samplers.py 11 KB
Newer Older
1
2
from .k_diffusion import sampling as k_diffusion_sampling
from .k_diffusion import external as k_diffusion_external
comfyanonymous's avatar
comfyanonymous committed
3
4
import torch
import contextlib
5
import model_management
comfyanonymous's avatar
comfyanonymous committed
6
7
8
9
10
11
12

class CFGDenoiser(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model

    def forward(self, x, sigma, uncond, cond, cond_scale):
comfyanonymous's avatar
comfyanonymous committed
13
        if len(uncond[0]) == len(cond[0]) and x.shape[0] * x.shape[2] * x.shape[3] < (96 * 96): #TODO check memory instead
comfyanonymous's avatar
comfyanonymous committed
14
15
16
17
18
19
20
21
22
            x_in = torch.cat([x] * 2)
            sigma_in = torch.cat([sigma] * 2)
            cond_in = torch.cat([uncond, cond])
            uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
        else:
            cond = self.inner_model(x, sigma, cond=cond)
            uncond = self.inner_model(x, sigma, cond=uncond)
        return uncond + (cond - uncond) * cond_scale

comfyanonymous's avatar
comfyanonymous committed
23
24
25
26
27
class CFGDenoiserComplex(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
    def forward(self, x, sigma, uncond, cond, cond_scale):
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
        def get_area_and_mult(cond, x_in, sigma):
            area = (x_in.shape[2], x_in.shape[3], 0, 0)
            strength = 1.0
            min_sigma = 0.0
            max_sigma = 999.0
            if 'area' in cond[1]:
                area = cond[1]['area']
            if 'strength' in cond[1]:
                strength = cond[1]['strength']
            if 'min_sigma' in cond[1]:
                min_sigma = cond[1]['min_sigma']
            if 'max_sigma' in cond[1]:
                max_sigma = cond[1]['max_sigma']
            if sigma < min_sigma or sigma > max_sigma:
                return None
            input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
            mult = torch.ones_like(input_x) * strength

            rr = 8
            if area[2] != 0:
                for t in range(rr):
                    mult[:,:,area[2]+t:area[2]+1+t,:] *= ((1.0/rr) * (t + 1))
            if (area[0] + area[2]) < x_in.shape[2]:
                for t in range(rr):
                    mult[:,:,area[0] + area[2] - 1 - t:area[0] + area[2] - t,:] *= ((1.0/rr) * (t + 1))
            if area[3] != 0:
                for t in range(rr):
                    mult[:,:,:,area[3]+t:area[3]+1+t] *= ((1.0/rr) * (t + 1))
            if (area[1] + area[3]) < x_in.shape[3]:
                for t in range(rr):
                    mult[:,:,:,area[1] + area[3] - 1 - t:area[1] + area[3] - t] *= ((1.0/rr) * (t + 1))
            return (input_x, mult, cond[0], area)

        def calc_cond_uncond_batch(cond, uncond, x_in, sigma, max_total_area):
comfyanonymous's avatar
comfyanonymous committed
62
63
            out_cond = torch.zeros_like(x_in)
            out_count = torch.ones_like(x_in)/100000.0
64
65
66
67

            out_uncond = torch.zeros_like(x_in)
            out_uncond_count = torch.ones_like(x_in)/100000.0

comfyanonymous's avatar
comfyanonymous committed
68
            sigma_cmp = sigma[0]
69
70
            COND = 0
            UNCOND = 1
comfyanonymous's avatar
comfyanonymous committed
71

72
            to_run = []
comfyanonymous's avatar
comfyanonymous committed
73
            for x in cond:
74
75
                p = get_area_and_mult(x, x_in, sigma_cmp)
                if p is None:
comfyanonymous's avatar
comfyanonymous committed
76
                    continue
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

                to_run += [(p, COND)]
            for x in uncond:
                p = get_area_and_mult(x, x_in, sigma_cmp)
                if p is None:
                    continue

                to_run += [(p, UNCOND)]

            while len(to_run) > 0:
                first = to_run[0]
                first_shape = first[0][0].shape
                to_batch = []
                for x in range(len(to_run)):
                    if to_run[x][0][0].shape == first_shape:
                        if to_run[x][0][2].shape == first[0][2].shape:
                            to_batch += [x]
                            if (len(to_batch) * first_shape[0] * first_shape[2] * first_shape[3] >= max_total_area):
                                break

                to_batch.reverse()
                input_x = []
                mult = []
                c = []
                cond_or_uncond = []
                area = []
                for x in to_batch:
                    o = to_run.pop(x)
                    p = o[0]
                    input_x += [p[0]]
                    mult += [p[1]]
                    c += [p[2]]
                    area += [p[3]]
                    cond_or_uncond += [o[1]]

                batch_chunks = len(cond_or_uncond)
                input_x = torch.cat(input_x)
                c = torch.cat(c)
                sigma_ = torch.cat([sigma] * batch_chunks)

                output = self.inner_model(input_x, sigma_, cond=c).chunk(batch_chunks)
comfyanonymous's avatar
comfyanonymous committed
118
                del input_x
119
120
121
122
123
124
125
126

                for o in range(batch_chunks):
                    if cond_or_uncond[o] == COND:
                        out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
                    else:
                        out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
comfyanonymous's avatar
comfyanonymous committed
127
128
129
130
                del mult

            out_cond /= out_count
            del out_count
131
132
133
134
            out_uncond /= out_uncond_count
            del out_uncond_count

            return out_cond, out_uncond
comfyanonymous's avatar
comfyanonymous committed
135
136


137
138
        max_total_area = model_management.maximum_batch_area()
        cond, uncond = calc_cond_uncond_batch(cond, uncond, x, sigma, max_total_area)
comfyanonymous's avatar
comfyanonymous committed
139
        return uncond + (cond - uncond) * cond_scale
comfyanonymous's avatar
comfyanonymous committed
140
141
142
143
144
145
146
147
148

def simple_scheduler(model, steps):
    sigs = []
    ss = len(model.sigmas) / steps
    for x in range(steps):
        sigs += [float(model.sigmas[-(1 + int(x * ss))])]
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
def create_cond_with_same_area_if_none(conds, c):
    if 'area' not in c[1]:
        return

    c_area = c[1]['area']
    smallest = None
    for x in conds:
        if 'area' in x[1]:
            a = x[1]['area']
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
                        elif 'area' not in smallest[1]:
                            smallest = x
                        else:
                            if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]:
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
    if 'area' in smallest[1]:
        if smallest[1]['area'] == c_area:
            return
    n = c[1].copy()
    conds += [[smallest[0], n]]
comfyanonymous's avatar
comfyanonymous committed
178
179
180
181
182
183
184
185
186
187

class KSampler:
    SCHEDULERS = ["karras", "normal", "simple"]
    SAMPLERS = ["sample_euler", "sample_euler_ancestral", "sample_heun", "sample_dpm_2", "sample_dpm_2_ancestral",
                "sample_lms", "sample_dpm_fast", "sample_dpm_adaptive", "sample_dpmpp_2s_ancestral", "sample_dpmpp_sde",
                "sample_dpmpp_2m"]

    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None):
        self.model = model
        if self.model.parameterization == "v":
188
            self.model_wrap = k_diffusion_external.CompVisVDenoiser(self.model, quantize=True)
comfyanonymous's avatar
comfyanonymous committed
189
        else:
190
            self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model, quantize=True)
comfyanonymous's avatar
comfyanonymous committed
191
        self.model_k = CFGDenoiserComplex(self.model_wrap)
comfyanonymous's avatar
comfyanonymous committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
        self.sigma_min=float(self.model_wrap.sigmas[0])
        self.sigma_max=float(self.model_wrap.sigmas[-1])
        self.set_steps(steps, denoise)

    def _calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
        if self.sampler in ['sample_dpm_2', 'sample_dpm_2_ancestral']:
            steps += 1
            discard_penultimate_sigma = True

        if self.scheduler == "karras":
212
            sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max, device=self.device)
comfyanonymous's avatar
comfyanonymous committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
        elif self.scheduler == "normal":
            sigmas = self.model_wrap.get_sigmas(steps).to(self.device)
        elif self.scheduler == "simple":
            sigmas = simple_scheduler(self.model_wrap, steps).to(self.device)
        else:
            print("error invalid scheduler", self.scheduler)

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

    def set_steps(self, steps, denoise=None):
        self.steps = steps
        if denoise is None:
            self.sigmas = self._calculate_sigmas(steps)
        else:
            new_steps = int(steps/denoise)
            sigmas = self._calculate_sigmas(new_steps)
            self.sigmas = sigmas[-(steps + 1):]


comfyanonymous's avatar
comfyanonymous committed
234
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False):
comfyanonymous's avatar
comfyanonymous committed
235
236
237
        sigmas = self.sigmas
        sigma_min = self.sigma_min

comfyanonymous's avatar
comfyanonymous committed
238
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
239
240
            sigma_min = sigmas[last_step]
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
241
242
243
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
244
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
245
246
247
248
249
250
251
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
252
253
254
255
256

        noise *= sigmas[0]
        if latent_image is not None:
            noise += latent_image

comfyanonymous's avatar
comfyanonymous committed
257
258
259
260
261
262
263
264
        positive = positive[:]
        negative = negative[:]
        #make sure each cond area has an opposite one with the same area
        for c in positive:
            create_cond_with_same_area_if_none(negative, c)
        for c in negative:
            create_cond_with_same_area_if_none(positive, c)

comfyanonymous's avatar
comfyanonymous committed
265
266
267
268
269
270
271
        if self.model.model.diffusion_model.dtype == torch.float16:
            precision_scope = torch.autocast
        else:
            precision_scope = contextlib.nullcontext

        with precision_scope(self.device):
            if self.sampler == "sample_dpm_fast":
272
                samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], self.steps, extra_args={"cond":positive, "uncond":negative, "cond_scale": cfg})
comfyanonymous's avatar
comfyanonymous committed
273
            elif self.sampler == "sample_dpm_adaptive":
274
                samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args={"cond":positive, "uncond":negative, "cond_scale": cfg})
comfyanonymous's avatar
comfyanonymous committed
275
            else:
276
                samples = getattr(k_diffusion_sampling, self.sampler)(self.model_k, noise, sigmas, extra_args={"cond":positive, "uncond":negative, "cond_scale": cfg})
comfyanonymous's avatar
comfyanonymous committed
277
        return samples.to(torch.float32)