"include/ck/utility/utility.hpp" did not exist on "05e046654c9a226444091806a418a77fe0e4a4c2"
samplers.py 27.5 KB
Newer Older
1
from .k_diffusion import sampling as k_diffusion_sampling
2
from .extra_samplers import uni_pc
comfyanonymous's avatar
comfyanonymous committed
3
import torch
4
import enum
5
from comfy import model_management
comfyanonymous's avatar
comfyanonymous committed
6
import math
7
from comfy import model_base
8
import comfy.utils
9
import comfy.conds
10
11


comfyanonymous's avatar
comfyanonymous committed
12
#The main sampling function shared by all the samplers
comfyanonymous's avatar
comfyanonymous committed
13
#Returns denoised
14
def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None):
15
        def get_area_and_mult(conds, x_in, timestep_in):
16
17
            area = (x_in.shape[2], x_in.shape[3], 0, 0)
            strength = 1.0
18
19
20

            if 'timestep_start' in conds:
                timestep_start = conds['timestep_start']
21
                if timestep_in[0] > timestep_start:
22
                    return None
23
24
            if 'timestep_end' in conds:
                timestep_end = conds['timestep_end']
25
                if timestep_in[0] < timestep_end:
26
                    return None
27
28
29
30
            if 'area' in conds:
                area = conds['area']
            if 'strength' in conds:
                strength = conds['strength']
31

32
            input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
33
            if 'mask' in conds:
Jacob Segal's avatar
Jacob Segal committed
34
35
                # Scale the mask to the size of the input
                # The mask should have been resized as we began the sampling process
36
                mask_strength = 1.0
37
38
39
                if "mask_strength" in conds:
                    mask_strength = conds["mask_strength"]
                mask = conds['mask']
Jacob Segal's avatar
Jacob Segal committed
40
41
                assert(mask.shape[1] == x_in.shape[2])
                assert(mask.shape[2] == x_in.shape[3])
42
                mask = mask[:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] * mask_strength
Jacob Segal's avatar
Jacob Segal committed
43
                mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1)
Jacob Segal's avatar
Jacob Segal committed
44
45
46
47
            else:
                mask = torch.ones_like(input_x)
            mult = mask * strength

48
            if 'mask' not in conds:
Jacob Segal's avatar
Jacob Segal committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
                rr = 8
                if area[2] != 0:
                    for t in range(rr):
                        mult[:,:,t:1+t,:] *= ((1.0/rr) * (t + 1))
                if (area[0] + area[2]) < x_in.shape[2]:
                    for t in range(rr):
                        mult[:,:,area[0] - 1 - t:area[0] - t,:] *= ((1.0/rr) * (t + 1))
                if area[3] != 0:
                    for t in range(rr):
                        mult[:,:,:,t:1+t] *= ((1.0/rr) * (t + 1))
                if (area[1] + area[3]) < x_in.shape[3]:
                    for t in range(rr):
                        mult[:,:,:,area[1] - 1 - t:area[1] - t] *= ((1.0/rr) * (t + 1))

comfyanonymous's avatar
comfyanonymous committed
63
            conditionning = {}
64
65
66
            model_conds = conds["model_conds"]
            for c in model_conds:
                conditionning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area)
67

comfyanonymous's avatar
comfyanonymous committed
68
            control = None
69
70
            if 'control' in conds:
                control = conds['control']
71
72

            patches = None
73
74
            if 'gligen' in conds:
                gligen = conds['gligen']
75
76
77
78
                patches = {}
                gligen_type = gligen[0]
                gligen_model = gligen[1]
                if gligen_type == "position":
comfyanonymous's avatar
comfyanonymous committed
79
                    gligen_patch = gligen_model.model.set_position(input_x.shape, gligen[2], input_x.device)
80
                else:
comfyanonymous's avatar
comfyanonymous committed
81
                    gligen_patch = gligen_model.model.set_empty(input_x.shape, input_x.device)
82
83
84
85

                patches['middle_patch'] = [gligen_patch]

            return (input_x, mult, conditionning, area, control, patches)
comfyanonymous's avatar
comfyanonymous committed
86
87

        def cond_equal_size(c1, c2):
comfyanonymous's avatar
comfyanonymous committed
88
89
            if c1 is c2:
                return True
comfyanonymous's avatar
comfyanonymous committed
90
91
            if c1.keys() != c2.keys():
                return False
92
93
            for k in c1:
                if not c1[k].can_concat(c2[k]):
94
                    return False
comfyanonymous's avatar
comfyanonymous committed
95
96
            return True

comfyanonymous's avatar
comfyanonymous committed
97
98
99
        def can_concat_cond(c1, c2):
            if c1[0].shape != c2[0].shape:
                return False
100
101

            #control
comfyanonymous's avatar
comfyanonymous committed
102
103
104
105
106
107
            if (c1[4] is None) != (c2[4] is None):
                return False
            if c1[4] is not None:
                if c1[4] is not c2[4]:
                    return False

108
109
110
111
112
113
114
            #patches
            if (c1[5] is None) != (c2[5] is None):
                return False
            if (c1[5] is not None):
                if c1[5] is not c2[5]:
                    return False

comfyanonymous's avatar
comfyanonymous committed
115
116
            return cond_equal_size(c1[2], c2[2])

comfyanonymous's avatar
comfyanonymous committed
117
118
119
        def cond_cat(c_list):
            c_crossattn = []
            c_concat = []
120
            c_adm = []
comfyanonymous's avatar
comfyanonymous committed
121
            crossattn_max_len = 0
122
123

            temp = {}
comfyanonymous's avatar
comfyanonymous committed
124
            for x in c_list:
125
126
127
128
129
                for k in x:
                    cur = temp.get(k, [])
                    cur.append(x[k])
                    temp[k] = cur

comfyanonymous's avatar
comfyanonymous committed
130
            out = {}
131
132
133
134
            for k in temp:
                conds = temp[k]
                out[k] = conds[0].concat(conds[1:])

comfyanonymous's avatar
comfyanonymous committed
135
136
            return out

137
        def calc_cond_uncond_batch(model_function, cond, uncond, x_in, timestep, max_total_area, model_options):
comfyanonymous's avatar
comfyanonymous committed
138
            out_cond = torch.zeros_like(x_in)
139
            out_count = torch.zeros_like(x_in)
140
141

            out_uncond = torch.zeros_like(x_in)
142
            out_uncond_count = torch.zeros_like(x_in)
143
144
145

            COND = 0
            UNCOND = 1
comfyanonymous's avatar
comfyanonymous committed
146

147
            to_run = []
comfyanonymous's avatar
comfyanonymous committed
148
            for x in cond:
149
                p = get_area_and_mult(x, x_in, timestep)
150
                if p is None:
comfyanonymous's avatar
comfyanonymous committed
151
                    continue
152
153

                to_run += [(p, COND)]
154
155
            if uncond is not None:
                for x in uncond:
156
                    p = get_area_and_mult(x, x_in, timestep)
157
158
                    if p is None:
                        continue
159

160
                    to_run += [(p, UNCOND)]
161
162
163
164

            while len(to_run) > 0:
                first = to_run[0]
                first_shape = first[0][0].shape
165
                to_batch_temp = []
166
                for x in range(len(to_run)):
comfyanonymous's avatar
comfyanonymous committed
167
168
                    if can_concat_cond(to_run[x][0], first[0]):
                        to_batch_temp += [x]
169
170
171
172
173
174
175
176
177

                to_batch_temp.reverse()
                to_batch = to_batch_temp[:1]

                for i in range(1, len(to_batch_temp) + 1):
                    batch_amount = to_batch_temp[:len(to_batch_temp)//i]
                    if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area):
                        to_batch = batch_amount
                        break
178
179
180
181
182
183

                input_x = []
                mult = []
                c = []
                cond_or_uncond = []
                area = []
comfyanonymous's avatar
comfyanonymous committed
184
                control = None
185
                patches = None
186
187
188
189
190
191
192
193
                for x in to_batch:
                    o = to_run.pop(x)
                    p = o[0]
                    input_x += [p[0]]
                    mult += [p[1]]
                    c += [p[2]]
                    area += [p[3]]
                    cond_or_uncond += [o[1]]
comfyanonymous's avatar
comfyanonymous committed
194
                    control = p[4]
195
                    patches = p[5]
196
197
198

                batch_chunks = len(cond_or_uncond)
                input_x = torch.cat(input_x)
comfyanonymous's avatar
comfyanonymous committed
199
                c = cond_cat(c)
comfyanonymous's avatar
comfyanonymous committed
200
                timestep_ = torch.cat([timestep] * batch_chunks)
201

comfyanonymous's avatar
comfyanonymous committed
202
                if control is not None:
203
                    c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))
comfyanonymous's avatar
comfyanonymous committed
204

205
                transformer_options = {}
206
                if 'transformer_options' in model_options:
207
208
209
                    transformer_options = model_options['transformer_options'].copy()

                if patches is not None:
210
211
212
213
214
215
216
217
218
                    if "patches" in transformer_options:
                        cur_patches = transformer_options["patches"].copy()
                        for p in patches:
                            if p in cur_patches:
                                cur_patches[p] = cur_patches[p] + patches[p]
                            else:
                                cur_patches[p] = patches[p]
                    else:
                        transformer_options["patches"] = patches
219

220
                transformer_options["cond_or_uncond"] = cond_or_uncond[:]
221
                c['transformer_options'] = transformer_options
222

223
224
225
226
                if 'model_function_wrapper' in model_options:
                    output = model_options['model_function_wrapper'](model_function, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)
                else:
                    output = model_function(input_x, timestep_, **c).chunk(batch_chunks)
comfyanonymous's avatar
comfyanonymous committed
227
                del input_x
228
229
230
231
232
233
234
235

                for o in range(batch_chunks):
                    if cond_or_uncond[o] == COND:
                        out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
                    else:
                        out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
comfyanonymous's avatar
comfyanonymous committed
236
237
238
239
                del mult

            out_cond /= out_count
            del out_count
240
241
242
            out_uncond /= out_uncond_count
            del out_uncond_count

243
244
            torch.nan_to_num(out_cond, nan=0.0, posinf=0.0, neginf=0.0, out=out_cond) #in case out_count or out_uncond_count had some zeros
            torch.nan_to_num(out_uncond, nan=0.0, posinf=0.0, neginf=0.0, out=out_uncond)
245
            return out_cond, out_uncond
comfyanonymous's avatar
comfyanonymous committed
246
247


248
        max_total_area = model_management.maximum_batch_area()
249
250
251
        if math.isclose(cond_scale, 1.0):
            uncond = None

252
        cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, timestep, max_total_area, model_options)
253
        if "sampler_cfg_function" in model_options:
254
255
            args = {"cond": cond, "uncond": uncond, "cond_scale": cond_scale, "timestep": timestep}
            return model_options["sampler_cfg_function"](args)
256
257
        else:
            return uncond + (cond - uncond) * cond_scale
comfyanonymous's avatar
comfyanonymous committed
258

comfyanonymous's avatar
comfyanonymous committed
259
260
261
262
class CFGNoisePredictor(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
263
264
    def apply_model(self, x, timestep, cond, uncond, cond_scale, model_options={}, seed=None):
        out = sampling_function(self.inner_model.apply_model, x, timestep, uncond, cond, cond_scale, model_options=model_options, seed=seed)
comfyanonymous's avatar
comfyanonymous committed
265
        return out
comfyanonymous's avatar
comfyanonymous committed
266
267
    def forward(self, *args, **kwargs):
        return self.apply_model(*args, **kwargs)
comfyanonymous's avatar
comfyanonymous committed
268
269

class KSamplerX0Inpaint(torch.nn.Module):
270
271
272
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
273
    def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None):
274
275
        if denoise_mask is not None:
            latent_mask = 1. - denoise_mask
276
            x = x * denoise_mask + (self.latent_image + self.noise * sigma.reshape([sigma.shape[0]] + [1] * (len(self.noise.shape) - 1))) * latent_mask
277
        out = self.inner_model(x, sigma, cond=cond, uncond=uncond, cond_scale=cond_scale, model_options=model_options, seed=seed)
278
279
280
281
282
283
        if denoise_mask is not None:
            out *= denoise_mask

        if denoise_mask is not None:
            out += self.latent_image * latent_mask
        return out
284

comfyanonymous's avatar
comfyanonymous committed
285
def simple_scheduler(model, steps):
comfyanonymous's avatar
comfyanonymous committed
286
    s = model.model_sampling
comfyanonymous's avatar
comfyanonymous committed
287
    sigs = []
comfyanonymous's avatar
comfyanonymous committed
288
    ss = len(s.sigmas) / steps
comfyanonymous's avatar
comfyanonymous committed
289
    for x in range(steps):
comfyanonymous's avatar
comfyanonymous committed
290
        sigs += [float(s.sigmas[-(1 + int(x * ss))])]
comfyanonymous's avatar
comfyanonymous committed
291
292
293
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
294
def ddim_scheduler(model, steps):
comfyanonymous's avatar
comfyanonymous committed
295
    s = model.model_sampling
comfyanonymous's avatar
comfyanonymous committed
296
    sigs = []
comfyanonymous's avatar
comfyanonymous committed
297
298
299
300
301
302
    ss = len(s.sigmas) // steps
    x = 1
    while x < len(s.sigmas):
        sigs += [float(s.sigmas[x])]
        x += ss
    sigs = sigs[::-1]
comfyanonymous's avatar
comfyanonymous committed
303
304
305
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
306
307
308
309
310
311
312
313
314
315
def normal_scheduler(model, steps, sgm=False, floor=False):
    s = model.model_sampling
    start = s.timestep(s.sigma_max)
    end = s.timestep(s.sigma_min)

    if sgm:
        timesteps = torch.linspace(start, end, steps + 1)[:-1]
    else:
        timesteps = torch.linspace(start, end, steps)

316
317
318
    sigs = []
    for x in range(len(timesteps)):
        ts = timesteps[x]
comfyanonymous's avatar
comfyanonymous committed
319
        sigs.append(s.sigma(ts))
320
321
322
    sigs += [0.0]
    return torch.FloatTensor(sigs)

Jacob Segal's avatar
Jacob Segal committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
def get_mask_aabb(masks):
    if masks.numel() == 0:
        return torch.zeros((0, 4), device=masks.device, dtype=torch.int)

    b = masks.shape[0]

    bounding_boxes = torch.zeros((b, 4), device=masks.device, dtype=torch.int)
    is_empty = torch.zeros((b), device=masks.device, dtype=torch.bool)
    for i in range(b):
        mask = masks[i]
        if mask.numel() == 0:
            continue
        if torch.max(mask != 0) == False:
            is_empty[i] = True
            continue
        y, x = torch.where(mask)
        bounding_boxes[i, 0] = torch.min(x)
        bounding_boxes[i, 1] = torch.min(y)
        bounding_boxes[i, 2] = torch.max(x)
        bounding_boxes[i, 3] = torch.max(y)

    return bounding_boxes, is_empty

346
def resolve_areas_and_cond_masks(conditions, h, w, device):
Jacob Segal's avatar
Jacob Segal committed
347
348
349
350
    # We need to decide on an area outside the sampling loop in order to properly generate opposite areas of equal sizes.
    # While we're doing this, we can also resolve the mask device and scaling for performance reasons
    for i in range(len(conditions)):
        c = conditions[i]
351
352
        if 'area' in c:
            area = c['area']
353
            if area[0] == "percentage":
354
                modified = c.copy()
355
356
                area = (max(1, round(area[1] * h)), max(1, round(area[2] * w)), round(area[3] * h), round(area[4] * w))
                modified['area'] = area
357
                c = modified
358
359
                conditions[i] = c

360
361
        if 'mask' in c:
            mask = c['mask']
Jacob Segal's avatar
Jacob Segal committed
362
            mask = mask.to(device=device)
363
            modified = c.copy()
Jacob Segal's avatar
Jacob Segal committed
364
365
            if len(mask.shape) == 2:
                mask = mask.unsqueeze(0)
mara's avatar
mara committed
366
            if mask.shape[1] != h or mask.shape[2] != w:
Jacob Segal's avatar
Jacob Segal committed
367
368
                mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(h, w), mode='bilinear', align_corners=False).squeeze(1)

Jacob Segal's avatar
Jacob Segal committed
369
            if modified.get("set_area_to_bounds", False):
Jacob Segal's avatar
Jacob Segal committed
370
                bounds = torch.max(torch.abs(mask),dim=0).values.unsqueeze(0)
Jacob Segal's avatar
Jacob Segal committed
371
372
373
374
                boxes, is_empty = get_mask_aabb(bounds)
                if is_empty[0]:
                    # Use the minimum possible size for efficiency reasons. (Since the mask is all-0, this becomes a noop anyway)
                    modified['area'] = (8, 8, 0, 0)
Jacob Segal's avatar
Jacob Segal committed
375
                else:
Jacob Segal's avatar
Jacob Segal committed
376
                    box = boxes[0]
Jacob Segal's avatar
Jacob Segal committed
377
                    H, W, Y, X = (box[3] - box[1] + 1, box[2] - box[0] + 1, box[1], box[0])
378
379
                    H = max(8, H)
                    W = max(8, W)
Jacob Segal's avatar
Jacob Segal committed
380
381
                    area = (int(H), int(W), int(Y), int(X))
                    modified['area'] = area
Jacob Segal's avatar
Jacob Segal committed
382
383

            modified['mask'] = mask
384
            conditions[i] = modified
Jacob Segal's avatar
Jacob Segal committed
385

comfyanonymous's avatar
comfyanonymous committed
386
def create_cond_with_same_area_if_none(conds, c):
387
    if 'area' not in c:
comfyanonymous's avatar
comfyanonymous committed
388
389
        return

390
    c_area = c['area']
comfyanonymous's avatar
comfyanonymous committed
391
392
    smallest = None
    for x in conds:
393
394
        if 'area' in x:
            a = x['area']
comfyanonymous's avatar
comfyanonymous committed
395
396
397
398
399
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
400
                        elif 'area' not in smallest:
comfyanonymous's avatar
comfyanonymous committed
401
402
                            smallest = x
                        else:
403
                            if smallest['area'][0] * smallest['area'][1] > a[0] * a[1]:
comfyanonymous's avatar
comfyanonymous committed
404
405
406
407
408
409
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
410
411
    if 'area' in smallest:
        if smallest['area'] == c_area:
comfyanonymous's avatar
comfyanonymous committed
412
            return
413
414
415
416

    out = c.copy()
    out['model_conds'] = smallest['model_conds'].copy() #TODO: which fields should be copied?
    conds += [out]
comfyanonymous's avatar
comfyanonymous committed
417

418
def calculate_start_end_timesteps(model, conds):
419
    s = model.model_sampling
420
421
422
423
424
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
425
        if 'start_percent' in x:
426
            timestep_start = s.percent_to_sigma(x['start_percent'])
427
        if 'end_percent' in x:
428
            timestep_end = s.percent_to_sigma(x['end_percent'])
429
430

        if (timestep_start is not None) or (timestep_end is not None):
431
            n = x.copy()
432
433
434
435
            if (timestep_start is not None):
                n['timestep_start'] = timestep_start
            if (timestep_end is not None):
                n['timestep_end'] = timestep_end
436
            conds[t] = n
437

438
def pre_run_control(model, conds):
439
    s = model.model_sampling
440
441
442
443
444
    for t in range(len(conds)):
        x = conds[t]

        timestep_start = None
        timestep_end = None
445
        percent_to_timestep_function = lambda a: s.percent_to_sigma(a)
446
        if 'control' in x:
447
            x['control'].pre_run(model, percent_to_timestep_function)
448

449
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
comfyanonymous's avatar
comfyanonymous committed
450
451
452
453
454
455
    cond_cnets = []
    cond_other = []
    uncond_cnets = []
    uncond_other = []
    for t in range(len(conds)):
        x = conds[t]
456
457
458
        if 'area' not in x:
            if name in x and x[name] is not None:
                cond_cnets.append(x[name])
comfyanonymous's avatar
comfyanonymous committed
459
460
461
462
            else:
                cond_other.append((x, t))
    for t in range(len(uncond)):
        x = uncond[t]
463
464
465
        if 'area' not in x:
            if name in x and x[name] is not None:
                uncond_cnets.append(x[name])
comfyanonymous's avatar
comfyanonymous committed
466
467
468
469
470
471
472
473
474
            else:
                uncond_other.append((x, t))

    if len(uncond_cnets) > 0:
        return

    for x in range(len(cond_cnets)):
        temp = uncond_other[x % len(uncond_other)]
        o = temp[0]
475
476
        if name in o and o[name] is not None:
            n = o.copy()
477
            n[name] = uncond_fill_func(cond_cnets, x)
478
            uncond += [n]
comfyanonymous's avatar
comfyanonymous committed
479
        else:
480
            n = o.copy()
481
            n[name] = uncond_fill_func(cond_cnets, x)
482
            uncond[temp[1]] = n
483

484
def encode_model_conds(model_function, conds, noise, device, prompt_type, **kwargs):
485
486
    for t in range(len(conds)):
        x = conds[t]
487
        params = x.copy()
488
        params["device"] = device
489
490
491
492
        params["noise"] = noise
        params["width"] = params.get("width", noise.shape[3] * 8)
        params["height"] = params.get("height", noise.shape[2] * 8)
        params["prompt_type"] = params.get("prompt_type", prompt_type)
493
494
495
496
497
        for k in kwargs:
            if k not in params:
                params[k] = kwargs[k]

        out = model_function(**params)
498
499
500
501
502
503
        x = x.copy()
        model_conds = x['model_conds'].copy()
        for k in out:
            model_conds[k] = out[k]
        x['model_conds'] = model_conds
        conds[t] = x
504
    return conds
505

comfyanonymous's avatar
comfyanonymous committed
506
507
508
509
510
class Sampler:
    def sample(self):
        pass

    def max_denoise(self, model_wrap, sigmas):
comfyanonymous's avatar
comfyanonymous committed
511
512
513
        max_sigma = float(model_wrap.inner_model.model_sampling.sigma_max)
        sigma = float(sigmas[0])
        return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
comfyanonymous's avatar
comfyanonymous committed
514
515
516
517
518
519
520
521
522
523
524
525
526

class UNIPC(Sampler):
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
        return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, disable=disable_pbar)

class UNIPCBH2(Sampler):
    def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
        return uni_pc.sample_unipc(model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=self.max_denoise(model_wrap, sigmas), extra_args=extra_args, noise_mask=denoise_mask, callback=callback, variant='bh2', disable=disable_pbar)

KSAMPLER_NAMES = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral",
                  "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
                  "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm"]

527
def ksampler(sampler_name, extra_options={}, inpaint_options={}):
comfyanonymous's avatar
comfyanonymous committed
528
529
530
531
532
    class KSAMPLER(Sampler):
        def sample(self, model_wrap, sigmas, extra_args, callback, noise, latent_image=None, denoise_mask=None, disable_pbar=False):
            extra_args["denoise_mask"] = denoise_mask
            model_k = KSamplerX0Inpaint(model_wrap)
            model_k.latent_image = latent_image
533
534
535
536
537
            if inpaint_options.get("random", False): #TODO: Should this be the default?
                generator = torch.manual_seed(extra_args.get("seed", 41) + 1)
                model_k.noise = torch.randn(noise.shape, generator=generator, device="cpu").to(noise.dtype).to(noise.device)
            else:
                model_k.noise = noise
comfyanonymous's avatar
comfyanonymous committed
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559

            if self.max_denoise(model_wrap, sigmas):
                noise = noise * torch.sqrt(1.0 + sigmas[0] ** 2.0)
            else:
                noise = noise * sigmas[0]

            k_callback = None
            total_steps = len(sigmas) - 1
            if callback is not None:
                k_callback = lambda x: callback(x["i"], x["denoised"], x["x"], total_steps)

            sigma_min = sigmas[-1]
            if sigma_min == 0:
                sigma_min = sigmas[-2]

            if latent_image is not None:
                noise += latent_image
            if sampler_name == "dpm_fast":
                samples = k_diffusion_sampling.sample_dpm_fast(model_k, noise, sigma_min, sigmas[0], total_steps, extra_args=extra_args, callback=k_callback, disable=disable_pbar)
            elif sampler_name == "dpm_adaptive":
                samples = k_diffusion_sampling.sample_dpm_adaptive(model_k, noise, sigma_min, sigmas[0], extra_args=extra_args, callback=k_callback, disable=disable_pbar)
            else:
comfyanonymous's avatar
comfyanonymous committed
560
                samples = getattr(k_diffusion_sampling, "sample_{}".format(sampler_name))(model_k, noise, sigmas, extra_args=extra_args, callback=k_callback, disable=disable_pbar, **extra_options)
comfyanonymous's avatar
comfyanonymous committed
561
562
563
            return samples
    return KSAMPLER

comfyanonymous's avatar
comfyanonymous committed
564
565
def wrap_model(model):
    model_denoise = CFGNoisePredictor(model)
comfyanonymous's avatar
comfyanonymous committed
566
    return model_denoise
comfyanonymous's avatar
comfyanonymous committed
567
568
569
570
571
572
573
574

def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
    positive = positive[:]
    negative = negative[:]

    resolve_areas_and_cond_masks(positive, noise.shape[2], noise.shape[3], device)
    resolve_areas_and_cond_masks(negative, noise.shape[2], noise.shape[3], device)

comfyanonymous's avatar
comfyanonymous committed
575
    model_wrap = wrap_model(model)
comfyanonymous's avatar
comfyanonymous committed
576

577
578
    calculate_start_end_timesteps(model, negative)
    calculate_start_end_timesteps(model, positive)
comfyanonymous's avatar
comfyanonymous committed
579
580
581
582
583
584
585

    #make sure each cond area has an opposite one with the same area
    for c in positive:
        create_cond_with_same_area_if_none(negative, c)
    for c in negative:
        create_cond_with_same_area_if_none(positive, c)

586
    pre_run_control(model, negative + positive)
comfyanonymous's avatar
comfyanonymous committed
587

588
    apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
comfyanonymous's avatar
comfyanonymous committed
589
590
    apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])

591
592
593
    if latent_image is not None:
        latent_image = model.process_latent_in(latent_image)

594
595
596
    if hasattr(model, 'extra_conds'):
        positive = encode_model_conds(model.extra_conds, positive, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask)
        negative = encode_model_conds(model.extra_conds, negative, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask)
comfyanonymous's avatar
comfyanonymous committed
597
598
599
600
601
602

    extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed}

    samples = sampler.sample(model_wrap, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
    return model.process_latent_out(samples.to(torch.float32))

comfyanonymous's avatar
comfyanonymous committed
603
604
605
606
607
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]

def calculate_sigmas_scheduler(model, scheduler_name, steps):
    if scheduler_name == "karras":
comfyanonymous's avatar
comfyanonymous committed
608
        sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
comfyanonymous's avatar
comfyanonymous committed
609
    elif scheduler_name == "exponential":
comfyanonymous's avatar
comfyanonymous committed
610
        sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
comfyanonymous's avatar
comfyanonymous committed
611
    elif scheduler_name == "normal":
comfyanonymous's avatar
comfyanonymous committed
612
        sigmas = normal_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
613
    elif scheduler_name == "simple":
comfyanonymous's avatar
comfyanonymous committed
614
        sigmas = simple_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
615
    elif scheduler_name == "ddim_uniform":
comfyanonymous's avatar
comfyanonymous committed
616
        sigmas = ddim_scheduler(model, steps)
comfyanonymous's avatar
comfyanonymous committed
617
    elif scheduler_name == "sgm_uniform":
comfyanonymous's avatar
comfyanonymous committed
618
        sigmas = normal_scheduler(model, steps, sgm=True)
comfyanonymous's avatar
comfyanonymous committed
619
620
621
622
    else:
        print("error invalid scheduler", self.scheduler)
    return sigmas

623
624
625
626
627
628
def sampler_class(name):
    if name == "uni_pc":
        sampler = UNIPC
    elif name == "uni_pc_bh2":
        sampler = UNIPCBH2
    elif name == "ddim":
629
        sampler = ksampler("euler", inpaint_options={"random": True})
630
631
632
633
    else:
        sampler = ksampler(name)
    return sampler

comfyanonymous's avatar
comfyanonymous committed
634
class KSampler:
comfyanonymous's avatar
comfyanonymous committed
635
636
    SCHEDULERS = SCHEDULER_NAMES
    SAMPLERS = SAMPLER_NAMES
comfyanonymous's avatar
comfyanonymous committed
637

638
    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}):
comfyanonymous's avatar
comfyanonymous committed
639
640
641
642
643
644
645
646
647
        self.model = model
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
        self.set_steps(steps, denoise)
648
        self.denoise = denoise
649
        self.model_options = model_options
comfyanonymous's avatar
comfyanonymous committed
650

comfyanonymous's avatar
comfyanonymous committed
651
652
653
654
    def calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
655
        if self.sampler in ['dpm_2', 'dpm_2_ancestral', 'uni_pc', 'uni_pc_bh2']:
comfyanonymous's avatar
comfyanonymous committed
656
657
658
            steps += 1
            discard_penultimate_sigma = True

comfyanonymous's avatar
comfyanonymous committed
659
        sigmas = calculate_sigmas_scheduler(self.model, self.scheduler, steps)
comfyanonymous's avatar
comfyanonymous committed
660
661
662
663
664

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

comfyanonymous's avatar
comfyanonymous committed
665
666
    def set_steps(self, steps, denoise=None):
        self.steps = steps
667
        if denoise is None or denoise > 0.9999:
comfyanonymous's avatar
comfyanonymous committed
668
            self.sigmas = self.calculate_sigmas(steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
669
670
        else:
            new_steps = int(steps/denoise)
comfyanonymous's avatar
comfyanonymous committed
671
            sigmas = self.calculate_sigmas(new_steps).to(self.device)
comfyanonymous's avatar
comfyanonymous committed
672
673
            self.sigmas = sigmas[-(steps + 1):]

674
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
675
676
        if sigmas is None:
            sigmas = self.sigmas
comfyanonymous's avatar
comfyanonymous committed
677

comfyanonymous's avatar
comfyanonymous committed
678
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
679
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
680
681
682
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
683
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
684
685
686
687
688
689
690
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
691

692
        sampler = sampler_class(self.sampler)
693

comfyanonymous's avatar
comfyanonymous committed
694
        return sample(self.model, noise, positive, negative, cfg, self.device, sampler(), sigmas, self.model_options, latent_image=latent_image, denoise_mask=denoise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)