samplers.py 12.1 KB
Newer Older
1
2
from .k_diffusion import sampling as k_diffusion_sampling
from .k_diffusion import external as k_diffusion_external
3
from .extra_samplers import uni_pc
comfyanonymous's avatar
comfyanonymous committed
4
5
import torch
import contextlib
6
import model_management
comfyanonymous's avatar
comfyanonymous committed
7
8
9
10
11
12
13

class CFGDenoiser(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model

    def forward(self, x, sigma, uncond, cond, cond_scale):
comfyanonymous's avatar
comfyanonymous committed
14
        if len(uncond[0]) == len(cond[0]) and x.shape[0] * x.shape[2] * x.shape[3] < (96 * 96): #TODO check memory instead
comfyanonymous's avatar
comfyanonymous committed
15
16
17
18
19
20
21
22
23
            x_in = torch.cat([x] * 2)
            sigma_in = torch.cat([sigma] * 2)
            cond_in = torch.cat([uncond, cond])
            uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
        else:
            cond = self.inner_model(x, sigma, cond=cond)
            uncond = self.inner_model(x, sigma, cond=uncond)
        return uncond + (cond - uncond) * cond_scale

24
25
def sampling_function(model_function, x, sigma, uncond, cond, cond_scale):
        def get_area_and_mult(cond, x_in):
26
27
28
29
30
31
32
33
            area = (x_in.shape[2], x_in.shape[3], 0, 0)
            strength = 1.0
            min_sigma = 0.0
            max_sigma = 999.0
            if 'area' in cond[1]:
                area = cond[1]['area']
            if 'strength' in cond[1]:
                strength = cond[1]['strength']
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
            input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
            mult = torch.ones_like(input_x) * strength

            rr = 8
            if area[2] != 0:
                for t in range(rr):
                    mult[:,:,area[2]+t:area[2]+1+t,:] *= ((1.0/rr) * (t + 1))
            if (area[0] + area[2]) < x_in.shape[2]:
                for t in range(rr):
                    mult[:,:,area[0] + area[2] - 1 - t:area[0] + area[2] - t,:] *= ((1.0/rr) * (t + 1))
            if area[3] != 0:
                for t in range(rr):
                    mult[:,:,:,area[3]+t:area[3]+1+t] *= ((1.0/rr) * (t + 1))
            if (area[1] + area[3]) < x_in.shape[3]:
                for t in range(rr):
                    mult[:,:,:,area[1] + area[3] - 1 - t:area[1] + area[3] - t] *= ((1.0/rr) * (t + 1))
            return (input_x, mult, cond[0], area)

53
        def calc_cond_uncond_batch(model_function, cond, uncond, x_in, sigma, max_total_area):
comfyanonymous's avatar
comfyanonymous committed
54
55
            out_cond = torch.zeros_like(x_in)
            out_count = torch.ones_like(x_in)/100000.0
56
57
58
59
60
61

            out_uncond = torch.zeros_like(x_in)
            out_uncond_count = torch.ones_like(x_in)/100000.0

            COND = 0
            UNCOND = 1
comfyanonymous's avatar
comfyanonymous committed
62

63
            to_run = []
comfyanonymous's avatar
comfyanonymous committed
64
            for x in cond:
65
                p = get_area_and_mult(x, x_in)
66
                if p is None:
comfyanonymous's avatar
comfyanonymous committed
67
                    continue
68
69
70

                to_run += [(p, COND)]
            for x in uncond:
71
                p = get_area_and_mult(x, x_in)
72
73
74
75
76
77
78
79
                if p is None:
                    continue

                to_run += [(p, UNCOND)]

            while len(to_run) > 0:
                first = to_run[0]
                first_shape = first[0][0].shape
80
                to_batch_temp = []
81
82
83
                for x in range(len(to_run)):
                    if to_run[x][0][0].shape == first_shape:
                        if to_run[x][0][2].shape == first[0][2].shape:
84
85
86
87
88
89
90
91
92
93
                            to_batch_temp += [x]

                to_batch_temp.reverse()
                to_batch = to_batch_temp[:1]

                for i in range(1, len(to_batch_temp) + 1):
                    batch_amount = to_batch_temp[:len(to_batch_temp)//i]
                    if (len(batch_amount) * first_shape[0] * first_shape[2] * first_shape[3] < max_total_area):
                        to_batch = batch_amount
                        break
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

                input_x = []
                mult = []
                c = []
                cond_or_uncond = []
                area = []
                for x in to_batch:
                    o = to_run.pop(x)
                    p = o[0]
                    input_x += [p[0]]
                    mult += [p[1]]
                    c += [p[2]]
                    area += [p[3]]
                    cond_or_uncond += [o[1]]

                batch_chunks = len(cond_or_uncond)
                input_x = torch.cat(input_x)
                c = torch.cat(c)
                sigma_ = torch.cat([sigma] * batch_chunks)

114
                output = model_function(input_x, sigma_, cond=c).chunk(batch_chunks)
comfyanonymous's avatar
comfyanonymous committed
115
                del input_x
116
117
118
119
120
121
122
123

                for o in range(batch_chunks):
                    if cond_or_uncond[o] == COND:
                        out_cond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
                    else:
                        out_uncond[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o]
                        out_uncond_count[:,:,area[o][2]:area[o][0] + area[o][2],area[o][3]:area[o][1] + area[o][3]] += mult[o]
comfyanonymous's avatar
comfyanonymous committed
124
125
126
127
                del mult

            out_cond /= out_count
            del out_count
128
129
130
131
            out_uncond /= out_uncond_count
            del out_uncond_count

            return out_cond, out_uncond
comfyanonymous's avatar
comfyanonymous committed
132
133


134
        max_total_area = model_management.maximum_batch_area()
135
        cond, uncond = calc_cond_uncond_batch(model_function, cond, uncond, x, sigma, max_total_area)
comfyanonymous's avatar
comfyanonymous committed
136
        return uncond + (cond - uncond) * cond_scale
comfyanonymous's avatar
comfyanonymous committed
137

138
139
140
141
class CFGDenoiserComplex(torch.nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model
142
143
144
145
146
147
148
149
150
151
152
    def forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask):
        if denoise_mask is not None:
            latent_mask = 1. - denoise_mask
            x = x * denoise_mask + (self.latent_image + self.noise * sigma) * latent_mask
        out = sampling_function(self.inner_model, x, sigma, uncond, cond, cond_scale)
        if denoise_mask is not None:
            out *= denoise_mask

        if denoise_mask is not None:
            out += self.latent_image * latent_mask
        return out
153

comfyanonymous's avatar
comfyanonymous committed
154
155
156
157
158
159
160
161
def simple_scheduler(model, steps):
    sigs = []
    ss = len(model.sigmas) / steps
    for x in range(steps):
        sigs += [float(model.sigmas[-(1 + int(x * ss))])]
    sigs += [0.0]
    return torch.FloatTensor(sigs)

comfyanonymous's avatar
comfyanonymous committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
def create_cond_with_same_area_if_none(conds, c):
    if 'area' not in c[1]:
        return

    c_area = c[1]['area']
    smallest = None
    for x in conds:
        if 'area' in x[1]:
            a = x[1]['area']
            if c_area[2] >= a[2] and c_area[3] >= a[3]:
                if a[0] + a[2] >= c_area[0] + c_area[2]:
                    if a[1] + a[3] >= c_area[1] + c_area[3]:
                        if smallest is None:
                            smallest = x
                        elif 'area' not in smallest[1]:
                            smallest = x
                        else:
                            if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]:
                                smallest = x
        else:
            if smallest is None:
                smallest = x
    if smallest is None:
        return
    if 'area' in smallest[1]:
        if smallest[1]['area'] == c_area:
            return
    n = c[1].copy()
    conds += [[smallest[0], n]]
comfyanonymous's avatar
comfyanonymous committed
191
192
193
194
195

class KSampler:
    SCHEDULERS = ["karras", "normal", "simple"]
    SAMPLERS = ["sample_euler", "sample_euler_ancestral", "sample_heun", "sample_dpm_2", "sample_dpm_2_ancestral",
                "sample_lms", "sample_dpm_fast", "sample_dpm_adaptive", "sample_dpmpp_2s_ancestral", "sample_dpmpp_sde",
196
                "sample_dpmpp_2m", "uni_pc"]
comfyanonymous's avatar
comfyanonymous committed
197
198
199
200

    def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None):
        self.model = model
        if self.model.parameterization == "v":
201
            self.model_wrap = k_diffusion_external.CompVisVDenoiser(self.model, quantize=True)
comfyanonymous's avatar
comfyanonymous committed
202
        else:
203
            self.model_wrap = k_diffusion_external.CompVisDenoiser(self.model, quantize=True)
comfyanonymous's avatar
comfyanonymous committed
204
        self.model_k = CFGDenoiserComplex(self.model_wrap)
comfyanonymous's avatar
comfyanonymous committed
205
206
207
208
209
210
211
        self.device = device
        if scheduler not in self.SCHEDULERS:
            scheduler = self.SCHEDULERS[0]
        if sampler not in self.SAMPLERS:
            sampler = self.SAMPLERS[0]
        self.scheduler = scheduler
        self.sampler = sampler
212
213
        self.sigma_min=float(self.model_wrap.sigma_min)
        self.sigma_max=float(self.model_wrap.sigma_max)
comfyanonymous's avatar
comfyanonymous committed
214
215
216
217
218
219
220
221
222
223
224
        self.set_steps(steps, denoise)

    def _calculate_sigmas(self, steps):
        sigmas = None

        discard_penultimate_sigma = False
        if self.sampler in ['sample_dpm_2', 'sample_dpm_2_ancestral']:
            steps += 1
            discard_penultimate_sigma = True

        if self.scheduler == "karras":
225
            sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max, device=self.device)
comfyanonymous's avatar
comfyanonymous committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        elif self.scheduler == "normal":
            sigmas = self.model_wrap.get_sigmas(steps).to(self.device)
        elif self.scheduler == "simple":
            sigmas = simple_scheduler(self.model_wrap, steps).to(self.device)
        else:
            print("error invalid scheduler", self.scheduler)

        if discard_penultimate_sigma:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        return sigmas

    def set_steps(self, steps, denoise=None):
        self.steps = steps
        if denoise is None:
            self.sigmas = self._calculate_sigmas(steps)
        else:
            new_steps = int(steps/denoise)
            sigmas = self._calculate_sigmas(new_steps)
            self.sigmas = sigmas[-(steps + 1):]


247
    def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None):
comfyanonymous's avatar
comfyanonymous committed
248
249
250
        sigmas = self.sigmas
        sigma_min = self.sigma_min

comfyanonymous's avatar
comfyanonymous committed
251
        if last_step is not None and last_step < (len(sigmas) - 1):
comfyanonymous's avatar
comfyanonymous committed
252
253
            sigma_min = sigmas[last_step]
            sigmas = sigmas[:last_step + 1]
comfyanonymous's avatar
comfyanonymous committed
254
255
256
            if force_full_denoise:
                sigmas[-1] = 0

comfyanonymous's avatar
comfyanonymous committed
257
        if start_step is not None:
comfyanonymous's avatar
comfyanonymous committed
258
259
260
261
262
263
264
            if start_step < (len(sigmas) - 1):
                sigmas = sigmas[start_step:]
            else:
                if latent_image is not None:
                    return latent_image
                else:
                    return torch.zeros_like(noise)
comfyanonymous's avatar
comfyanonymous committed
265

comfyanonymous's avatar
comfyanonymous committed
266
267
268
269
270
271
272
273
        positive = positive[:]
        negative = negative[:]
        #make sure each cond area has an opposite one with the same area
        for c in positive:
            create_cond_with_same_area_if_none(negative, c)
        for c in negative:
            create_cond_with_same_area_if_none(positive, c)

comfyanonymous's avatar
comfyanonymous committed
274
275
276
277
278
        if self.model.model.diffusion_model.dtype == torch.float16:
            precision_scope = torch.autocast
        else:
            precision_scope = contextlib.nullcontext

279
280
281
282
283
        latent_mask = None
        if denoise_mask is not None:
            latent_mask = (torch.ones_like(denoise_mask) - denoise_mask)

        extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg}
comfyanonymous's avatar
comfyanonymous committed
284
        with precision_scope(self.device):
285
            if self.sampler == "uni_pc":
286
                samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, extra_args=extra_args, noise_mask=denoise_mask)
comfyanonymous's avatar
comfyanonymous committed
287
            else:
288
289
290
291
292
293
                extra_args["denoise_mask"] = denoise_mask
                self.model_k.latent_image = latent_image
                self.model_k.noise = noise

                noise = noise * sigmas[0]

294
295
296
                if latent_image is not None:
                    noise += latent_image
                if self.sampler == "sample_dpm_fast":
297
                    samples = k_diffusion_sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], self.steps, extra_args=extra_args)
298
                elif self.sampler == "sample_dpm_adaptive":
299
                    samples = k_diffusion_sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args=extra_args)
300
                else:
301
302
                    samples = getattr(k_diffusion_sampling, self.sampler)(self.model_k, noise, sigmas, extra_args=extra_args)

comfyanonymous's avatar
comfyanonymous committed
303
        return samples.to(torch.float32)