sd.py 47.6 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
2
import contextlib
3
import copy
4
import inspect
comfyanonymous's avatar
comfyanonymous committed
5

6
from comfy import model_management
7
8
from .ldm.util import instantiate_from_config
from .ldm.models.autoencoder import AutoencoderKL
9
import yaml
comfyanonymous's avatar
comfyanonymous committed
10
from .cldm import cldm
11
from .t2i_adapter import adapter
comfyanonymous's avatar
comfyanonymous committed
12
13

from . import utils
14
from . import clip_vision
15
from . import gligen
16
from . import diffusers_convert
comfyanonymous's avatar
comfyanonymous committed
17
from . import model_base
18
from . import model_detection
19

20
21
from . import sd1_clip
from . import sd2_clip
22
from . import sdxl_clip
comfyanonymous's avatar
comfyanonymous committed
23

24
def load_model_weights(model, sd):
comfyanonymous's avatar
comfyanonymous committed
25
    m, u = model.load_state_dict(sd, strict=False)
26
27
    m = set(m)
    unexpected_keys = set(u)
comfyanonymous's avatar
comfyanonymous committed
28
29
30

    k = list(sd.keys())
    for x in k:
31
32
33
34
35
36
37
38
39
40
        if x not in unexpected_keys:
            w = sd.pop(x)
            del w
    if len(m) > 0:
        print("missing", m)
    return model

def load_clip_weights(model, sd):
    k = list(sd.keys())
    for x in k:
comfyanonymous's avatar
comfyanonymous committed
41
42
43
44
        if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
            y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
            sd[y] = sd.pop(x)

comfyanonymous's avatar
comfyanonymous committed
45
46
47
48
    if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
        ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
        if ids.dtype == torch.float32:
            sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
49

50
51
    sd = utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
    return load_model_weights(model, sd)
comfyanonymous's avatar
comfyanonymous committed
52

53
54
55
56
57
58
59
60
61
62
LORA_CLIP_MAP = {
    "mlp.fc1": "mlp_fc1",
    "mlp.fc2": "mlp_fc2",
    "self_attn.k_proj": "self_attn_k_proj",
    "self_attn.q_proj": "self_attn_q_proj",
    "self_attn.v_proj": "self_attn_v_proj",
    "self_attn.out_proj": "self_attn_out_proj",
}


63
def load_lora(lora, to_load):
64
65
66
    patch_dict = {}
    loaded_keys = set()
    for x in to_load:
comfyanonymous's avatar
comfyanonymous committed
67
68
69
70
71
72
        alpha_name = "{}.alpha".format(x)
        alpha = None
        if alpha_name in lora.keys():
            alpha = lora[alpha_name].item()
            loaded_keys.add(alpha_name)

73
74
        A_name = "{}.lora_up.weight".format(x)
        B_name = "{}.lora_down.weight".format(x)
75
        mid_name = "{}.lora_mid.weight".format(x)
comfyanonymous's avatar
comfyanonymous committed
76

77
        if A_name in lora.keys():
78
79
80
81
82
            mid = None
            if mid_name in lora.keys():
                mid = lora[mid_name]
                loaded_keys.add(mid_name)
            patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha, mid)
83
84
            loaded_keys.add(A_name)
            loaded_keys.add(B_name)
comfyanonymous's avatar
comfyanonymous committed
85

comfyanonymous's avatar
comfyanonymous committed
86
87

        ######## loha
comfyanonymous's avatar
comfyanonymous committed
88
89
90
91
        hada_w1_a_name = "{}.hada_w1_a".format(x)
        hada_w1_b_name = "{}.hada_w1_b".format(x)
        hada_w2_a_name = "{}.hada_w2_a".format(x)
        hada_w2_b_name = "{}.hada_w2_b".format(x)
92
93
        hada_t1_name = "{}.hada_t1".format(x)
        hada_t2_name = "{}.hada_t2".format(x)
comfyanonymous's avatar
comfyanonymous committed
94
        if hada_w1_a_name in lora.keys():
95
96
97
98
99
100
101
102
103
            hada_t1 = None
            hada_t2 = None
            if hada_t1_name in lora.keys():
                hada_t1 = lora[hada_t1_name]
                hada_t2 = lora[hada_t2_name]
                loaded_keys.add(hada_t1_name)
                loaded_keys.add(hada_t2_name)

            patch_dict[to_load[x]] = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2)
comfyanonymous's avatar
comfyanonymous committed
104
105
106
107
108
            loaded_keys.add(hada_w1_a_name)
            loaded_keys.add(hada_w1_b_name)
            loaded_keys.add(hada_w2_a_name)
            loaded_keys.add(hada_w2_b_name)

comfyanonymous's avatar
comfyanonymous committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

        ######## lokr
        lokr_w1_name = "{}.lokr_w1".format(x)
        lokr_w2_name = "{}.lokr_w2".format(x)
        lokr_w1_a_name = "{}.lokr_w1_a".format(x)
        lokr_w1_b_name = "{}.lokr_w1_b".format(x)
        lokr_t2_name = "{}.lokr_t2".format(x)
        lokr_w2_a_name = "{}.lokr_w2_a".format(x)
        lokr_w2_b_name = "{}.lokr_w2_b".format(x)

        lokr_w1 = None
        if lokr_w1_name in lora.keys():
            lokr_w1 = lora[lokr_w1_name]
            loaded_keys.add(lokr_w1_name)

        lokr_w2 = None
        if lokr_w2_name in lora.keys():
            lokr_w2 = lora[lokr_w2_name]
            loaded_keys.add(lokr_w2_name)

        lokr_w1_a = None
        if lokr_w1_a_name in lora.keys():
            lokr_w1_a = lora[lokr_w1_a_name]
            loaded_keys.add(lokr_w1_a_name)

        lokr_w1_b = None
        if lokr_w1_b_name in lora.keys():
            lokr_w1_b = lora[lokr_w1_b_name]
            loaded_keys.add(lokr_w1_b_name)

        lokr_w2_a = None
        if lokr_w2_a_name in lora.keys():
            lokr_w2_a = lora[lokr_w2_a_name]
            loaded_keys.add(lokr_w2_a_name)

        lokr_w2_b = None
        if lokr_w2_b_name in lora.keys():
            lokr_w2_b = lora[lokr_w2_b_name]
            loaded_keys.add(lokr_w2_b_name)

        lokr_t2 = None
        if lokr_t2_name in lora.keys():
            lokr_t2 = lora[lokr_t2_name]
            loaded_keys.add(lokr_t2_name)

        if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
            patch_dict[to_load[x]] = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2)

157
158
159
160
161
    for x in lora.keys():
        if x not in loaded_keys:
            print("lora key not loaded", x)
    return patch_dict

162
def model_lora_keys_clip(model, key_map={}):
163
164
    sdk = model.state_dict().keys()

comfyanonymous's avatar
comfyanonymous committed
165
    text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
166
167
    clip_l_present = False
    for b in range(32):
168
169
170
        for c in LORA_CLIP_MAP:
            k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
171
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
172
                key_map[lora_key] = k
comfyanonymous's avatar
comfyanonymous committed
173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
            k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
                key_map[lora_key] = k
                clip_l_present = True

            k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                if clip_l_present:
                    lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
                else:
                    lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
                key_map[lora_key] = k

188
    return key_map
comfyanonymous's avatar
comfyanonymous committed
189

190
191
def model_lora_keys_unet(model, key_map={}):
    sdk = model.state_dict().keys()
comfyanonymous's avatar
comfyanonymous committed
192

193
194
195
196
197
    for k in sdk:
        if k.startswith("diffusion_model.") and k.endswith(".weight"):
            key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
            key_map["lora_unet_{}".format(key_lora)] = k

198
199
200
201
202
    diffusers_keys = utils.unet_to_diffusers(model.model_config.unet_config)
    for k in diffusers_keys:
        if k.endswith(".weight"):
            key_lora = k[:-len(".weight")].replace(".", "_")
            key_map["lora_unet_{}".format(key_lora)] = "diffusion_model.{}".format(diffusers_keys[k])
203
204
205
    return key_map

class ModelPatcher:
206
    def __init__(self, model, load_device, offload_device, size=0):
207
        self.size = size
208
209
210
        self.model = model
        self.patches = []
        self.backup = {}
211
        self.model_options = {"transformer_options":{}}
212
        self.model_size()
213
214
        self.load_device = load_device
        self.offload_device = offload_device
215
216
217
218
219
220
221
222
223
224

    def model_size(self):
        if self.size > 0:
            return self.size
        model_sd = self.model.state_dict()
        size = 0
        for k in model_sd:
            t = model_sd[k]
            size += t.nelement() * t.element_size()
        self.size = size
225
        self.model_keys = set(model_sd.keys())
226
        return size
227
228

    def clone(self):
229
        n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size)
230
        n.patches = self.patches[:]
231
        n.model_options = copy.deepcopy(self.model_options)
232
        n.model_keys = self.model_keys
233
234
        return n

235
    def set_model_sampler_cfg_function(self, sampler_cfg_function):
236
237
238
239
        if len(inspect.signature(sampler_cfg_function).parameters) == 3:
            self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
        else:
            self.model_options["sampler_cfg_function"] = sampler_cfg_function
240

241
242
243
    def set_model_unet_function_wrapper(self, unet_wrapper_function):
        self.model_options["model_function_wrapper"] = unet_wrapper_function

244
245
246
247
248
249
    def set_model_patch(self, patch, name):
        to = self.model_options["transformer_options"]
        if "patches" not in to:
            to["patches"] = {}
        to["patches"][name] = to["patches"].get(name, []) + [patch]

250
251
252
253
254
255
256
257
    def set_model_patch_replace(self, patch, name, block_name, number):
        to = self.model_options["transformer_options"]
        if "patches_replace" not in to:
            to["patches_replace"] = {}
        if name not in to["patches_replace"]:
            to["patches_replace"][name] = {}
        to["patches_replace"][name][(block_name, number)] = patch

258
259
260
261
262
263
    def set_model_attn1_patch(self, patch):
        self.set_model_patch(patch, "attn1_patch")

    def set_model_attn2_patch(self, patch):
        self.set_model_patch(patch, "attn2_patch")

264
265
266
267
268
269
270
271
272
    def set_model_attn1_replace(self, patch, block_name, number):
        self.set_model_patch_replace(patch, "attn1", block_name, number)

    def set_model_attn2_replace(self, patch, block_name, number):
        self.set_model_patch_replace(patch, "attn2", block_name, number)

    def set_model_attn1_output_patch(self, patch):
        self.set_model_patch(patch, "attn1_output_patch")

273
274
275
    def set_model_attn2_output_patch(self, patch):
        self.set_model_patch(patch, "attn2_output_patch")

276
277
278
279
280
281
282
283
284
    def model_patches_to(self, device):
        to = self.model_options["transformer_options"]
        if "patches" in to:
            patches = to["patches"]
            for name in patches:
                patch_list = patches[name]
                for i in range(len(patch_list)):
                    if hasattr(patch_list[i], "to"):
                        patch_list[i] = patch_list[i].to(device)
285
286
287
288
289
290
291
        if "patches_replace" in to:
            patches = to["patches_replace"]
            for name in patches:
                patch_list = patches[name]
                for k in patch_list:
                    if hasattr(patch_list[k], "to"):
                        patch_list[k] = patch_list[k].to(device)
292

293
    def model_dtype(self):
comfyanonymous's avatar
comfyanonymous committed
294
        return self.model.get_dtype()
295

296
    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
297
298
        p = {}
        for k in patches:
299
            if k in self.model_keys:
300
                p[k] = patches[k]
301
        self.patches += [(strength_patch, p, strength_model)]
302
303
        return p.keys()

304
    def model_state_dict(self, filter_prefix=None):
305
306
        sd = self.model.state_dict()
        keys = list(sd.keys())
307
308
309
310
        if filter_prefix is not None:
            for k in keys:
                if not k.startswith(filter_prefix):
                    sd.pop(k)
311
312
        return sd

313
    def patch_model(self):
314
        model_sd = self.model_state_dict()
315
316
317
        for p in self.patches:
            for k in p[1]:
                v = p[1][k]
318
                key = k
comfyanonymous's avatar
comfyanonymous committed
319
                if key not in model_sd:
320
321
322
                    print("could not patch. key doesn't exist in model:", k)
                    continue

comfyanonymous's avatar
comfyanonymous committed
323
324
325
                weight = model_sd[key]
                if key not in self.backup:
                    self.backup[key] = weight.clone()
326
327

                alpha = p[0]
328
329
330
331
                strength_model = p[2]

                if strength_model != 1.0:
                    weight *= strength_model
comfyanonymous's avatar
comfyanonymous committed
332

333
                if len(v) == 1:
334
335
336
337
338
                    w1 = v[0]
                    if w1.shape != weight.shape:
                        print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
                    else:
                        weight += alpha * w1.type(weight.dtype).to(weight.device)
339
                elif len(v) == 4: #lora/locon
comfyanonymous's avatar
comfyanonymous committed
340
341
342
343
344
345
346
347
348
                    mat1 = v[0]
                    mat2 = v[1]
                    if v[2] is not None:
                        alpha *= v[2] / mat2.shape[0]
                    if v[3] is not None:
                        #locon mid weights, hopefully the math is fine because I didn't properly test it
                        final_shape = [mat2.shape[1], mat2.shape[0], v[3].shape[2], v[3].shape[3]]
                        mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1).float(), v[3].transpose(0, 1).flatten(start_dim=1).float()).reshape(final_shape).transpose(0, 1)
                    weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device)
comfyanonymous's avatar
comfyanonymous committed
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
                elif len(v) == 8: #lokr
                    w1 = v[0]
                    w2 = v[1]
                    w1_a = v[3]
                    w1_b = v[4]
                    w2_a = v[5]
                    w2_b = v[6]
                    t2 = v[7]
                    dim = None

                    if w1 is None:
                        dim = w1_b.shape[0]
                        w1 = torch.mm(w1_a.float(), w1_b.float())

                    if w2 is None:
                        dim = w2_b.shape[0]
                        if t2 is None:
                            w2 = torch.mm(w2_a.float(), w2_b.float())
                        else:
                            w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2_b.float(), w2_a.float())

                    if len(w2.shape) == 4:
                        w1 = w1.unsqueeze(2).unsqueeze(2)
                    if v[2] is not None and dim is not None:
                        alpha *= v[2] / dim

                    weight += alpha * torch.kron(w1.float(), w2.float()).reshape(weight.shape).type(weight.dtype).to(weight.device)
comfyanonymous's avatar
comfyanonymous committed
376
377
378
379
380
381
382
                else: #loha
                    w1a = v[0]
                    w1b = v[1]
                    if v[2] is not None:
                        alpha *= v[2] / w1b.shape[0]
                    w2a = v[3]
                    w2b = v[4]
383
384
385
386
387
388
389
390
391
392
                    if v[5] is not None: #cp decomposition
                        t1 = v[5]
                        t2 = v[6]
                        m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float(), w1b.float(), w1a.float())
                        m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2b.float(), w2a.float())
                    else:
                        m1 = torch.mm(w1a.float(), w1b.float())
                        m2 = torch.mm(w2a.float(), w2b.float())

                    weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype).to(weight.device)
393
394
        return self.model
    def unpatch_model(self):
395
        model_sd = self.model_state_dict()
396
397
        keys = list(self.backup.keys())
        for k in keys:
398
            model_sd[k][:] = self.backup[k]
399
400
            del self.backup[k]

401
402
        self.backup = {}

403
def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
404
405
    key_map = model_lora_keys_unet(model.model)
    key_map = model_lora_keys_clip(clip.cond_stage_model, key_map)
406
    loaded = load_lora(lora, key_map)
407
408
409
410
411
412
413
414
415
416
417
    new_modelpatcher = model.clone()
    k = new_modelpatcher.add_patches(loaded, strength_model)
    new_clip = clip.clone()
    k1 = new_clip.add_patches(loaded, strength_clip)
    k = set(k)
    k1 = set(k1)
    for x in loaded:
        if (x not in k) and (x not in k1):
            print("NOT LOADED", x)

    return (new_modelpatcher, new_clip)
comfyanonymous's avatar
comfyanonymous committed
418
419
420


class CLIP:
421
    def __init__(self, target=None, embedding_directory=None, no_init=False):
422
423
        if no_init:
            return
comfyanonymous's avatar
comfyanonymous committed
424
        params = target.params.copy()
425
426
        clip = target.clip
        tokenizer = target.tokenizer
427

428
429
        load_device = model_management.text_encoder_device()
        offload_device = model_management.text_encoder_offload_device()
comfyanonymous's avatar
comfyanonymous committed
430
        params['device'] = load_device
431
        self.cond_stage_model = clip(**(params))
432
433
434
        #TODO: make sure this doesn't have a quality loss before enabling.
        # if model_management.should_use_fp16(load_device):
        #     self.cond_stage_model.half()
435
436

        self.cond_stage_model = self.cond_stage_model.to()
437

438
        self.tokenizer = tokenizer(embedding_directory=embedding_directory)
439
        self.patcher = ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
440
        self.layer_idx = None
441
442
443
444
445
446

    def clone(self):
        n = CLIP(no_init=True)
        n.patcher = self.patcher.clone()
        n.cond_stage_model = self.cond_stage_model
        n.tokenizer = self.tokenizer
comfyanonymous's avatar
comfyanonymous committed
447
        n.layer_idx = self.layer_idx
448
449
        return n

450
    def load_from_state_dict(self, sd):
451
        self.cond_stage_model.load_sd(sd)
452

453
454
    def add_patches(self, patches, strength=1.0):
        return self.patcher.add_patches(patches, strength)
comfyanonymous's avatar
comfyanonymous committed
455

456
    def clip_layer(self, layer_idx):
comfyanonymous's avatar
comfyanonymous committed
457
        self.layer_idx = layer_idx
458

459
460
    def tokenize(self, text, return_word_ids=False):
        return self.tokenizer.tokenize_with_weights(text, return_word_ids)
BlenderNeko's avatar
BlenderNeko committed
461

462
    def encode_from_tokens(self, tokens, return_pooled=False):
463
464
        if self.layer_idx is not None:
            self.cond_stage_model.clip_layer(self.layer_idx)
465
466
467

        model_management.load_model_gpu(self.patcher)
        cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
468
        if return_pooled:
469
470
            return cond, pooled
        return cond
comfyanonymous's avatar
comfyanonymous committed
471

472
    def encode(self, text):
473
        tokens = self.tokenize(text)
474
475
        return self.encode_from_tokens(tokens)

476
477
    def load_sd(self, sd):
        return self.cond_stage_model.load_sd(sd)
478

479
480
481
482
483
484
485
486
487
    def get_sd(self):
        return self.cond_stage_model.state_dict()

    def patch_model(self):
        self.patcher.patch_model()

    def unpatch_model(self):
        self.patcher.unpatch_model()

comfyanonymous's avatar
comfyanonymous committed
488
class VAE:
489
    def __init__(self, ckpt_path=None, device=None, config=None):
comfyanonymous's avatar
comfyanonymous committed
490
491
492
        if config is None:
            #default SD1.x/SD2.x VAE parameters
            ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
493
            self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss")
comfyanonymous's avatar
comfyanonymous committed
494
        else:
495
            self.first_stage_model = AutoencoderKL(**(config['params']))
comfyanonymous's avatar
comfyanonymous committed
496
        self.first_stage_model = self.first_stage_model.eval()
497
498
499
500
501
502
        if ckpt_path is not None:
            sd = utils.load_torch_file(ckpt_path)
            if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
                sd = diffusers_convert.convert_vae_state_dict(sd)
            self.first_stage_model.load_state_dict(sd, strict=False)

503
        if device is None:
504
            device = model_management.vae_device()
comfyanonymous's avatar
comfyanonymous committed
505
        self.device = device
506
        self.offload_device = model_management.vae_offload_device()
comfyanonymous's avatar
comfyanonymous committed
507

508
    def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
pythongosssss's avatar
pythongosssss committed
509
        steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
comfyanonymous's avatar
comfyanonymous committed
510
511
        steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
pythongosssss's avatar
pythongosssss committed
512
        pbar = utils.ProgressBar(steps)
513

514
        decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.device)) + 1.0)
515
        output = torch.clamp((
516
517
518
            (utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
            utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
             utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
519
520
521
            / 3.0) / 2.0, min=0.0, max=1.0)
        return output

522
523
524
525
526
527
    def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
        steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
        pbar = utils.ProgressBar(steps)

528
        encode_fn = lambda a: self.first_stage_model.encode(2. * a.to(self.device) - 1.).sample()
529
530
531
532
533
534
        samples = utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples /= 3.0
        return samples

535
    def decode(self, samples_in):
536
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
537
        self.first_stage_model = self.first_stage_model.to(self.device)
538
        try:
539
540
541
542
543
544
545
            free_memory = model_management.get_free_memory(self.device)
            batch_number = int((free_memory * 0.7) / (2562 * samples_in.shape[2] * samples_in.shape[3] * 64))
            batch_number = max(1, batch_number)

            pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu")
            for x in range(0, samples_in.shape[0], batch_number):
                samples = samples_in[x:x+batch_number].to(self.device)
546
                pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples) + 1.0) / 2.0, min=0.0, max=1.0).cpu()
547
548
549
550
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
            pixel_samples = self.decode_tiled_(samples_in)

551
        self.first_stage_model = self.first_stage_model.to(self.offload_device)
comfyanonymous's avatar
comfyanonymous committed
552
553
554
        pixel_samples = pixel_samples.cpu().movedim(1,-1)
        return pixel_samples

555
    def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
556
557
        model_management.unload_model()
        self.first_stage_model = self.first_stage_model.to(self.device)
558
        output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
559
        self.first_stage_model = self.first_stage_model.to(self.offload_device)
560
561
        return output.movedim(1,-1)

comfyanonymous's avatar
comfyanonymous committed
562
    def encode(self, pixel_samples):
563
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
564
        self.first_stage_model = self.first_stage_model.to(self.device)
565
566
        pixel_samples = pixel_samples.movedim(-1,1)
        try:
567
568
569
            free_memory = model_management.get_free_memory(self.device)
            batch_number = int((free_memory * 0.7) / (2078 * pixel_samples.shape[2] * pixel_samples.shape[3])) #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
            batch_number = max(1, batch_number)
570
571
572
            samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device="cpu")
            for x in range(0, pixel_samples.shape[0], batch_number):
                pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.device)
573
                samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).sample().cpu()
574

575
576
577
578
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
            samples = self.encode_tiled_(pixel_samples)

579
        self.first_stage_model = self.first_stage_model.to(self.offload_device)
comfyanonymous's avatar
comfyanonymous committed
580
581
        return samples

comfyanonymous's avatar
comfyanonymous committed
582
583
584
    def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        model_management.unload_model()
        self.first_stage_model = self.first_stage_model.to(self.device)
585
586
        pixel_samples = pixel_samples.movedim(-1,1)
        samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
587
        self.first_stage_model = self.first_stage_model.to(self.offload_device)
comfyanonymous's avatar
comfyanonymous committed
588
        return samples
589

590
591
592
593
    def get_sd(self):
        return self.first_stage_model.state_dict()


BlenderNeko's avatar
BlenderNeko committed
594
def broadcast_image_to(tensor, target_batch_size, batched_number):
595
    current_batch_size = tensor.shape[0]
596
    #print(current_batch_size, target_batch_size)
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
    if current_batch_size == 1:
        return tensor

    per_batch = target_batch_size // batched_number
    tensor = tensor[:per_batch]

    if per_batch > tensor.shape[0]:
        tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)

    current_batch_size = tensor.shape[0]
    if current_batch_size == target_batch_size:
        return tensor
    else:
        return torch.cat([tensor] * batched_number, dim=0)

comfyanonymous's avatar
comfyanonymous committed
612
class ControlNet:
613
    def __init__(self, control_model, global_average_pooling=False, device=None):
comfyanonymous's avatar
comfyanonymous committed
614
615
616
        self.control_model = control_model
        self.cond_hint_original = None
        self.cond_hint = None
617
        self.strength = 1.0
618
619
        if device is None:
            device = model_management.get_torch_device()
620
        self.device = device
comfyanonymous's avatar
comfyanonymous committed
621
        self.previous_controlnet = None
622
        self.global_average_pooling = global_average_pooling
comfyanonymous's avatar
comfyanonymous committed
623

624
    def get_control(self, x_noisy, t, cond, batched_number):
comfyanonymous's avatar
comfyanonymous committed
625
626
        control_prev = None
        if self.previous_controlnet is not None:
627
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
comfyanonymous's avatar
comfyanonymous committed
628

629
        output_dtype = x_noisy.dtype
comfyanonymous's avatar
comfyanonymous committed
630
631
632
633
        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
BlenderNeko's avatar
BlenderNeko committed
634
635
636
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
637
638
639
640
641
642

        if self.control_model.dtype == torch.float16:
            precision_scope = torch.autocast
        else:
            precision_scope = contextlib.nullcontext

643
        with precision_scope(model_management.get_autocast_device(self.device)):
644
            self.control_model = model_management.load_if_low_vram(self.control_model)
645
646
647
            context = torch.cat(cond['c_crossattn'], 1)
            y = cond.get('c_adm', None)
            control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=context, y=y)
648
            self.control_model = model_management.unload_if_low_vram(self.control_model)
649
        out = {'middle':[], 'output': []}
650
        autocast_enabled = torch.is_autocast_enabled()
comfyanonymous's avatar
comfyanonymous committed
651
652

        for i in range(len(control)):
comfyanonymous's avatar
comfyanonymous committed
653
654
655
656
657
658
            if i == (len(control) - 1):
                key = 'middle'
                index = 0
            else:
                key = 'output'
                index = i
comfyanonymous's avatar
comfyanonymous committed
659
            x = control[i]
660
661
662
            if self.global_average_pooling:
                x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])

663
            x *= self.strength
664
665
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)
comfyanonymous's avatar
comfyanonymous committed
666

comfyanonymous's avatar
comfyanonymous committed
667
668
669
670
671
672
673
            if control_prev is not None and key in control_prev:
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].append(x)
        if control_prev is not None and 'input' in control_prev:
            out['input'] = control_prev['input']
674
        return out
comfyanonymous's avatar
comfyanonymous committed
675

676
    def set_cond_hint(self, cond_hint, strength=1.0):
comfyanonymous's avatar
comfyanonymous committed
677
        self.cond_hint_original = cond_hint
678
        self.strength = strength
comfyanonymous's avatar
comfyanonymous committed
679
680
        return self

comfyanonymous's avatar
comfyanonymous committed
681
682
683
684
    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

comfyanonymous's avatar
comfyanonymous committed
685
    def cleanup(self):
comfyanonymous's avatar
comfyanonymous committed
686
687
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
comfyanonymous's avatar
comfyanonymous committed
688
689
690
691
692
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

    def copy(self):
693
        c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling)
comfyanonymous's avatar
comfyanonymous committed
694
        c.cond_hint_original = self.cond_hint_original
695
        c.strength = self.strength
comfyanonymous's avatar
comfyanonymous committed
696
697
        return c

698
    def get_models(self):
comfyanonymous's avatar
comfyanonymous committed
699
700
        out = []
        if self.previous_controlnet is not None:
701
            out += self.previous_controlnet.get_models()
comfyanonymous's avatar
comfyanonymous committed
702
703
704
        out.append(self.control_model)
        return out

705
def load_controlnet(ckpt_path, model=None):
706
    controlnet_data = utils.load_torch_file(ckpt_path, safe_load=True)
707
    pth_key = 'control_model.zero_convs.0.0.weight'
comfyanonymous's avatar
comfyanonymous committed
708
    pth = False
709
    key = 'zero_convs.0.0.weight'
comfyanonymous's avatar
comfyanonymous committed
710
711
712
    if pth_key in controlnet_data:
        pth = True
        key = pth_key
713
        prefix = "control_model."
comfyanonymous's avatar
comfyanonymous committed
714
    elif key in controlnet_data:
715
        prefix = ""
comfyanonymous's avatar
comfyanonymous committed
716
    else:
717
718
719
720
        net = load_t2i_adapter(controlnet_data)
        if net is None:
            print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
        return net
comfyanonymous's avatar
comfyanonymous committed
721

722
723
724
725
726
727
728
    use_fp16 = model_management.should_use_fp16()

    controlnet_config = model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16).unet_config
    controlnet_config.pop("out_channels")
    controlnet_config["hint_channels"] = 3
    control_model = cldm.ControlNet(**controlnet_config)

comfyanonymous's avatar
comfyanonymous committed
729
    if pth:
730
731
732
733
734
735
736
        if 'difference' in controlnet_data:
            if model is not None:
                m = model.patch_model()
                model_sd = m.state_dict()
                for x in controlnet_data:
                    c_m = "control_model."
                    if x.startswith(c_m):
comfyanonymous's avatar
comfyanonymous committed
737
                        sd_key = "diffusion_model.{}".format(x[len(c_m):])
738
739
740
741
742
743
744
                        if sd_key in model_sd:
                            cd = controlnet_data[x]
                            cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
                model.unpatch_model()
            else:
                print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")

comfyanonymous's avatar
comfyanonymous committed
745
746
747
748
        class WeightsLoader(torch.nn.Module):
            pass
        w = WeightsLoader()
        w.control_model = control_model
749
        missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
comfyanonymous's avatar
comfyanonymous committed
750
    else:
751
752
        missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
    print(missing, unexpected)
comfyanonymous's avatar
comfyanonymous committed
753

754
755
756
    if use_fp16:
        control_model = control_model.half()

757
758
759
760
761
    global_average_pooling = False
    if ckpt_path.endswith("_shuffle.pth") or ckpt_path.endswith("_shuffle.safetensors") or ckpt_path.endswith("_shuffle_fp16.safetensors"): #TODO: smarter way of enabling global_average_pooling
        global_average_pooling = True

    control = ControlNet(control_model, global_average_pooling=global_average_pooling)
comfyanonymous's avatar
comfyanonymous committed
762
763
    return control

764
class T2IAdapter:
765
    def __init__(self, t2i_model, channels_in, device=None):
766
767
768
        self.t2i_model = t2i_model
        self.channels_in = channels_in
        self.strength = 1.0
769
770
        if device is None:
            device = model_management.get_torch_device()
771
772
773
774
775
776
        self.device = device
        self.previous_controlnet = None
        self.control_input = None
        self.cond_hint_original = None
        self.cond_hint = None

777
    def get_control(self, x_noisy, t, cond, batched_number):
778
779
        control_prev = None
        if self.previous_controlnet is not None:
780
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
781
782
783
784

        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
BlenderNeko's avatar
BlenderNeko committed
785
            self.control_input = None
786
            self.cond_hint = None
BlenderNeko's avatar
BlenderNeko committed
787
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").float().to(self.device)
788
789
            if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
                self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
BlenderNeko's avatar
BlenderNeko committed
790
791
792
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
        if self.control_input is None:
793
794
795
796
797
798
799
            self.t2i_model.to(self.device)
            self.control_input = self.t2i_model(self.cond_hint)
            self.t2i_model.cpu()

        output_dtype = x_noisy.dtype
        out = {'input':[]}

comfyanonymous's avatar
comfyanonymous committed
800
        autocast_enabled = torch.is_autocast_enabled()
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
        for i in range(len(self.control_input)):
            key = 'input'
            x = self.control_input[i] * self.strength
            if x.dtype != output_dtype and not autocast_enabled:
                x = x.to(output_dtype)

            if control_prev is not None and key in control_prev:
                index = len(control_prev[key]) - i * 3 - 3
                prev = control_prev[key][index]
                if prev is not None:
                    x += prev
            out[key].insert(0, None)
            out[key].insert(0, None)
            out[key].insert(0, x)

        if control_prev is not None and 'input' in control_prev:
            for i in range(len(out['input'])):
                if out['input'][i] is None:
                    out['input'][i] = control_prev['input'][i]
        if control_prev is not None and 'middle' in control_prev:
            out['middle'] = control_prev['middle']
        if control_prev is not None and 'output' in control_prev:
            out['output'] = control_prev['output']
        return out

    def set_cond_hint(self, cond_hint, strength=1.0):
        self.cond_hint_original = cond_hint
        self.strength = strength
        return self

    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

    def copy(self):
        c = T2IAdapter(self.t2i_model, self.channels_in)
        c.cond_hint_original = self.cond_hint_original
        c.strength = self.strength
        return c

    def cleanup(self):
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

848
    def get_models(self):
849
850
        out = []
        if self.previous_controlnet is not None:
851
            out += self.previous_controlnet.get_models()
852
853
        return out

854
def load_t2i_adapter(t2i_data):
855
    keys = t2i_data.keys()
856
857
858
    if 'adapter' in keys:
        t2i_data = t2i_data['adapter']
        keys = t2i_data.keys()
859
    if "body.0.in_conv.weight" in keys:
860
861
        cin = t2i_data['body.0.in_conv.weight'].shape[1]
        model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
862
    elif 'conv_in.weight' in keys:
863
        cin = t2i_data['conv_in.weight'].shape[1]
864
865
866
867
868
869
870
        channel = t2i_data['conv_in.weight'].shape[0]
        ksize = t2i_data['body.0.block2.weight'].shape[2]
        use_conv = False
        down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
        if len(down_opts) > 0:
            use_conv = True
        model_ad = adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv)
871
872
    else:
        return None
873
874
    model_ad.load_state_dict(t2i_data)
    return T2IAdapter(model_ad, cin // 64)
comfyanonymous's avatar
comfyanonymous committed
875

876
877
878
879
880
881
882
883
884
885

class StyleModel:
    def __init__(self, model, device="cpu"):
        self.model = model

    def get_cond(self, input):
        return self.model(input.last_hidden_state)


def load_style_model(ckpt_path):
886
    model_data = utils.load_torch_file(ckpt_path, safe_load=True)
887
888
889
890
891
892
893
894
895
    keys = model_data.keys()
    if "style_embedding" in keys:
        model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
    else:
        raise Exception("invalid style model {}".format(ckpt_path))
    model.load_state_dict(model_data)
    return StyleModel(model)


896
897
898
899
900
def load_clip(ckpt_paths, embedding_directory=None):
    clip_data = []
    for p in ckpt_paths:
        clip_data.append(utils.load_torch_file(p, safe_load=True))

comfyanonymous's avatar
comfyanonymous committed
901
902
903
    class EmptyClass:
        pass

904
905
906
907
    for i in range(len(clip_data)):
        if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
            clip_data[i] = utils.transformers_convert(clip_data[i], "", "text_model.", 32)

comfyanonymous's avatar
comfyanonymous committed
908
909
    clip_target = EmptyClass()
    clip_target.params = {}
910
911
912
913
914
915
916
917
918
919
    if len(clip_data) == 1:
        if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]:
            clip_target.clip = sdxl_clip.SDXLRefinerClipModel
            clip_target.tokenizer = sdxl_clip.SDXLTokenizer
        elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]:
            clip_target.clip = sd2_clip.SD2ClipModel
            clip_target.tokenizer = sd2_clip.SD2Tokenizer
        else:
            clip_target.clip = sd1_clip.SD1ClipModel
            clip_target.tokenizer = sd1_clip.SD1Tokenizer
920
    else:
921
922
        clip_target.clip = sdxl_clip.SDXLClipModel
        clip_target.tokenizer = sdxl_clip.SDXLTokenizer
comfyanonymous's avatar
comfyanonymous committed
923
924

    clip = CLIP(clip_target, embedding_directory=embedding_directory)
925
926
927
928
929
930
931
    for c in clip_data:
        m, u = clip.load_sd(c)
        if len(m) > 0:
            print("clip missing:", m)

        if len(u) > 0:
            print("clip unexpected:", u)
932
    return clip
comfyanonymous's avatar
comfyanonymous committed
933

934
def load_gligen(ckpt_path):
935
    data = utils.load_torch_file(ckpt_path, safe_load=True)
936
937
938
939
940
    model = gligen.load_gligen(data)
    if model_management.should_use_fp16():
        model = model.half()
    return model

comfyanonymous's avatar
comfyanonymous committed
941
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
942
    #TODO: this function is a mess and should be removed eventually
comfyanonymous's avatar
comfyanonymous committed
943
944
945
    if config is None:
        with open(config_path, 'r') as stream:
            config = yaml.safe_load(stream)
comfyanonymous's avatar
comfyanonymous committed
946
947
948
949
950
    model_config_params = config['model']['params']
    clip_config = model_config_params['cond_stage_config']
    scale_factor = model_config_params['scale_factor']
    vae_config = model_config_params['first_stage_config']

951
952
953
    fp16 = False
    if "unet_config" in model_config_params:
        if "params" in model_config_params["unet_config"]:
comfyanonymous's avatar
comfyanonymous committed
954
955
956
957
958
959
960
961
962
963
964
965
966
            unet_config = model_config_params["unet_config"]["params"]
            if "use_fp16" in unet_config:
                fp16 = unet_config["use_fp16"]

    noise_aug_config = None
    if "noise_aug_config" in model_config_params:
        noise_aug_config = model_config_params["noise_aug_config"]

    v_prediction = False

    if "parameterization" in model_config_params:
        if model_config_params["parameterization"] == "v":
            v_prediction = True
967

comfyanonymous's avatar
comfyanonymous committed
968
969
970
971
972
973
    clip = None
    vae = None

    class WeightsLoader(torch.nn.Module):
        pass

974
975
    if state_dict is None:
        state_dict = utils.load_torch_file(ckpt_path)
comfyanonymous's avatar
comfyanonymous committed
976

977
978
979
980
981
982
983
984
    class EmptyClass:
        pass

    model_config = EmptyClass()
    model_config.unet_config = unet_config
    from . import latent_formats
    model_config.latent_format = latent_formats.SD15(scale_factor=scale_factor)

comfyanonymous's avatar
comfyanonymous committed
985
    if config['model']["target"].endswith("LatentInpaintDiffusion"):
986
        model = model_base.SDInpaint(model_config, v_prediction=v_prediction)
comfyanonymous's avatar
comfyanonymous committed
987
    elif config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"):
988
        model = model_base.SD21UNCLIP(model_config, noise_aug_config["params"], v_prediction=v_prediction)
comfyanonymous's avatar
comfyanonymous committed
989
    else:
990
        model = model_base.BaseModel(model_config, v_prediction=v_prediction)
comfyanonymous's avatar
comfyanonymous committed
991

992
993
994
    if fp16:
        model = model.half()

995
996
    offload_device = model_management.unet_offload_device()
    model = model.to(offload_device)
997
998
999
1000
    model.load_model_weights(state_dict, "model.diffusion_model.")

    if output_vae:
        w = WeightsLoader()
1001
        vae = VAE(config=vae_config)
1002
1003
1004
1005
1006
1007
        w.first_stage_model = vae.first_stage_model
        load_model_weights(w, state_dict)

    if output_clip:
        w = WeightsLoader()
        clip_target = EmptyClass()
1008
        clip_target.params = clip_config.get("params", {})
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
        if clip_config["target"].endswith("FrozenOpenCLIPEmbedder"):
            clip_target.clip = sd2_clip.SD2ClipModel
            clip_target.tokenizer = sd2_clip.SD2Tokenizer
        elif clip_config["target"].endswith("FrozenCLIPEmbedder"):
            clip_target.clip = sd1_clip.SD1ClipModel
            clip_target.tokenizer = sd1_clip.SD1Tokenizer
        clip = CLIP(clip_target, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        load_clip_weights(w, state_dict)

1019
    return (ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae)
1020

1021
1022
1023
1024
1025
1026
def calculate_parameters(sd, prefix):
    params = 0
    for k in sd.keys():
        if k.startswith(prefix):
            params += sd[k].nelement()
    return params
1027

1028
1029
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None):
    sd = utils.load_torch_file(ckpt_path)
1030
1031
    sd_keys = sd.keys()
    clip = None
1032
    clipvision = None
1033
    vae = None
1034
1035
    model = None
    clip_target = None
1036

1037
1038
    parameters = calculate_parameters(sd, "model.diffusion_model.")
    fp16 = model_management.should_use_fp16(model_params=parameters)
1039

1040
1041
1042
    class WeightsLoader(torch.nn.Module):
        pass

1043
1044
1045
    model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", fp16)
    if model_config is None:
        raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
1046

1047
    if model_config.clip_vision_prefix is not None:
1048
        if output_clipvision:
1049
            clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
1050

1051
    offload_device = model_management.unet_offload_device()
1052
    model = model_config.get_model(sd, "model.diffusion_model.")
1053
    model = model.to(offload_device)
1054
    model.load_model_weights(sd, "model.diffusion_model.")
1055

1056
    if output_vae:
1057
        vae = VAE()
1058
1059
1060
        w = WeightsLoader()
        w.first_stage_model = vae.first_stage_model
        load_model_weights(w, sd)
1061

1062
1063
1064
1065
1066
1067
1068
    if output_clip:
        w = WeightsLoader()
        clip_target = model_config.clip_target()
        clip = CLIP(clip_target, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        sd = model_config.process_clip_state_dict(sd)
        load_model_weights(w, sd)
comfyanonymous's avatar
comfyanonymous committed
1069

1070
1071
1072
    left_over = sd.keys()
    if len(left_over) > 0:
        print("left over keys:", left_over)
1073

1074
    return (ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae, clipvision)
1075

1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142

def load_unet(unet_path): #load unet in diffusers format
    sd = utils.load_torch_file(unet_path)
    parameters = calculate_parameters(sd, "")
    fp16 = model_management.should_use_fp16(model_params=parameters)

    match = {}
    match["context_dim"] = sd["down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_k.weight"].shape[1]
    match["model_channels"] = sd["conv_in.weight"].shape[0]
    match["in_channels"] = sd["conv_in.weight"].shape[1]
    match["adm_in_channels"] = None
    if "class_embedding.linear_1.weight" in sd:
        match["adm_in_channels"] = sd["class_embedding.linear_1.weight"].shape[1]

    SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
            'num_classes': 'sequential', 'adm_in_channels': 2816, 'use_fp16': fp16, 'in_channels': 4, 'model_channels': 320,
            'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 2, 10], 'channel_mult': [1, 2, 4],
            'transformer_depth_middle': 10, 'use_linear_in_transformer': True, 'context_dim': 2048}

    SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
                    'num_classes': 'sequential', 'adm_in_channels': 2560, 'use_fp16': fp16, 'in_channels': 4, 'model_channels': 384,
                    'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 4, 4, 0], 'channel_mult': [1, 2, 4, 4],
                    'transformer_depth_middle': 4, 'use_linear_in_transformer': True, 'context_dim': 1280}

    SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
            'adm_in_channels': None, 'use_fp16': fp16, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': 2,
            'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
            'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024}

    SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
                    'num_classes': 'sequential', 'adm_in_channels': 2048, 'use_fp16': True, 'in_channels': 4, 'model_channels': 320,
                    'num_res_blocks': 2, 'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
                    'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024}

    SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
                    'num_classes': 'sequential', 'adm_in_channels': 1536, 'use_fp16': True, 'in_channels': 4, 'model_channels': 320,
                    'num_res_blocks': 2, 'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
                    'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024}

    SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
            'adm_in_channels': None, 'use_fp16': True, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': 2,
            'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
            'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768}

    supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl]
    print("match", match)
    for unet_config in supported_models:
        matches = True
        for k in match:
            if match[k] != unet_config[k]:
                matches = False
                break
        if matches:
            diffusers_keys = utils.unet_to_diffusers(unet_config)
            new_sd = {}
            for k in diffusers_keys:
                if k in sd:
                    new_sd[diffusers_keys[k]] = sd.pop(k)
                else:
                    print(diffusers_keys[k], k)
            offload_device = model_management.unet_offload_device()
            model_config = model_detection.model_config_from_unet_config(unet_config)
            model = model_config.get_model(new_sd, "")
            model = model.to(offload_device)
            model.load_model_weights(new_sd, "")
            return ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device)

1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
def save_checkpoint(output_path, model, clip, vae, metadata=None):
    try:
        model.patch_model()
        clip.patch_model()
        sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd())
        utils.save_torch_file(sd, output_path, metadata=metadata)
        model.unpatch_model()
        clip.unpatch_model()
    except Exception as e:
        model.unpatch_model()
        clip.unpatch_model()
        raise e