncond"] = cond_or_uncond[:]
223
224
                transformer_options["sigmas"] = timestep

225
                c['transformer_options'] = transformer_options
226

227
                if 'model_function_wrapper' in model_options:
228
                    output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
229
                else:
230
                    output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks)
comfyanonymous's avatar
comfyanonymous committed
231
                del input_x
232
233
234
235
236
237
238
239

                for o in range(batch_chunks):
                    if cond_or_uncond[o] == COND:
                        out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
                    else:
                        out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
comfyanonymous's avatar
comfyanonymous committed
240
241
242
243
                del mult

            out_cond /= out_count
            del out_count
244
245
246
            out_uncond /= out_uncond_count
            del out_uncond_count
            return out_cond, out_uncond
comfyanonymous's avatar
comfyanonymous committed
247
248


249
250
251
        if math.isclose(cond_scale, 1.0):
            uncond = None

252
        cond, uncond = calc_cond_uncond_batch(model, cond, uncond, x, timestep, model_options)
253
        if "sampler_cfg_function" in model_options:
comfyanonymous's avatar
comfyanonymous committed
254
            args = {"cond": x - cond, "uncond": x - uncond, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep}
255
            return x - model_options["sampler_cfg_function"](args)
256
257
        else:
            return uncond + (cond - uncond) * cond_scale
comfyanonymous's avatar
comfyanonymous committed
258

comfyanonymous's avatar
comfyanonymous committed
259
260
261
262
class CFGNoisePredictor(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
263
    def apply_model(self, x, timestep, cond, uncond, cond_scale, model_options={}, seed=None):
264
        out = sampling_function(self.inner_model, x, timestep, uncond, cond, cond_scale, model_options=model_options, seed=seed)
comfyanonymous's avatar
comfyanonymous committed
265
        return out
comfyanonymous's avatar
comfyanonymous committed
266
267
    def forward(self, *args, **kwargs):
        return self.apply_model(*args, **kwargs)
comfyanonymous's avatar
comfyanonymous committed
268
269

class KSamplerX0Inpaint(torch.nn.Module):
270
271
272
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
273
    def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None):
274
275
        if denoise_mask is not None:
            latent_mask = 1. - denoise_mask
276
            x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask
277
        out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, model_options=model_options, seed=seed)
278
279
280
281
282
283
        if denoise_mask is not None:
            out *= denoise_mask

        if denoise_mask is not None:
            out += self.latent_image * latent_mask
        return out
284

comfyanonymous's avatar
comfyanonymous committed
285
def simple_scheduler(model, steps):
comfyanonymous's avatar
comfyanonymous committed
286
    s = model.model_sampling
comfyanonymous's avatar
comfyanonymous committed
287
    sigs = []
comfyanonymous's avatar
comfyanonymous committed
288
    ss = len(s.sigmas) / steps
comfyanonymous's avatar
comfyanonymous committed
289
    for x in range(steps):
comfyanonymous's avatar
comfyanonymous committed
290
        sigs += [float(s.sigmas[-(1 + int(x * ss))])]
comfyanonymous's avatar
comfyanonymous committed
291
292
293
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
294
def ddim_scheduler(model, steps):
comfyanonymous's avatar
comfyanonymous committed
295
    s = model.model_sampling
comfyanonymous's avatar
comfyanonymous committed
296
    sigs = []
comfyanonymous's avatar
comfyanonymous committed
297
298
299
300
301
302
    ss = len(s.sigmas) // steps
    x = 1
    while x < len(s.sigmas):
        sigs += [float(s.sigmas[x])]
        x += ss
    sigs = sigs[::-1]
comfyanonymous's avatar
comfyanonymous committed
303
304
305
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
306
307
308
309
310
311
312
313
314
315
def normal_scheduler(model, steps, sgm=False, floor=False):
    s = model.model_sampling
    start = s.timestep(s.sigma_max)
    end = s.timestep(s.sigma_min)

    if sgm:
        timesteps = torch.linspace(start, end, steps + 1)[:-1]
    else:
        timesteps = torch.linspace(start, end, steps)

316
317
318
    sigs = []
    for x in range(len(timesteps)):
        ts = timesteps[x]
comfyanonymous's avatar
comfyanonymous committed
319
        sigs.append(s.sigma(ts))
320
321
322
    sigs += [0.0]
    return torch.FloatTensor(sigs)

Jacob Segal's avatar
Jacob Segal committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
def get_mask_aabb(masks):
    if masks.numel() == 0:
        return torch.zeros((0, 4), device=masks.device, dtype=torch.int)

    b = masks.shape[0]

    bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
    is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
    for i in range(b):
        mask = masks[i]
        if mask.numel() == 0:
            continue
        if torch.max(mask != 0) == False:
            is_empty[i] = True
            continue
        y, x = torch.where(mask)
        bounding_boxes[i, 0] = torch.min(x)
        bounding_boxes[i, 1] = torch.min(y)
        bounding_boxes[i, 2] = torch.max(x)
        bounding_boxes[i, 3] = torch.max(y)

    return bounding_boxes, is_empty

346
def resolve_areas_and_cond_masks(conditions, h, w, device):
Jacob Segal's avatar
Jacob Segal committed
347
348
349
350
    # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
    # While we're doing this, we can also resolve the mask device and scaling for performance reasons
    for i in range(len(conditions)):
        c = conditions[i]
351
352
        if 'area' in c:
            area = c['area']
353
            if area[0] == "percentage":
354
                modified = c.copy()
355
356
                area = (max(1, round(area[1] * h)), max(1, round(area[2] * w)), round(area[3] * h), round(area[4] * w))
                modified['area'] = area
357
                c = modified
358
359
                conditions[i] = c

360
361
        if 'mask' in c:
            mask = c['mask']
Jacob Segal's avatar
Jacob Segal committed
362
            mask = mask.to(device=device)
363
            modified = c.copy()
Jacob Segal's avatar
Jacob Segal committed
364
365
            if len(mask.shape) == 2:
                mask = mask.unsqueeze(0)
mara's avatar
mara committed
366
            if mask.shape[1] != h or mask.shape[2] != w:
Jacob Segal's avatar
Jacob Segal committed
367
368
                mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1)

Jacob Segal's avatar
Jacob Segal committed
369
            if modified.get("set_area_to_bounds", False):
Jacob Segal's avatar
Jacob Segal committed
370
                bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
Jacob Segal's avatar
Jacob Segal committed
371
372
373
374
                boxes, is_empty = get_mask_aabb(bounds)
                if is_empty[0]:
                    # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
                    modified['area'] = (8, 8, 0, 0)
Jacob Segal's avatar
Jacob Segal committed
375
                else:
Jacob Segal's avatar
Jacob Segal committed
376
                    box = boxes[0]
Jacob Segal's avatar
Jacob Segal committed
377
                    H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
378
379
                    H = max(8, H)
                    W = max(8, W)
Jacob Segal's avatar
Jacob Segal committed
380
381
                    area = (int(H), int(W), int(Y), int(X))
                    modified['area'] = area
Jacob Segal's avatar
Jacob Segal committed
382
383

            modified['mask'] = mask
384
            conditions[i] = modified
Jacob Segal's avatar
Jacob Segal committed
385

comfyanonymous's avatar
comfyanonymous committed
386
def create_cond_with_same_area_if_none(conds, c):
387
    if 'area' not in c:
comfyanonymous's avatar
comfyanonymous committed
388
389
        return

390
    c_area = c['area']
comfyanonymous's avatar
comfyanonymous committed
391
392
    smallest = None
    for x in conds:
393
394
        if 'area' in x:
            a = x['area']
comfyanonymous's avatar
comfyanonymous committed
395
396
397
398
399
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
400
                        elif 'area' not in smallest:
comfyanonymous's avatar
comfyanonymous committed
401
402
                            smallest = x
                        else:
403
                            if smallest['area'][0] * smallest['area'][1] > a[0] * a[1]:
comfyanonymous's avatar
comfyanonymous committed
404
405
406
407
408
409
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
410
411
    if 'area' in smallest:
        if smallest['area'] == c_area:
comfyanonymous's avatar
comfyanonymous committed
412
            return
413
414
415
416

    out = c.copy()
    out['model_conds'] = smallest['model_conds'].copy() #TODO: which fields should be copied?
    conds += [out]
comfyanonymous's avatar
comfyanonymous committed
417

418
def calculate_start_end_timesteps(model, conds):
419
    s = model.model_sampling
420
421
422
423
424
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
425
        if 'start_percent' in x:
426
            timestep_start = s.percent_to_sigma(x['start_percent'])
427
        if 'end_percent' in x:
428
            timestep_end = s.percent_to_sigma(x['end_percent'])
429
430

        if (timestep_start is not None) or (timestep_end is not None):
431
            n = x.copy()
432
433
434
435
            if (timestep_start is not None):
                n['timestep_start'] = timestep_start
            if (timestep_end is not None):
                n['timestep_end'] = timestep_end
436
            conds[t] = n
437

438
def pre_run_control(model, conds):
439
    s = model.model_sampling
440
441
442
443
444
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
445
        percent_to_timestep_function = lambda a: s.percent_to_sigma(a)
446
        if 'control' in x:
447
            x['control'].pre_run(model, percent_to_timestep_function)
448

449
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
comfyanonymous's avatar
comfyanonymous committed
450
451
452
453
454
455
    cond_cnets = []
    cond_other = []
    uncond_cnets = []
    uncond_other = []
    for t in range(len(conds)):
        x = conds[t]
456
457
458
        if 'area' not in x:
            if name in x and x[name] is not None:
                cond_cnets.append(x[name])
comfyanonymous's avatar
comfyanonymous committed
459
460
461
462
            else:
                cond_other.append((x, t))
    for t in range(len(uncond)):
        x = uncond[t]
463
464
465
        if 'area' not in x:
            if name in x and x[name] is not None:
                uncond_cnets.append(x[name])
comfyanonymous's avatar
comfyanonymous committed
466
467
468
469
470
471
472
473
474
            else:
                uncond_other.append((x, t))

    if len(uncond_cnets) > 0:
        return

    for x in range(len(cond_cnets)):
        temp = uncond_other[x % len(uncond_other)]
        o = temp[0]
475
476
        if name in o and o[name] is not None:
            n = o.copy()
477
            n[name] = uncond_fill_func(cond_cnets, x)
478
            uncond += [n]
comfyanonymous's avatar
comfyanonymous committed
479
        else:
480
            n = o.copy()
481
            n[name] = uncond_fill_func(cond_cnets, x)
482
            uncond[temp[1]] = n
483

484
def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwargs):
485
486
    for t in range(len(conds)):
        x = conds[t]
487
        params = x.copy()
488
        params["device"] = device
489
490
491
492
        params["noise"] = noise
        params["width"] = params.get("width", noise.shape[3] * 8)
        params["height"] = params.get("height", noise.shape[2] * 8)
        params["prompt_type"] = params.get("prompt_type", prompt_type)
493
494
495
496
497
        for k in kwargs:
            if k not in params:
                params[k] = kwargs[k]

        out = model_function(**params)
498
499
500
501
502
503
        x = x.copy()
        model_conds = x['model_conds'].copy()
        for k in out:
            model_conds[k] = out[k]
        x['model_conds'] = model_conds
        conds[t] = x
504
    return conds
505

comfyanonymous's avatar
comfyanonymous committed
506
507
508
509
510
class Sampler:
    def sample(self):
        pass

    def max_denoise(self, model_wrap, sigmas):
comfyanonymous's avatar
comfyanonymous committed
511
512
513
        max_sigma = float(model_wrap.inner_model.model_sampling.sigma_max)
        sigma = float(sigmas[0])
        return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
comfyanonymous's avatar
comfyanonymous committed
514
515
516

class UNIPC(Sampler):
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
517
        return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)
comfyanonymous's avatar
comfyanonymous committed
518
519
520

class UNIPCBH2(Sampler):
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
521
        return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)
comfyanonymous's avatar
comfyanonymous committed
522

comfyanonymous's avatar
comfyanonymous committed
523
KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
comfyanonymous's avatar
comfyanonymous committed
524
                  "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
comfyanonymous's avatar
comfyanonymous committed
525
                  "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm"]
comfyanonymous's avatar
comfyanonymous committed
526

527
528
529
530
531
class KSAMPLER(Sampler):
    def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
        self.sampler_function = sampler_function
        self.extra_options = extra_options
        self.inpaint_options = inpaint_options
comfyanonymous's avatar
comfyanonymous committed
532

533
534
535
536
537
538
539
540
541
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
        extra_args["denoise_mask"] = denoise_mask
        model_k = KSamplerX0Inpaint(model_wrap)
        model_k.latent_image = latent_image
        if self.inpaint_options.get("random", False): #TODO: Should this be the default?
            generator = torch.manual_seed(extra_args.get("seed", 41) + 1)
            model_k.noise = torch.randn(noise.shape, generator=generator, device="cpu").to(noise.dtype).to(noise.device)
        else:
            model_k.noise = noise
comfyanonymous's avatar
comfyanonymous committed
542

543
544
545
546
547
548
549
550
551
552
553
554
        if self.max_denoise(model_wrap, sigmas):
            noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0)
        else:
            noise = noise * sigmas[0]

        k_callback = None
        total_steps = len(sigmas) - 1
        if callback is not None:
            k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)

        if latent_image is not None:
            noise += latent_image
comfyanonymous's avatar
comfyanonymous committed
555

556
557
558
559
560
561
562
        samples = self.sampler_function(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **self.extra_options)
        return samples


def ksampler(sampler_name, extra_options={}, inpaint_options={}):
    if sampler_name == "dpm_fast":
        def dpm_fast_function(model, noise, sigmas, extra_args, callback, disable):
comfyanonymous's avatar
comfyanonymous committed
563
564
565
            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]
566
567
568
569
570
571
572
573
574
575
576
577
            total_steps = len(sigmas) - 1
            return k_diffusion_sampling.sample_dpm_fast(model, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=callback, disable=disable)
        sampler_function = dpm_fast_function
    elif sampler_name == "dpm_adaptive":
        def dpm_adaptive_function(model, noise, sigmas, extra_args, callback, disable):
            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]
            return k_diffusion_sampling.sample_dpm_adaptive(model, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=callback, disable=disable)
        sampler_function = dpm_adaptive_function
    else:
        sampler_function = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name))
comfyanonymous's avatar
comfyanonymous committed
578

579
    return KSAMPLER(sampler_function, extra_options, inpaint_options)
comfyanonymous's avatar
comfyanonymous committed
580

comfyanonymous's avatar
comfyanonymous committed
581
582
def wrap_model(model):
    model_denoise = CFGNoisePredictor(model)
comfyanonymous's avatar
comfyanonymous committed
583
    return model_denoise
comfyanonymous's avatar
comfyanonymous committed
584
585
586
587
588
589
590
591

def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
    positive = positive[:]
    negative = negative[:]

    resolve_areas_and_cond_masks(positive, noise.shape[2], noise.shape[3], device)
    resolve_areas_and_cond_masks(negative, noise.shape[2], noise.shape[3], device)

comfyanonymous's avatar
comfyanonymous committed
592
    model_wrap = wrap_model(model)
comfyanonymous's avatar
comfyanonymous committed
593

594
595
    calculate_start_end_timesteps(model, negative)
    calculate_start_end_timesteps(model, positive)
comfyanonymous's avatar
comfyanonymous committed
596
597
598
599
600
601
602

    #make sure each cond area has an opposite one with the same area
    for c in positive:
        create_cond_with_same_area_if_none(negative, c)
    for c in negative:
        create_cond_with_same_area_if_none(positive, c)

603
    pre_run_control(model, negative + positive)
comfyanonymous's avatar
comfyanonymous committed
604

605
    apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
comfyanonymous's avatar
comfyanonymous committed
606
607
    apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])

608
609
610
    if latent_image is not None:
        latent_image = model.process_latent_in(latent_image)

611
612
613
    if hasattr(model, 'extra_conds'):
        positive = encode_model_conds(model.extra_conds, positive, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask)
        negative = encode_model_conds(model.extra_conds, negative, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask)
comfyanonymous's avatar
comfyanonymous committed
614
615
616
617
618
619

    extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed}

    samples = sampler.sample(model_wrap, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
    return model.process_latent_out(samples.to(torch.float32))

comfyanonymous's avatar
comfyanonymous committed
620
621
622
623
624
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]

def calculate_sigmas_scheduler(model, scheduler_name, steps):
    if scheduler_name == "karras":
comfyanonymous's avatar
comfyanonymous committed
625
        sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
comfyanonymous's avatar
comfyanonymous committed
626
    elif scheduler_name == "exponential":
comfyanonymous's avatar
comfyanonymous committed
627
        sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
comfyanonymous's avatar
comfyanonymous committed
628
    elif scheduler_name == "normal":
comfyanonymous's avatar
comfyanonymous committed
629
        sigmas = normal_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
630
    elif scheduler_name == "simple":
comfyanonymous's avatar
comfyanonymous committed
631
        sigmas = simple_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
632
    elif scheduler_name == "ddim_uniform":
comfyanonymous's avatar
comfyanonymous committed
633
        sigmas = ddim_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
634
    elif scheduler_name == "sgm_uniform":
comfyanonymous's avatar
comfyanonymous committed
635
        sigmas = normal_scheduler(model, steps, sgm=True)
comfyanonymous's avatar
comfyanonymous committed
636
637
638
639
    else:
        print("error invalid scheduler", self.scheduler)
    return sigmas

640
def sampler_object(name):
641
    if name == "uni_pc":
642
        sampler = UNIPC()
643
    elif name == "uni_pc_bh2":
644
        sampler = UNIPCBH2()
645
    elif name == "ddim":
646
        sampler = ksampler("euler", inpaint_options={"random": True})
647
648
649
650
    else:
        sampler = ksampler(name)
    return sampler

comfyanonymous's avatar
comfyanonymous committed
651
class KSampler:
comfyanonymous's avatar
comfyanonymous committed
652
653
    SCHEDULERS = SCHEDULER_NAMES
    SAMPLERS = SAMPLER_NAMES
comfyanonymous's avatar
comfyanonymous committed
654

655
    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
656
657
658
659
660
661
662
663
664
        self.model = model
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
        self.set_steps(steps, denoise)
665
        self.denoise = denoise
666
        self.model_options = model_options
comfyanonymous's avatar
comfyanonymous committed
667

comfyanonymous's avatar
comfyanonymous committed
668
669
670
671
    def calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
672
        if self.sampler in ['dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2']:
comfyanonymous's avatar
comfyanonymous committed
673
674
675
            steps += 1
            discard_penultimate_sigma = True

comfyanonymous's avatar
comfyanonymous committed
676
        sigmas = calculate_sigmas_scheduler(self.model, self.scheduler, steps)
comfyanonymous's avatar
comfyanonymous committed
677
678
679
680
681

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

comfyanonymous's avatar
comfyanonymous committed
682
683
    def set_steps(self, steps, denoise=None):
        self.steps = steps
684
        if denoise is None or denoise > 0.9999:
comfyanonymous's avatar
comfyanonymous committed
685
            self.sigmas = self.calculate_sigmas(steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
686
687
        else:
            new_steps = int(steps/denoise)
comfyanonymous's avatar
comfyanonymous committed
688
            sigmas = self.calculate_sigmas(new_steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
689
690
            self.sigmas = sigmas[-(steps + 1):]

691
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
692
693
        if sigmas is None:
            sigmas = self.sigmas
comfyanonymous's avatar
comfyanonymous committed
694

comfyanonymous's avatar
comfyanonymous committed
695
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
696
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
697
698
699
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
700
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
701
702
703
704
705
706
707
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
708

709
        sampler = sampler_object(self.sampler)
710

711
        return sample(self.model, noise, positive, negative, cfg, self.device, sampler, sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)