sd.py 23.3 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
2
import contextlib
3
import math
comfyanonymous's avatar
comfyanonymous committed
4

5
from comfy import model_management
6
from .ldm.util import instantiate_from_config
comfyanonymous's avatar
comfyanonymous committed
7
from .ldm.models.autoencoder import AutoencoderKL, AutoencodingEngine
8
import yaml
comfyanonymous's avatar
comfyanonymous committed
9

10
11
import comfy.utils

12
from . import clip_vision
13
from . import gligen
14
from . import diffusers_convert
comfyanonymous's avatar
comfyanonymous committed
15
from . import model_base
16
from . import model_detection
17

18
19
from . import sd1_clip
from . import sd2_clip
20
from . import sdxl_clip
comfyanonymous's avatar
comfyanonymous committed
21

22
import comfy.model_patcher
23
import comfy.lora
24
import comfy.t2i_adapter.adapter
25
import comfy.supported_models_base
26
import comfy.taesd.taesd
27

28
def load_model_weights(model, sd):
comfyanonymous's avatar
comfyanonymous committed
29
    m, u = model.load_state_dict(sd, strict=False)
30
31
    m = set(m)
    unexpected_keys = set(u)
comfyanonymous's avatar
comfyanonymous committed
32
33
34

    k = list(sd.keys())
    for x in k:
35
36
37
38
39
40
41
42
43
44
        if x not in unexpected_keys:
            w = sd.pop(x)
            del w
    if len(m) > 0:
        print("missing", m)
    return model

def load_clip_weights(model, sd):
    k = list(sd.keys())
    for x in k:
comfyanonymous's avatar
comfyanonymous committed
45
46
47
48
        if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
            y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
            sd[y] = sd.pop(x)

comfyanonymous's avatar
comfyanonymous committed
49
50
51
52
    if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
        ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
        if ids.dtype == torch.float32:
            sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
53

54
    sd = comfy.utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
55
    return load_model_weights(model, sd)
comfyanonymous's avatar
comfyanonymous committed
56

comfyanonymous's avatar
comfyanonymous committed
57

58
def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
59
60
61
62
63
64
    key_map = {}
    if model is not None:
        key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
    if clip is not None:
        key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)

65
    loaded = comfy.lora.load_lora(lora, key_map)
66
67
68
69
70
71
72
73
74
75
76
77
78
    if model is not None:
        new_modelpatcher = model.clone()
        k = new_modelpatcher.add_patches(loaded, strength_model)
    else:
        k = ()
        new_modelpatcher = None

    if clip is not None:
        new_clip = clip.clone()
        k1 = new_clip.add_patches(loaded, strength_clip)
    else:
        k1 = ()
        new_clip = None
79
80
81
82
83
84
85
    k = set(k)
    k1 = set(k1)
    for x in loaded:
        if (x not in k) and (x not in k1):
            print("NOT LOADED", x)

    return (new_modelpatcher, new_clip)
comfyanonymous's avatar
comfyanonymous committed
86
87
88


class CLIP:
89
    def __init__(self, target=None, embedding_directory=None, no_init=False):
90
91
        if no_init:
            return
comfyanonymous's avatar
comfyanonymous committed
92
        params = target.params.copy()
93
94
        clip = target.clip
        tokenizer = target.tokenizer
95

96
97
        load_device = model_management.text_encoder_device()
        offload_device = model_management.text_encoder_offload_device()
98
        params['device'] = offload_device
99
        params['dtype'] = model_management.text_encoder_dtype(load_device)
100
101

        self.cond_stage_model = clip(**(params))
102

103
        self.tokenizer = tokenizer(embedding_directory=embedding_directory)
104
        self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
105
        self.layer_idx = None
106
107
108
109
110
111

    def clone(self):
        n = CLIP(no_init=True)
        n.patcher = self.patcher.clone()
        n.cond_stage_model = self.cond_stage_model
        n.tokenizer = self.tokenizer
comfyanonymous's avatar
comfyanonymous committed
112
        n.layer_idx = self.layer_idx
113
114
        return n

115
116
    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
        return self.patcher.add_patches(patches, strength_patch, strength_model)
comfyanonymous's avatar
comfyanonymous committed
117

118
    def clip_layer(self, layer_idx):
comfyanonymous's avatar
comfyanonymous committed
119
        self.layer_idx = layer_idx
120

121
122
    def tokenize(self, text, return_word_ids=False):
        return self.tokenizer.tokenize_with_weights(text, return_word_ids)
BlenderNeko's avatar
BlenderNeko committed
123

124
    def encode_from_tokens(self, tokens, return_pooled=False):
125
126
        if self.layer_idx is not None:
            self.cond_stage_model.clip_layer(self.layer_idx)
127
128
        else:
            self.cond_stage_model.reset_clip_layer()
129

130
        self.load_model()
131
        cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
132
        if return_pooled:
133
134
            return cond, pooled
        return cond
comfyanonymous's avatar
comfyanonymous committed
135

136
    def encode(self, text):
137
        tokens = self.tokenize(text)
138
139
        return self.encode_from_tokens(tokens)

140
141
    def load_sd(self, sd):
        return self.cond_stage_model.load_sd(sd)
142

143
144
145
    def get_sd(self):
        return self.cond_stage_model.state_dict()

146
147
148
    def load_model(self):
        model_management.load_model_gpu(self.patcher)
        return self.patcher
149

150
151
152
    def get_key_patches(self):
        return self.patcher.get_key_patches()

comfyanonymous's avatar
comfyanonymous committed
153
class VAE:
154
    def __init__(self, sd=None, device=None, config=None, dtype=None):
comfyanonymous's avatar
comfyanonymous committed
155
156
157
        if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
            sd = diffusers_convert.convert_vae_state_dict(sd)

158
159
        self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) #These are for AutoencoderKL and need tweaking (should be lower)
        self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype)
comfyanonymous's avatar
comfyanonymous committed
160
161
        self.downscale_ratio = 8
        self.latent_channels = 4
162

comfyanonymous's avatar
comfyanonymous committed
163
        if config is None:
comfyanonymous's avatar
comfyanonymous committed
164
165
166
167
168
169
170
171
172
            if "decoder.mid.block_1.mix_factor" in sd:
                encoder_config = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
                decoder_config = encoder_config.copy()
                decoder_config["video_kernel_size"] = [3, 1, 1]
                decoder_config["alpha"] = 0.0
                self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
                                                            encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': encoder_config},
                                                            decoder_config={'target': "comfy.ldm.modules.temporal_ae.VideoDecoder", 'params': decoder_config})
            elif "taesd_decoder.1.weight" in sd:
173
174
175
176
177
                self.first_stage_model = comfy.taesd.taesd.TAESD()
            else:
                #default SD1.x/SD2.x VAE parameters
                ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
                self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=4)
comfyanonymous's avatar
comfyanonymous committed
178
        else:
179
            self.first_stage_model = AutoencoderKL(**(config['params']))
comfyanonymous's avatar
comfyanonymous committed
180
        self.first_stage_model = self.first_stage_model.eval()
comfyanonymous's avatar
comfyanonymous committed
181
182
183
184
185
186
187

        m, u = self.first_stage_model.load_state_dict(sd, strict=False)
        if len(m) > 0:
            print("Missing VAE keys", m)

        if len(u) > 0:
            print("Leftover VAE keys", u)
188

189
        if device is None:
190
            device = model_management.vae_device()
comfyanonymous's avatar
comfyanonymous committed
191
        self.device = device
192
        offload_device = model_management.vae_offload_device()
193
194
195
        if dtype is None:
            dtype = model_management.vae_dtype()
        self.vae_dtype = dtype
196
        self.first_stage_model.to(self.vae_dtype)
197
        self.output_device = model_management.intermediate_device()
comfyanonymous's avatar
comfyanonymous committed
198

199
200
        self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)

201
    def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
202
203
204
205
        steps = samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
        steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
        pbar = comfy.utils.ProgressBar(steps)
206

207
        decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)) + 1.0).float()
208
        output = torch.clamp((
comfyanonymous's avatar
comfyanonymous committed
209
210
211
            (comfy.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = self.downscale_ratio, output_device=self.output_device, pbar = pbar) +
            comfy.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = self.downscale_ratio, output_device=self.output_device, pbar = pbar) +
             comfy.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = self.downscale_ratio, output_device=self.output_device, pbar = pbar))
212
213
214
            / 3.0) / 2.0, min=0.0, max=1.0)
        return output

215
    def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
216
217
218
219
        steps = pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
        steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
        pbar = comfy.utils.ProgressBar(steps)
220

comfyanonymous's avatar
comfyanonymous committed
221
        encode_fn = lambda a: self.first_stage_model.encode((2. * a - 1.).to(self.vae_dtype).to(self.device)).float()
comfyanonymous's avatar
comfyanonymous committed
222
223
224
        samples = comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
        samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
        samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
225
226
227
        samples /= 3.0
        return samples

228
229
    def decode(self, samples_in):
        try:
230
            memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
231
            model_management.load_models_gpu([self.patcher], memory_required=memory_used)
232
            free_memory = model_management.get_free_memory(self.device)
comfyanonymous's avatar
comfyanonymous committed
233
            batch_number = int(free_memory / memory_used)
234
235
            batch_number = max(1, batch_number)

comfyanonymous's avatar
comfyanonymous committed
236
            pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * self.downscale_ratio), round(samples_in.shape[3] * self.downscale_ratio)), device=self.output_device)
237
            for x in range(0, samples_in.shape[0], batch_number):
238
                samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device)
239
                pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples).to(self.output_device).float() + 1.0) / 2.0, min=0.0, max=1.0)
240
241
242
243
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
            pixel_samples = self.decode_tiled_(samples_in)

244
        pixel_samples = pixel_samples.to(self.output_device).movedim(1,-1)
comfyanonymous's avatar
comfyanonymous committed
245
246
        return pixel_samples

247
    def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
248
        model_management.load_model_gpu(self.patcher)
249
        output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
250
251
        return output.movedim(1,-1)

comfyanonymous's avatar
comfyanonymous committed
252
    def encode(self, pixel_samples):
253
254
        pixel_samples = pixel_samples.movedim(-1,1)
        try:
255
            memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
256
            model_management.load_models_gpu([self.patcher], memory_required=memory_used)
257
            free_memory = model_management.get_free_memory(self.device)
comfyanonymous's avatar
comfyanonymous committed
258
            batch_number = int(free_memory / memory_used)
259
            batch_number = max(1, batch_number)
comfyanonymous's avatar
comfyanonymous committed
260
            samples = torch.empty((pixel_samples.shape[0], self.latent_channels, round(pixel_samples.shape[2] // self.downscale_ratio), round(pixel_samples.shape[3] // self.downscale_ratio)), device=self.output_device)
261
            for x in range(0, pixel_samples.shape[0], batch_number):
262
                pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.vae_dtype).to(self.device)
263
                samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).to(self.output_device).float()
264

265
266
267
268
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
            samples = self.encode_tiled_(pixel_samples)

comfyanonymous's avatar
comfyanonymous committed
269
270
        return samples

comfyanonymous's avatar
comfyanonymous committed
271
    def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
272
        model_management.load_model_gpu(self.patcher)
273
274
        pixel_samples = pixel_samples.movedim(-1,1)
        samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
comfyanonymous's avatar
comfyanonymous committed
275
        return samples
276

277
278
279
    def get_sd(self):
        return self.first_stage_model.state_dict()

280
281
282
283
284
285
286
287
288
class StyleModel:
    def __init__(self, model, device="cpu"):
        self.model = model

    def get_cond(self, input):
        return self.model(input.last_hidden_state)


def load_style_model(ckpt_path):
289
    model_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
290
291
    keys = model_data.keys()
    if "style_embedding" in keys:
292
        model = comfy.t2i_adapter.adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
293
294
295
296
297
298
    else:
        raise Exception("invalid style model {}".format(ckpt_path))
    model.load_state_dict(model_data)
    return StyleModel(model)


299
300
301
def load_clip(ckpt_paths, embedding_directory=None):
    clip_data = []
    for p in ckpt_paths:
302
        clip_data.append(comfy.utils.load_torch_file(p, safe_load=True))
303

comfyanonymous's avatar
comfyanonymous committed
304
305
306
    class EmptyClass:
        pass

307
308
    for i in range(len(clip_data)):
        if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
309
            clip_data[i] = comfy.utils.transformers_convert(clip_data[i], "", "text_model.", 32)
310

comfyanonymous's avatar
comfyanonymous committed
311
312
    clip_target = EmptyClass()
    clip_target.params = {}
313
314
315
316
317
318
319
320
321
322
    if len(clip_data) == 1:
        if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]:
            clip_target.clip = sdxl_clip.SDXLRefinerClipModel
            clip_target.tokenizer = sdxl_clip.SDXLTokenizer
        elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]:
            clip_target.clip = sd2_clip.SD2ClipModel
            clip_target.tokenizer = sd2_clip.SD2Tokenizer
        else:
            clip_target.clip = sd1_clip.SD1ClipModel
            clip_target.tokenizer = sd1_clip.SD1Tokenizer
323
    else:
324
325
        clip_target.clip = sdxl_clip.SDXLClipModel
        clip_target.tokenizer = sdxl_clip.SDXLTokenizer
comfyanonymous's avatar
comfyanonymous committed
326
327

    clip = CLIP(clip_target, embedding_directory=embedding_directory)
328
329
330
331
332
333
334
    for c in clip_data:
        m, u = clip.load_sd(c)
        if len(m) > 0:
            print("clip missing:", m)

        if len(u) > 0:
            print("clip unexpected:", u)
335
    return clip
comfyanonymous's avatar
comfyanonymous committed
336

337
def load_gligen(ckpt_path):
338
    data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
339
340
341
    model = gligen.load_gligen(data)
    if model_management.should_use_fp16():
        model = model.half()
342
    return comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
343

comfyanonymous's avatar
comfyanonymous committed
344
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
345
    #TODO: this function is a mess and should be removed eventually
comfyanonymous's avatar
comfyanonymous committed
346
347
348
    if config is None:
        with open(config_path, 'r') as stream:
            config = yaml.safe_load(stream)
comfyanonymous's avatar
comfyanonymous committed
349
350
351
352
353
    model_config_params = config['model']['params']
    clip_config = model_config_params['cond_stage_config']
    scale_factor = model_config_params['scale_factor']
    vae_config = model_config_params['first_stage_config']

354
355
356
    fp16 = False
    if "unet_config" in model_config_params:
        if "params" in model_config_params["unet_config"]:
comfyanonymous's avatar
comfyanonymous committed
357
358
            unet_config = model_config_params["unet_config"]["params"]
            if "use_fp16" in unet_config:
359
360
361
                fp16 = unet_config.pop("use_fp16")
                if fp16:
                    unet_config["dtype"] = torch.float16
comfyanonymous's avatar
comfyanonymous committed
362
363
364
365
366

    noise_aug_config = None
    if "noise_aug_config" in model_config_params:
        noise_aug_config = model_config_params["noise_aug_config"]

367
    model_type = model_base.ModelType.EPS
comfyanonymous's avatar
comfyanonymous committed
368
369
370

    if "parameterization" in model_config_params:
        if model_config_params["parameterization"] == "v":
371
            model_type = model_base.ModelType.V_PREDICTION
372

comfyanonymous's avatar
comfyanonymous committed
373
374
375
376
377
378
    clip = None
    vae = None

    class WeightsLoader(torch.nn.Module):
        pass

379
    if state_dict is None:
380
        state_dict = comfy.utils.load_torch_file(ckpt_path)
comfyanonymous's avatar
comfyanonymous committed
381

382
383
384
    class EmptyClass:
        pass

385
386
    model_config = comfy.supported_models_base.BASE({})

387
388
    from . import latent_formats
    model_config.latent_format = latent_formats.SD15(scale_factor=scale_factor)
389
    model_config.unet_config = model_detection.convert_config(unet_config)
390

comfyanonymous's avatar
comfyanonymous committed
391
    if config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"):
392
        model = model_base.SD21UNCLIP(model_config, noise_aug_config["params"], model_type=model_type)
comfyanonymous's avatar
comfyanonymous committed
393
    else:
394
        model = model_base.BaseModel(model_config, model_type=model_type)
comfyanonymous's avatar
comfyanonymous committed
395

comfyanonymous's avatar
comfyanonymous committed
396
397
398
    if config['model']["target"].endswith("LatentInpaintDiffusion"):
        model.set_inpaint()

399
400
401
    if fp16:
        model = model.half()

402
403
    offload_device = model_management.unet_offload_device()
    model = model.to(offload_device)
404
405
406
    model.load_model_weights(state_dict, "model.diffusion_model.")

    if output_vae:
comfyanonymous's avatar
comfyanonymous committed
407
408
        vae_sd = comfy.utils.state_dict_prefix_replace(state_dict, {"first_stage_model.": ""}, filter_keys=True)
        vae = VAE(sd=vae_sd, config=vae_config)
409
410
411
412

    if output_clip:
        w = WeightsLoader()
        clip_target = EmptyClass()
413
        clip_target.params = clip_config.get("params", {})
414
415
416
        if clip_config["target"].endswith("FrozenOpenCLIPEmbedder"):
            clip_target.clip = sd2_clip.SD2ClipModel
            clip_target.tokenizer = sd2_clip.SD2Tokenizer
417
418
            clip = CLIP(clip_target, embedding_directory=embedding_directory)
            w.cond_stage_model = clip.cond_stage_model.clip_h
419
420
421
        elif clip_config["target"].endswith("FrozenCLIPEmbedder"):
            clip_target.clip = sd1_clip.SD1ClipModel
            clip_target.tokenizer = sd1_clip.SD1Tokenizer
422
423
            clip = CLIP(clip_target, embedding_directory=embedding_directory)
            w.cond_stage_model = clip.cond_stage_model.clip_l
424
425
        load_clip_weights(w, state_dict)

426
    return (comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae)
427

428
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True):
429
    sd = comfy.utils.load_torch_file(ckpt_path)
430
431
    sd_keys = sd.keys()
    clip = None
432
    clipvision = None
433
    vae = None
434
    model = None
435
    model_patcher = None
436
    clip_target = None
437

438
    parameters = comfy.utils.calculate_parameters(sd, "model.diffusion_model.")
439
    unet_dtype = model_management.unet_dtype(model_params=parameters)
440
441
    load_device = model_management.get_torch_device()
    manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device)
442

443
444
445
    class WeightsLoader(torch.nn.Module):
        pass

446
    model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", unet_dtype)
447
448
    model_config.set_manual_cast(manual_cast_dtype)

449
450
    if model_config is None:
        raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
451

452
    if model_config.clip_vision_prefix is not None:
453
        if output_clipvision:
454
            clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
455

456
    if output_model:
457
        inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype)
458
459
460
        offload_device = model_management.unet_offload_device()
        model = model_config.get_model(sd, "model.diffusion_model.", device=inital_load_device)
        model.load_model_weights(sd, "model.diffusion_model.")
461

462
    if output_vae:
comfyanonymous's avatar
comfyanonymous committed
463
        vae_sd = comfy.utils.state_dict_prefix_replace(sd, {"first_stage_model.": ""}, filter_keys=True)
464
        vae_sd = model_config.process_vae_state_dict(vae_sd)
comfyanonymous's avatar
comfyanonymous committed
465
        vae = VAE(sd=vae_sd)
466

467
468
469
    if output_clip:
        w = WeightsLoader()
        clip_target = model_config.clip_target()
comfyanonymous's avatar
comfyanonymous committed
470
471
472
473
474
        if clip_target is not None:
            clip = CLIP(clip_target, embedding_directory=embedding_directory)
            w.cond_stage_model = clip.cond_stage_model
            sd = model_config.process_clip_state_dict(sd)
            load_model_weights(w, sd)
comfyanonymous's avatar
comfyanonymous committed
475

476
477
478
    left_over = sd.keys()
    if len(left_over) > 0:
        print("left over keys:", left_over)
479

480
    if output_model:
481
        model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device(), current_device=inital_load_device)
482
483
484
        if inital_load_device != torch.device("cpu"):
            print("loaded straight to GPU")
            model_management.load_model_gpu(model_patcher)
comfyanonymous's avatar
comfyanonymous committed
485
486

    return (model_patcher, clip, vae, clipvision)
487

488

489
def load_unet_state_dict(sd): #load unet in diffusers format
490
    parameters = comfy.utils.calculate_parameters(sd)
491
    unet_dtype = model_management.unet_dtype(model_params=parameters)
492
493
494
    load_device = model_management.get_torch_device()
    manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device)

495
    if "input_blocks.0.0.weight" in sd: #ldm
496
        model_config = model_detection.model_config_from_unet(sd, "", unet_dtype)
497
        if model_config is None:
498
            return None
499
500
501
        new_sd = sd

    else: #diffusers
502
        model_config = model_detection.model_config_from_diffusers_unet(sd, unet_dtype)
503
504
505
506
507
508
509
510
511
512
513
        if model_config is None:
            return None

        diffusers_keys = comfy.utils.unet_to_diffusers(model_config.unet_config)

        new_sd = {}
        for k in diffusers_keys:
            if k in sd:
                new_sd[diffusers_keys[k]] = sd.pop(k)
            else:
                print(diffusers_keys[k], k)
514
    offload_device = model_management.unet_offload_device()
515
    model_config.set_manual_cast(manual_cast_dtype)
516
517
518
    model = model_config.get_model(new_sd, "")
    model = model.to(offload_device)
    model.load_model_weights(new_sd, "")
519
520
521
    left_over = sd.keys()
    if len(left_over) > 0:
        print("left over keys in unet:", left_over)
522
    return comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device)
523

524
525
526
527
528
529
530
531
def load_unet(unet_path):
    sd = comfy.utils.load_torch_file(unet_path)
    model = load_unet_state_dict(sd)
    if model is None:
        print("ERROR UNSUPPORTED UNET", unet_path)
        raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
    return model

532
def save_checkpoint(output_path, model, clip, vae, metadata=None):
533
534
    model_management.load_models_gpu([model, clip.load_model()])
    sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd())
535
    comfy.utils.save_torch_file(sd, output_path, metadata=metadata)