sd.py 20.2 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
2
import contextlib
3
import math
comfyanonymous's avatar
comfyanonymous committed
4

5
from comfy import model_management
6
7
from .ldm.util import instantiate_from_config
from .ldm.models.autoencoder import AutoencoderKL
8
import yaml
comfyanonymous's avatar
comfyanonymous committed
9

10
11
import comfy.utils

12
from . import clip_vision
13
from . import gligen
14
from . import diffusers_convert
comfyanonymous's avatar
comfyanonymous committed
15
from . import model_base
16
from . import model_detection
17

18
19
from . import sd1_clip
from . import sd2_clip
20
from . import sdxl_clip
comfyanonymous's avatar
comfyanonymous committed
21

22
import comfy.model_patcher
23
import comfy.lora
24
import comfy.t2i_adapter.adapter
25

26
def load_model_weights(model, sd):
comfyanonymous's avatar
comfyanonymous committed
27
    m, u = model.load_state_dict(sd, strict=False)
28
29
    m = set(m)
    unexpected_keys = set(u)
comfyanonymous's avatar
comfyanonymous committed
30
31
32

    k = list(sd.keys())
    for x in k:
33
34
35
36
37
38
39
40
41
42
        if x not in unexpected_keys:
            w = sd.pop(x)
            del w
    if len(m) > 0:
        print("missing", m)
    return model

def load_clip_weights(model, sd):
    k = list(sd.keys())
    for x in k:
comfyanonymous's avatar
comfyanonymous committed
43
44
45
46
        if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
            y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
            sd[y] = sd.pop(x)

comfyanonymous's avatar
comfyanonymous committed
47
48
49
50
    if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
        ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
        if ids.dtype == torch.float32:
            sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
51

52
    sd = comfy.utils.transformers_convert(sd, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
53
    return load_model_weights(model, sd)
comfyanonymous's avatar
comfyanonymous committed
54

comfyanonymous's avatar
comfyanonymous committed
55

56
def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
57
58
59
    key_map = comfy.lora.model_lora_keys_unet(model.model)
    key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
    loaded = comfy.lora.load_lora(lora, key_map)
60
61
62
63
64
65
66
67
68
69
70
    new_modelpatcher = model.clone()
    k = new_modelpatcher.add_patches(loaded, strength_model)
    new_clip = clip.clone()
    k1 = new_clip.add_patches(loaded, strength_clip)
    k = set(k)
    k1 = set(k1)
    for x in loaded:
        if (x not in k) and (x not in k1):
            print("NOT LOADED", x)

    return (new_modelpatcher, new_clip)
comfyanonymous's avatar
comfyanonymous committed
71
72
73


class CLIP:
74
    def __init__(self, target=None, embedding_directory=None, no_init=False):
75
76
        if no_init:
            return
comfyanonymous's avatar
comfyanonymous committed
77
        params = target.params.copy()
78
79
        clip = target.clip
        tokenizer = target.tokenizer
80

81
82
        load_device = model_management.text_encoder_device()
        offload_device = model_management.text_encoder_offload_device()
83
        params['device'] = offload_device
84
        if model_management.should_use_fp16(load_device, prioritize_performance=False):
85
86
87
88
89
            params['dtype'] = torch.float16
        else:
            params['dtype'] = torch.float32

        self.cond_stage_model = clip(**(params))
90

91
        self.tokenizer = tokenizer(embedding_directory=embedding_directory)
92
        self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
93
        self.layer_idx = None
94
95
96
97
98
99

    def clone(self):
        n = CLIP(no_init=True)
        n.patcher = self.patcher.clone()
        n.cond_stage_model = self.cond_stage_model
        n.tokenizer = self.tokenizer
comfyanonymous's avatar
comfyanonymous committed
100
        n.layer_idx = self.layer_idx
101
102
        return n

103
104
    def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
        return self.patcher.add_patches(patches, strength_patch, strength_model)
comfyanonymous's avatar
comfyanonymous committed
105

106
    def clip_layer(self, layer_idx):
comfyanonymous's avatar
comfyanonymous committed
107
        self.layer_idx = layer_idx
108

109
110
    def tokenize(self, text, return_word_ids=False):
        return self.tokenizer.tokenize_with_weights(text, return_word_ids)
BlenderNeko's avatar
BlenderNeko committed
111

112
    def encode_from_tokens(self, tokens, return_pooled=False):
113
114
        if self.layer_idx is not None:
            self.cond_stage_model.clip_layer(self.layer_idx)
115
116
        else:
            self.cond_stage_model.reset_clip_layer()
117

118
        self.load_model()
119
        cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
120
        if return_pooled:
121
122
            return cond, pooled
        return cond
comfyanonymous's avatar
comfyanonymous committed
123

124
    def encode(self, text):
125
        tokens = self.tokenize(text)
126
127
        return self.encode_from_tokens(tokens)

128
129
    def load_sd(self, sd):
        return self.cond_stage_model.load_sd(sd)
130

131
132
133
    def get_sd(self):
        return self.cond_stage_model.state_dict()

134
135
136
    def load_model(self):
        model_management.load_model_gpu(self.patcher)
        return self.patcher
137

138
139
140
    def get_key_patches(self):
        return self.patcher.get_key_patches()

comfyanonymous's avatar
comfyanonymous committed
141
class VAE:
142
    def __init__(self, ckpt_path=None, device=None, config=None):
comfyanonymous's avatar
comfyanonymous committed
143
144
145
        if config is None:
            #default SD1.x/SD2.x VAE parameters
            ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
146
            self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss")
comfyanonymous's avatar
comfyanonymous committed
147
        else:
148
            self.first_stage_model = AutoencoderKL(**(config['params']))
comfyanonymous's avatar
comfyanonymous committed
149
        self.first_stage_model = self.first_stage_model.eval()
150
        if ckpt_path is not None:
151
            sd = comfy.utils.load_torch_file(ckpt_path)
152
153
154
155
            if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
                sd = diffusers_convert.convert_vae_state_dict(sd)
            self.first_stage_model.load_state_dict(sd, strict=False)

156
        if device is None:
157
            device = model_management.vae_device()
comfyanonymous's avatar
comfyanonymous committed
158
        self.device = device
159
        self.offload_device = model_management.vae_offload_device()
160
161
        self.vae_dtype = model_management.vae_dtype()
        self.first_stage_model.to(self.vae_dtype)
comfyanonymous's avatar
comfyanonymous committed
162

163
    def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
164
165
166
167
        steps = samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
        steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
        pbar = comfy.utils.ProgressBar(steps)
168

169
        decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)) + 1.0).float()
170
        output = torch.clamp((
171
172
173
            (comfy.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, pbar = pbar) +
            comfy.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, pbar = pbar) +
             comfy.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, pbar = pbar))
174
175
176
            / 3.0) / 2.0, min=0.0, max=1.0)
        return output

177
    def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
178
179
180
181
        steps = pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
        steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
        steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
        pbar = comfy.utils.ProgressBar(steps)
182

183
        encode_fn = lambda a: self.first_stage_model.encode(2. * a.to(self.vae_dtype).to(self.device) - 1.).sample().float()
184
185
186
        samples = comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
        samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
187
188
189
        samples /= 3.0
        return samples

190
    def decode(self, samples_in):
comfyanonymous's avatar
comfyanonymous committed
191
        self.first_stage_model = self.first_stage_model.to(self.device)
192
        try:
193
            memory_used = (2562 * samples_in.shape[2] * samples_in.shape[3] * 64) * 1.7
comfyanonymous's avatar
comfyanonymous committed
194
            model_management.free_memory(memory_used, self.device)
195
            free_memory = model_management.get_free_memory(self.device)
comfyanonymous's avatar
comfyanonymous committed
196
            batch_number = int(free_memory / memory_used)
197
198
199
200
            batch_number = max(1, batch_number)

            pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device="cpu")
            for x in range(0, samples_in.shape[0], batch_number):
201
202
                samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device)
                pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples) + 1.0) / 2.0, min=0.0, max=1.0).cpu().float()
203
204
205
206
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
            pixel_samples = self.decode_tiled_(samples_in)

207
        self.first_stage_model = self.first_stage_model.to(self.offload_device)
comfyanonymous's avatar
comfyanonymous committed
208
209
210
        pixel_samples = pixel_samples.cpu().movedim(1,-1)
        return pixel_samples

211
    def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16):
212
        self.first_stage_model = self.first_stage_model.to(self.device)
213
        output = self.decode_tiled_(samples, tile_x, tile_y, overlap)
214
        self.first_stage_model = self.first_stage_model.to(self.offload_device)
215
216
        return output.movedim(1,-1)

comfyanonymous's avatar
comfyanonymous committed
217
218
    def encode(self, pixel_samples):
        self.first_stage_model = self.first_stage_model.to(self.device)
219
220
        pixel_samples = pixel_samples.movedim(-1,1)
        try:
221
            memory_used = (2078 * pixel_samples.shape[2] * pixel_samples.shape[3]) * 1.7 #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
comfyanonymous's avatar
comfyanonymous committed
222
            model_management.free_memory(memory_used, self.device)
223
            free_memory = model_management.get_free_memory(self.device)
comfyanonymous's avatar
comfyanonymous committed
224
            batch_number = int(free_memory / memory_used)
225
            batch_number = max(1, batch_number)
226
227
            samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device="cpu")
            for x in range(0, pixel_samples.shape[0], batch_number):
228
229
                pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.vae_dtype).to(self.device)
                samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).sample().cpu().float()
230

231
232
233
234
        except model_management.OOM_EXCEPTION as e:
            print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.")
            samples = self.encode_tiled_(pixel_samples)

235
        self.first_stage_model = self.first_stage_model.to(self.offload_device)
comfyanonymous's avatar
comfyanonymous committed
236
237
        return samples

comfyanonymous's avatar
comfyanonymous committed
238
239
    def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64):
        self.first_stage_model = self.first_stage_model.to(self.device)
240
241
        pixel_samples = pixel_samples.movedim(-1,1)
        samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap)
242
        self.first_stage_model = self.first_stage_model.to(self.offload_device)
comfyanonymous's avatar
comfyanonymous committed
243
        return samples
244

245
246
247
    def get_sd(self):
        return self.first_stage_model.state_dict()

248
249
250
251
252
253
254
255
256
class StyleModel:
    def __init__(self, model, device="cpu"):
        self.model = model

    def get_cond(self, input):
        return self.model(input.last_hidden_state)


def load_style_model(ckpt_path):
257
    model_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
258
259
    keys = model_data.keys()
    if "style_embedding" in keys:
260
        model = comfy.t2i_adapter.adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
261
262
263
264
265
266
    else:
        raise Exception("invalid style model {}".format(ckpt_path))
    model.load_state_dict(model_data)
    return StyleModel(model)


267
268
269
def load_clip(ckpt_paths, embedding_directory=None):
    clip_data = []
    for p in ckpt_paths:
270
        clip_data.append(comfy.utils.load_torch_file(p, safe_load=True))
271

comfyanonymous's avatar
comfyanonymous committed
272
273
274
    class EmptyClass:
        pass

275
276
    for i in range(len(clip_data)):
        if "transformer.resblocks.0.ln_1.weight" in clip_data[i]:
277
            clip_data[i] = comfy.utils.transformers_convert(clip_data[i], "", "text_model.", 32)
278

comfyanonymous's avatar
comfyanonymous committed
279
280
    clip_target = EmptyClass()
    clip_target.params = {}
281
282
283
284
285
286
287
288
289
290
    if len(clip_data) == 1:
        if "text_model.encoder.layers.30.mlp.fc1.weight" in clip_data[0]:
            clip_target.clip = sdxl_clip.SDXLRefinerClipModel
            clip_target.tokenizer = sdxl_clip.SDXLTokenizer
        elif "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data[0]:
            clip_target.clip = sd2_clip.SD2ClipModel
            clip_target.tokenizer = sd2_clip.SD2Tokenizer
        else:
            clip_target.clip = sd1_clip.SD1ClipModel
            clip_target.tokenizer = sd1_clip.SD1Tokenizer
291
    else:
292
293
        clip_target.clip = sdxl_clip.SDXLClipModel
        clip_target.tokenizer = sdxl_clip.SDXLTokenizer
comfyanonymous's avatar
comfyanonymous committed
294
295

    clip = CLIP(clip_target, embedding_directory=embedding_directory)
296
297
298
299
300
301
302
    for c in clip_data:
        m, u = clip.load_sd(c)
        if len(m) > 0:
            print("clip missing:", m)

        if len(u) > 0:
            print("clip unexpected:", u)
303
    return clip
comfyanonymous's avatar
comfyanonymous committed
304

305
def load_gligen(ckpt_path):
306
    data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
307
308
309
    model = gligen.load_gligen(data)
    if model_management.should_use_fp16():
        model = model.half()
310
    return comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
311

comfyanonymous's avatar
comfyanonymous committed
312
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
313
    #TODO: this function is a mess and should be removed eventually
comfyanonymous's avatar
comfyanonymous committed
314
315
316
    if config is None:
        with open(config_path, 'r') as stream:
            config = yaml.safe_load(stream)
comfyanonymous's avatar
comfyanonymous committed
317
318
319
320
321
    model_config_params = config['model']['params']
    clip_config = model_config_params['cond_stage_config']
    scale_factor = model_config_params['scale_factor']
    vae_config = model_config_params['first_stage_config']

322
323
324
    fp16 = False
    if "unet_config" in model_config_params:
        if "params" in model_config_params["unet_config"]:
comfyanonymous's avatar
comfyanonymous committed
325
326
327
328
329
330
331
332
            unet_config = model_config_params["unet_config"]["params"]
            if "use_fp16" in unet_config:
                fp16 = unet_config["use_fp16"]

    noise_aug_config = None
    if "noise_aug_config" in model_config_params:
        noise_aug_config = model_config_params["noise_aug_config"]

333
    model_type = model_base.ModelType.EPS
comfyanonymous's avatar
comfyanonymous committed
334
335
336

    if "parameterization" in model_config_params:
        if model_config_params["parameterization"] == "v":
337
            model_type = model_base.ModelType.V_PREDICTION
338

comfyanonymous's avatar
comfyanonymous committed
339
340
341
342
343
344
    clip = None
    vae = None

    class WeightsLoader(torch.nn.Module):
        pass

345
    if state_dict is None:
346
        state_dict = comfy.utils.load_torch_file(ckpt_path)
comfyanonymous's avatar
comfyanonymous committed
347

348
349
350
351
352
353
354
355
    class EmptyClass:
        pass

    model_config = EmptyClass()
    model_config.unet_config = unet_config
    from . import latent_formats
    model_config.latent_format = latent_formats.SD15(scale_factor=scale_factor)

comfyanonymous's avatar
comfyanonymous committed
356
    if config['model']["target"].endswith("LatentInpaintDiffusion"):
357
        model = model_base.SDInpaint(model_config, model_type=model_type)
comfyanonymous's avatar
comfyanonymous committed
358
    elif config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"):
359
        model = model_base.SD21UNCLIP(model_config, noise_aug_config["params"], model_type=model_type)
comfyanonymous's avatar
comfyanonymous committed
360
    else:
361
        model = model_base.BaseModel(model_config, model_type=model_type)
comfyanonymous's avatar
comfyanonymous committed
362

363
364
365
    if fp16:
        model = model.half()

366
367
    offload_device = model_management.unet_offload_device()
    model = model.to(offload_device)
368
369
370
371
    model.load_model_weights(state_dict, "model.diffusion_model.")

    if output_vae:
        w = WeightsLoader()
372
        vae = VAE(config=vae_config)
373
374
375
376
377
378
        w.first_stage_model = vae.first_stage_model
        load_model_weights(w, state_dict)

    if output_clip:
        w = WeightsLoader()
        clip_target = EmptyClass()
379
        clip_target.params = clip_config.get("params", {})
380
381
382
383
384
385
386
387
388
389
        if clip_config["target"].endswith("FrozenOpenCLIPEmbedder"):
            clip_target.clip = sd2_clip.SD2ClipModel
            clip_target.tokenizer = sd2_clip.SD2Tokenizer
        elif clip_config["target"].endswith("FrozenCLIPEmbedder"):
            clip_target.clip = sd1_clip.SD1ClipModel
            clip_target.tokenizer = sd1_clip.SD1Tokenizer
        clip = CLIP(clip_target, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        load_clip_weights(w, state_dict)

390
    return (comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae)
391

392
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None):
393
    sd = comfy.utils.load_torch_file(ckpt_path)
394
395
    sd_keys = sd.keys()
    clip = None
396
    clipvision = None
397
    vae = None
398
399
    model = None
    clip_target = None
400

401
    parameters = comfy.utils.calculate_parameters(sd, "model.diffusion_model.")
402
    fp16 = model_management.should_use_fp16(model_params=parameters)
403

404
405
406
    class WeightsLoader(torch.nn.Module):
        pass

407
408
409
    model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.", fp16)
    if model_config is None:
        raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
410

411
    if model_config.clip_vision_prefix is not None:
412
        if output_clipvision:
413
            clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
414

comfyanonymous's avatar
comfyanonymous committed
415
416
417
418
419
    dtype = torch.float32
    if fp16:
        dtype = torch.float16

    inital_load_device = model_management.unet_inital_load_device(parameters, dtype)
420
    offload_device = model_management.unet_offload_device()
comfyanonymous's avatar
comfyanonymous committed
421
    model = model_config.get_model(sd, "model.diffusion_model.", device=inital_load_device)
422
    model.load_model_weights(sd, "model.diffusion_model.")
423

424
    if output_vae:
425
        vae = VAE()
426
427
428
        w = WeightsLoader()
        w.first_stage_model = vae.first_stage_model
        load_model_weights(w, sd)
429

430
431
432
433
434
435
436
    if output_clip:
        w = WeightsLoader()
        clip_target = model_config.clip_target()
        clip = CLIP(clip_target, embedding_directory=embedding_directory)
        w.cond_stage_model = clip.cond_stage_model
        sd = model_config.process_clip_state_dict(sd)
        load_model_weights(w, sd)
comfyanonymous's avatar
comfyanonymous committed
437

438
439
440
    left_over = sd.keys()
    if len(left_over) > 0:
        print("left over keys:", left_over)
441

442
    model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device(), current_device=inital_load_device)
comfyanonymous's avatar
comfyanonymous committed
443
444
445
446
447
    if inital_load_device != torch.device("cpu"):
        print("loaded straight to GPU")
        model_management.load_model_gpu(model_patcher)

    return (model_patcher, clip, vae, clipvision)
448

449
450

def load_unet(unet_path): #load unet in diffusers format
451
452
    sd = comfy.utils.load_torch_file(unet_path)
    parameters = comfy.utils.calculate_parameters(sd)
453
454
    fp16 = model_management.should_use_fp16(model_params=parameters)

455
456
457
458
459
    model_config = model_detection.model_config_from_diffusers_unet(sd, fp16)
    if model_config is None:
        print("ERROR UNSUPPORTED UNET", unet_path)
        return None

460
    diffusers_keys = comfy.utils.unet_to_diffusers(model_config.unet_config)
461
462
463
464
465
466
467
468
469
470
471

    new_sd = {}
    for k in diffusers_keys:
        if k in sd:
            new_sd[diffusers_keys[k]] = sd.pop(k)
        else:
            print(diffusers_keys[k], k)
    offload_device = model_management.unet_offload_device()
    model = model_config.get_model(new_sd, "")
    model = model.to(offload_device)
    model.load_model_weights(new_sd, "")
472
    return comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device)
473

474
def save_checkpoint(output_path, model, clip, vae, metadata=None):
475
476
    model_management.load_models_gpu([model, clip.load_model()])
    sd = model.model.state_dict_for_saving(clip.get_sd(), vae.get_sd())
477
    comfy.utils.save_torch_file(sd, output_path, metadata=metadata)