test_transforms.py 86.5 KB
Newer Older
1
import itertools
2
import os
3
4
import torch
import torchvision.transforms as transforms
5
import torchvision.transforms.functional as F
6
import torchvision.transforms.functional_tensor as F_t
7
from torch._utils_internal import get_file_path_2
8
from numpy.testing import assert_array_almost_equal
9
import unittest
10
import math
11
import random
12
import numpy as np
13
14
15
16
17
18
from PIL import Image
try:
    import accimage
except ImportError:
    accimage = None

19
20
21
22
23
try:
    from scipy import stats
except ImportError:
    stats = None

24
from common_utils import cycle_over, int_dtypes, float_dtypes
25
from _assert_utils import assert_equal
26
27


28
GRACE_HOPPER = get_file_path_2(
29
    os.path.dirname(os.path.abspath(__file__)), 'assets', 'encode_jpeg', 'grace_hopper_517x606.jpg')
30
31


32
class Tester(unittest.TestCase):
33

34
    def test_center_crop(self):
35
36
37
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
38
39
        owidth = random.randint(5, (width - 2) / 2) * 2

40
        img = torch.ones(3, height, width)
41
42
43
        oh1 = (height - oheight) // 2
        ow1 = (width - owidth) // 2
        imgnarrow = img[:, oh1:oh1 + oheight, ow1:ow1 + owidth]
44
45
46
47
48
49
        imgnarrow.fill_(0)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
50
51
        self.assertEqual(result.sum(), 0,
                         "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
52
53
54
55
56
57
58
59
        oheight += 1
        owidth += 1
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum1 = result.sum()
60
61
        self.assertGreater(sum1, 1,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
62
        oheight += 1
63
        owidth += 1
64
65
66
67
68
69
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum2 = result.sum()
70
71
72
73
        self.assertGreater(sum2, 0,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
        self.assertGreater(sum2, sum1,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
74

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    def test_center_crop_2(self):
        """ Tests when center crop size is larger than image size, along any dimension"""
        even_image_size = (random.randint(10, 32) * 2, random.randint(10, 32) * 2)
        odd_image_size = (even_image_size[0] + 1, even_image_size[1] + 1)

        # Since height is independent of width, we can ignore images with odd height and even width and vice-versa.
        input_image_sizes = [even_image_size, odd_image_size]

        # Get different crop sizes
        delta = random.choice((1, 3, 5))
        crop_size_delta = [-2 * delta, -delta, 0, delta, 2 * delta]
        crop_size_params = itertools.product(input_image_sizes, crop_size_delta, crop_size_delta)

        for (input_image_size, delta_height, delta_width) in crop_size_params:
            img = torch.ones(3, *input_image_size)
            crop_size = (input_image_size[0] + delta_height, input_image_size[1] + delta_width)

            # Test both transforms, one with PIL input and one with tensor
            output_pil = transforms.Compose([
                transforms.ToPILImage(),
                transforms.CenterCrop(crop_size),
                transforms.ToTensor()],
            )(img)
            self.assertEqual(output_pil.size()[1:3], crop_size,
                             "image_size: {} crop_size: {}".format(input_image_size, crop_size))

            output_tensor = transforms.CenterCrop(crop_size)(img)
            self.assertEqual(output_tensor.size()[1:3], crop_size,
                             "image_size: {} crop_size: {}".format(input_image_size, crop_size))

            # Ensure output for PIL and Tensor are equal
106
107
108
109
            assert_equal(
                output_tensor, output_pil, check_stride=False,
                msg="image_size: {} crop_size: {}".format(input_image_size, crop_size)
            )
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

            # Check if content in center of both image and cropped output is same.
            center_size = (min(crop_size[0], input_image_size[0]), min(crop_size[1], input_image_size[1]))
            crop_center_tl, input_center_tl = [0, 0], [0, 0]
            for index in range(2):
                if crop_size[index] > input_image_size[index]:
                    crop_center_tl[index] = (crop_size[index] - input_image_size[index]) // 2
                else:
                    input_center_tl[index] = (input_image_size[index] - crop_size[index]) // 2

            output_center = output_pil[
                :,
                crop_center_tl[0]:crop_center_tl[0] + center_size[0],
                crop_center_tl[1]:crop_center_tl[1] + center_size[1]
            ]

            img_center = img[
                :,
                input_center_tl[0]:input_center_tl[0] + center_size[0],
                input_center_tl[1]:input_center_tl[1] + center_size[1]
            ]

132
133
134
135
            assert_equal(
                output_center, img_center, check_stride=False,
                msg="image_size: {} crop_size: {}".format(input_image_size, crop_size)
            )
136

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    def test_five_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for single_dim in [True, False]:
            crop_h = random.randint(1, h)
            crop_w = random.randint(1, w)
            if single_dim:
                crop_h = min(crop_h, crop_w)
                crop_w = crop_h
                transform = transforms.FiveCrop(crop_h)
            else:
                transform = transforms.FiveCrop((crop_h, crop_w))

            img = torch.FloatTensor(3, h, w).uniform_()
            results = transform(to_pil_image(img))

154
            self.assertEqual(len(results), 5)
155
            for crop in results:
156
                self.assertEqual(crop.size, (crop_w, crop_h))
157
158
159
160
161
162
163
164

            to_pil_image = transforms.ToPILImage()
            tl = to_pil_image(img[:, 0:crop_h, 0:crop_w])
            tr = to_pil_image(img[:, 0:crop_h, w - crop_w:])
            bl = to_pil_image(img[:, h - crop_h:, 0:crop_w])
            br = to_pil_image(img[:, h - crop_h:, w - crop_w:])
            center = transforms.CenterCrop((crop_h, crop_w))(to_pil_image(img))
            expected_output = (tl, tr, bl, br, center)
165
            self.assertEqual(results, expected_output)
166
167
168
169
170
171
172
173
174
175
176
177

    def test_ten_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for should_vflip in [True, False]:
            for single_dim in [True, False]:
                crop_h = random.randint(1, h)
                crop_w = random.randint(1, w)
                if single_dim:
                    crop_h = min(crop_h, crop_w)
                    crop_w = crop_h
178
179
                    transform = transforms.TenCrop(crop_h,
                                                   vertical_flip=should_vflip)
180
181
                    five_crop = transforms.FiveCrop(crop_h)
                else:
182
183
                    transform = transforms.TenCrop((crop_h, crop_w),
                                                   vertical_flip=should_vflip)
184
185
186
187
188
                    five_crop = transforms.FiveCrop((crop_h, crop_w))

                img = to_pil_image(torch.FloatTensor(3, h, w).uniform_())
                results = transform(img)
                expected_output = five_crop(img)
189
190
191
192
193

                # Checking if FiveCrop and TenCrop can be printed as string
                transform.__repr__()
                five_crop.__repr__()

194
195
196
197
198
199
200
                if should_vflip:
                    vflipped_img = img.transpose(Image.FLIP_TOP_BOTTOM)
                    expected_output += five_crop(vflipped_img)
                else:
                    hflipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
                    expected_output += five_crop(hflipped_img)

201
202
                self.assertEqual(len(results), 10)
                self.assertEqual(results, expected_output)
203

204
205
206
207
208
209
210
211
    def test_randomresized_params(self):
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)
        size = 100
        epsilon = 0.05
212
        min_scale = 0.25
Francisco Massa's avatar
Francisco Massa committed
213
        for _ in range(10):
214
            scale_min = max(round(random.random(), 2), min_scale)
215
            scale_range = (scale_min, scale_min + round(random.random(), 2))
216
            aspect_min = max(round(random.random(), 2), epsilon)
217
218
            aspect_ratio_range = (aspect_min, aspect_min + round(random.random(), 2))
            randresizecrop = transforms.RandomResizedCrop(size, scale_range, aspect_ratio_range)
219
            i, j, h, w = randresizecrop.get_params(img, scale_range, aspect_ratio_range)
220
            aspect_ratio_obtained = w / h
221
222
223
224
225
226
227
            self.assertTrue((min(aspect_ratio_range) - epsilon <= aspect_ratio_obtained and
                             aspect_ratio_obtained <= max(aspect_ratio_range) + epsilon) or
                            aspect_ratio_obtained == 1.0)
            self.assertIsInstance(i, int)
            self.assertIsInstance(j, int)
            self.assertIsInstance(h, int)
            self.assertIsInstance(w, int)
228

229
    def test_randomperspective(self):
Francisco Massa's avatar
Francisco Massa committed
230
        for _ in range(10):
231
232
233
234
235
236
237
238
239
240
            height = random.randint(24, 32) * 2
            width = random.randint(24, 32) * 2
            img = torch.ones(3, height, width)
            to_pil_image = transforms.ToPILImage()
            img = to_pil_image(img)
            perp = transforms.RandomPerspective()
            startpoints, endpoints = perp.get_params(width, height, 0.5)
            tr_img = F.perspective(img, startpoints, endpoints)
            tr_img2 = F.to_tensor(F.perspective(tr_img, endpoints, startpoints))
            tr_img = F.to_tensor(tr_img)
241
242
243
244
            self.assertEqual(img.size[0], width)
            self.assertEqual(img.size[1], height)
            self.assertGreater(torch.nn.functional.mse_loss(tr_img, F.to_tensor(img)) + 0.3,
                               torch.nn.functional.mse_loss(tr_img2, F.to_tensor(img)))
245

246
    def test_randomperspective_fill(self):
247
248
249
250
251
252
253
254

        # assert fill being either a Sequence or a Number
        with self.assertRaises(TypeError):
            transforms.RandomPerspective(fill={})

        t = transforms.RandomPerspective(fill=None)
        self.assertTrue(t.fill == 0)

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
        height = 100
        width = 100
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)

        modes = ("L", "RGB", "F")
        nums_bands = [len(mode) for mode in modes]
        fill = 127

        for mode, num_bands in zip(modes, nums_bands):
            img_conv = img.convert(mode)
            perspective = transforms.RandomPerspective(p=1, fill=fill)
            tr_img = perspective(img_conv)
            pixel = tr_img.getpixel((0, 0))

            if not isinstance(pixel, tuple):
                pixel = (pixel,)
            self.assertTupleEqual(pixel, tuple([fill] * num_bands))

        for mode, num_bands in zip(modes, nums_bands):
            img_conv = img.convert(mode)
            startpoints, endpoints = transforms.RandomPerspective.get_params(width, height, 0.5)
            tr_img = F.perspective(img_conv, startpoints, endpoints, fill=fill)
            pixel = tr_img.getpixel((0, 0))
280

281
282
283
284
285
286
287
288
            if not isinstance(pixel, tuple):
                pixel = (pixel,)
            self.assertTupleEqual(pixel, tuple([fill] * num_bands))

            for wrong_num_bands in set(nums_bands) - {num_bands}:
                with self.assertRaises(ValueError):
                    F.perspective(img_conv, startpoints, endpoints, fill=tuple([fill] * wrong_num_bands))

289
    def test_resize(self):
290

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
        input_sizes = [
            # height, width
            # square image
            (28, 28),
            (27, 27),
            # rectangular image: h < w
            (28, 34),
            (29, 35),
            # rectangular image: h > w
            (34, 28),
            (35, 29),
        ]
        test_output_sizes_1 = [
            # single integer
            22, 27, 28, 36,
            # single integer in tuple/list
            [22, ], (27, ),
        ]
        test_output_sizes_2 = [
            # two integers
            [22, 22], [22, 28], [22, 36],
            [27, 22], [36, 22], [28, 28],
            [28, 37], [37, 27], [37, 37]
        ]

        for height, width in input_sizes:
            img = Image.new("RGB", size=(width, height), color=127)

            for osize in test_output_sizes_1:
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
                for max_size in (None, 37, 1000):

                    t = transforms.Resize(osize, max_size=max_size)
                    result = t(img)

                    msg = "{}, {} - {} - {}".format(height, width, osize, max_size)
                    osize = osize[0] if isinstance(osize, (list, tuple)) else osize
                    # If size is an int, smaller edge of the image will be matched to this number.
                    # i.e, if height > width, then image will be rescaled to (size * height / width, size).
                    if height < width:
                        exp_w, exp_h = (int(osize * width / height), osize)  # (w, h)
                        if max_size is not None and max_size < exp_w:
                            exp_w, exp_h = max_size, int(max_size * exp_h / exp_w)
                        self.assertEqual(result.size, (exp_w, exp_h), msg=msg)
                    elif width < height:
                        exp_w, exp_h = (osize, int(osize * height / width))  # (w, h)
                        if max_size is not None and max_size < exp_h:
                            exp_w, exp_h = int(max_size * exp_w / exp_h), max_size
                        self.assertEqual(result.size, (exp_w, exp_h), msg=msg)
                    else:
                        exp_w, exp_h = (osize, osize)  # (w, h)
                        if max_size is not None and max_size < osize:
                            exp_w, exp_h = max_size, max_size
                        self.assertEqual(result.size, (exp_w, exp_h), msg=msg)
344

345
346
        for height, width in input_sizes:
            img = Image.new("RGB", size=(width, height), color=127)
347

348
349
            for osize in test_output_sizes_2:
                oheight, owidth = osize
350

351
352
                t = transforms.Resize(osize)
                result = t(img)
353

354
                self.assertEqual((owidth, oheight), result.size)
355

356
357
358
359
        with self.assertWarnsRegex(UserWarning, r"Anti-alias option is always applied for PIL Image input"):
            t = transforms.Resize(osize, antialias=False)
            t(img)

360
361
362
363
    def test_random_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
364
        owidth = random.randint(5, (width - 2) / 2) * 2
365
366
367
368
369
370
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
371
372
        self.assertEqual(result.size(1), oheight)
        self.assertEqual(result.size(2), owidth)
373

374
375
376
377
378
379
        padding = random.randint(1, 20)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth), padding=padding),
            transforms.ToTensor(),
        ])(img)
380
381
        self.assertEqual(result.size(1), oheight)
        self.assertEqual(result.size(2), owidth)
382

383
384
385
386
387
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height, width)),
            transforms.ToTensor()
        ])(img)
388
389
        self.assertEqual(result.size(1), height)
        self.assertEqual(result.size(2), width)
390
        torch.testing.assert_close(result, img)
391

392
393
394
395
396
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height + 1, width + 1), pad_if_needed=True),
            transforms.ToTensor(),
        ])(img)
397
398
        self.assertEqual(result.size(1), height + 1)
        self.assertEqual(result.size(2), width + 1)
399

vfdev's avatar
vfdev committed
400
401
402
403
404
        t = transforms.RandomCrop(48)
        img = torch.ones(3, 32, 32)
        with self.assertRaisesRegex(ValueError, r"Required crop size .+ is larger then input image size .+"):
            t(img)

405
406
407
408
409
    def test_pad(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = torch.ones(3, height, width)
        padding = random.randint(1, 20)
410
        fill = random.randint(1, 50)
411
412
        result = transforms.Compose([
            transforms.ToPILImage(),
413
            transforms.Pad(padding, fill=fill),
414
415
            transforms.ToTensor(),
        ])(img)
416
417
        self.assertEqual(result.size(1), height + 2 * padding)
        self.assertEqual(result.size(2), width + 2 * padding)
418
419
420
421
        # check that all elements in the padded region correspond
        # to the pad value
        fill_v = fill / 255
        eps = 1e-5
422
423
424
425
426
427
428
429
        h_padded = result[:, :padding, :]
        w_padded = result[:, :, :padding]
        torch.testing.assert_close(
            h_padded, torch.full_like(h_padded, fill_value=fill_v), check_stride=False, rtol=0.0, atol=eps
        )
        torch.testing.assert_close(
            w_padded, torch.full_like(w_padded, fill_value=fill_v), check_stride=False, rtol=0.0, atol=eps
        )
430
431
        self.assertRaises(ValueError, transforms.Pad(padding, fill=(1, 2)),
                          transforms.ToPILImage()(img))
Soumith Chintala's avatar
Soumith Chintala committed
432

433
434
435
436
437
438
439
    def test_pad_with_tuple_of_pad_values(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = transforms.ToPILImage()(torch.ones(3, height, width))

        padding = tuple([random.randint(1, 20) for _ in range(2)])
        output = transforms.Pad(padding)(img)
440
        self.assertEqual(output.size, (width + padding[0] * 2, height + padding[1] * 2))
441
442
443

        padding = tuple([random.randint(1, 20) for _ in range(4)])
        output = transforms.Pad(padding)(img)
444
445
        self.assertEqual(output.size[0], width + padding[0] + padding[2])
        self.assertEqual(output.size[1], height + padding[1] + padding[3])
446

447
448
449
        # Checking if Padding can be printed as string
        transforms.Pad(padding).__repr__()

450
451
    def test_pad_with_non_constant_padding_modes(self):
        """Unit tests for edge, reflect, symmetric padding"""
vfdev's avatar
vfdev committed
452
        img = torch.zeros(3, 27, 27).byte()
453
454
455
456
457
458
459
460
461
        img[:, :, 0] = 1  # Constant value added to leftmost edge
        img = transforms.ToPILImage()(img)
        img = F.pad(img, 1, (200, 200, 200))

        # pad 3 to all sidess
        edge_padded_img = F.pad(img, 3, padding_mode='edge')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # edge_pad, edge_pad, edge_pad, constant_pad, constant value added to leftmost edge, 0
        edge_middle_slice = np.asarray(edge_padded_img).transpose(2, 0, 1)[0][17][:6]
462
        assert_equal(edge_middle_slice, np.asarray([200, 200, 200, 200, 1, 0], dtype=np.uint8), check_stride=False)
463
        self.assertEqual(transforms.ToTensor()(edge_padded_img).size(), (3, 35, 35))
464
465
466
467
468
469

        # Pad 3 to left/right, 2 to top/bottom
        reflect_padded_img = F.pad(img, (3, 2), padding_mode='reflect')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # reflect_pad, reflect_pad, reflect_pad, constant_pad, constant value added to leftmost edge, 0
        reflect_middle_slice = np.asarray(reflect_padded_img).transpose(2, 0, 1)[0][17][:6]
470
        assert_equal(reflect_middle_slice, np.asarray([0, 0, 1, 200, 1, 0], dtype=np.uint8), check_stride=False)
471
        self.assertEqual(transforms.ToTensor()(reflect_padded_img).size(), (3, 33, 35))
472
473
474
475
476
477

        # Pad 3 to left, 2 to top, 2 to right, 1 to bottom
        symmetric_padded_img = F.pad(img, (3, 2, 2, 1), padding_mode='symmetric')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # sym_pad, sym_pad, sym_pad, constant_pad, constant value added to leftmost edge, 0
        symmetric_middle_slice = np.asarray(symmetric_padded_img).transpose(2, 0, 1)[0][17][:6]
478
        assert_equal(symmetric_middle_slice, np.asarray([0, 1, 200, 200, 1, 0], dtype=np.uint8), check_stride=False)
479
        self.assertEqual(transforms.ToTensor()(symmetric_padded_img).size(), (3, 32, 34))
480

481
482
483
484
485
486
        # Check negative padding explicitly for symmetric case, since it is not
        # implemented for tensor case to compare to
        # Crop 1 to left, pad 2 to top, pad 3 to right, crop 3 to bottom
        symmetric_padded_img_neg = F.pad(img, (-1, 2, 3, -3), padding_mode='symmetric')
        symmetric_neg_middle_left = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][:3]
        symmetric_neg_middle_right = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][-4:]
487
488
        assert_equal(symmetric_neg_middle_left, np.asarray([1, 0, 0], dtype=np.uint8), check_stride=False)
        assert_equal(symmetric_neg_middle_right, np.asarray([200, 200, 0, 0], dtype=np.uint8), check_stride=False)
489
490
        self.assertEqual(transforms.ToTensor()(symmetric_padded_img_neg).size(), (3, 28, 31))

491
    def test_pad_raises_with_invalid_pad_sequence_len(self):
492
493
494
495
496
497
498
499
500
        with self.assertRaises(ValueError):
            transforms.Pad(())

        with self.assertRaises(ValueError):
            transforms.Pad((1, 2, 3))

        with self.assertRaises(ValueError):
            transforms.Pad((1, 2, 3, 4, 5))

501
502
503
504
505
506
507
508
    def test_pad_with_mode_F_images(self):
        pad = 2
        transform = transforms.Pad(pad)

        img = Image.new("F", (10, 10))
        padded_img = transform(img)
        self.assertSequenceEqual(padded_img.size, [edge_size + 2 * pad for edge_size in img.size])

Soumith Chintala's avatar
Soumith Chintala committed
509
510
511
512
    def test_lambda(self):
        trans = transforms.Lambda(lambda x: x.add(10))
        x = torch.randn(10)
        y = trans(x)
513
        assert_equal(y, torch.add(x, 10))
Soumith Chintala's avatar
Soumith Chintala committed
514
515
516
517

        trans = transforms.Lambda(lambda x: x.add_(10))
        x = torch.randn(10)
        y = trans(x)
518
        assert_equal(y, x)
519

520
521
522
        # Checking if Lambda can be printed as string
        trans.__repr__()

523
    @unittest.skipIf(stats is None, 'scipy.stats not available')
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
    def test_random_apply(self):
        random_state = random.getstate()
        random.seed(42)
        random_apply_transform = transforms.RandomApply(
            [
                transforms.RandomRotation((-45, 45)),
                transforms.RandomHorizontalFlip(),
                transforms.RandomVerticalFlip(),
            ], p=0.75
        )
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        num_samples = 250
        num_applies = 0
        for _ in range(num_samples):
            out = random_apply_transform(img)
            if out != img:
                num_applies += 1

        p_value = stats.binom_test(num_applies, num_samples, p=0.75)
        random.setstate(random_state)
544
        self.assertGreater(p_value, 0.0001)
545
546
547
548

        # Checking if RandomApply can be printed as string
        random_apply_transform.__repr__()

549
    @unittest.skipIf(stats is None, 'scipy.stats not available')
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
    def test_random_choice(self):
        random_state = random.getstate()
        random.seed(42)
        random_choice_transform = transforms.RandomChoice(
            [
                transforms.Resize(15),
                transforms.Resize(20),
                transforms.CenterCrop(10)
            ]
        )
        img = transforms.ToPILImage()(torch.rand(3, 25, 25))
        num_samples = 250
        num_resize_15 = 0
        num_resize_20 = 0
        num_crop_10 = 0
        for _ in range(num_samples):
            out = random_choice_transform(img)
            if out.size == (15, 15):
                num_resize_15 += 1
            elif out.size == (20, 20):
                num_resize_20 += 1
            elif out.size == (10, 10):
                num_crop_10 += 1

        p_value = stats.binom_test(num_resize_15, num_samples, p=0.33333)
575
        self.assertGreater(p_value, 0.0001)
576
        p_value = stats.binom_test(num_resize_20, num_samples, p=0.33333)
577
        self.assertGreater(p_value, 0.0001)
578
        p_value = stats.binom_test(num_crop_10, num_samples, p=0.33333)
579
        self.assertGreater(p_value, 0.0001)
580
581
582
583
584

        random.setstate(random_state)
        # Checking if RandomChoice can be printed as string
        random_choice_transform.__repr__()

585
    @unittest.skipIf(stats is None, 'scipy.stats not available')
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
    def test_random_order(self):
        random_state = random.getstate()
        random.seed(42)
        random_order_transform = transforms.RandomOrder(
            [
                transforms.Resize(20),
                transforms.CenterCrop(10)
            ]
        )
        img = transforms.ToPILImage()(torch.rand(3, 25, 25))
        num_samples = 250
        num_normal_order = 0
        resize_crop_out = transforms.CenterCrop(10)(transforms.Resize(20)(img))
        for _ in range(num_samples):
            out = random_order_transform(img)
            if out == resize_crop_out:
                num_normal_order += 1

        p_value = stats.binom_test(num_normal_order, num_samples, p=0.5)
        random.setstate(random_state)
606
        self.assertGreater(p_value, 0.0001)
607
608
609
610

        # Checking if RandomOrder can be printed as string
        random_order_transform.__repr__()

611
    def test_to_tensor(self):
612
        test_channels = [1, 3, 4]
613
614
        height, width = 4, 4
        trans = transforms.ToTensor()
615

616
617
618
619
620
621
622
        with self.assertRaises(TypeError):
            trans(np.random.rand(1, height, width).tolist())

        with self.assertRaises(ValueError):
            trans(np.random.rand(height))
            trans(np.random.rand(1, 1, height, width))

623
624
625
626
        for channels in test_channels:
            input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
627
            torch.testing.assert_close(output, input_data, check_stride=False)
628

629
            ndarray = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
630
631
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1)) / 255.0
632
            torch.testing.assert_close(output.numpy(), expected_output, check_stride=False, check_dtype=False)
633

634
635
636
            ndarray = np.random.rand(height, width, channels).astype(np.float32)
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1))
637
            torch.testing.assert_close(output.numpy(), expected_output, check_stride=False, check_dtype=False)
638

639
640
641
642
        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
        img = transforms.ToPILImage()(input_data.mul(255)).convert('1')
        output = trans(img)
643
        torch.testing.assert_close(input_data, output, check_dtype=False, check_stride=False)
644

645
646
647
648
649
650
651
652
653
654
655
656
657
658
    def test_to_tensor_with_other_default_dtypes(self):
        current_def_dtype = torch.get_default_dtype()

        t = transforms.ToTensor()
        np_arr = np.random.randint(0, 255, (32, 32, 3), dtype=np.uint8)
        img = Image.fromarray(np_arr)

        for dtype in [torch.float16, torch.float, torch.double]:
            torch.set_default_dtype(dtype)
            res = t(img)
            self.assertTrue(res.dtype == dtype, msg=f"{res.dtype} vs {dtype}")

        torch.set_default_dtype(current_def_dtype)

659
660
661
662
    def test_max_value(self):
        for dtype in int_dtypes():
            self.assertEqual(F_t._max_value(dtype), torch.iinfo(dtype).max)

663
664
665
666
        # remove float testing as it can lead to errors such as
        # runtime error: 5.7896e+76 is outside the range of representable values of type 'float'
        # for dtype in float_dtypes():
        #     self.assertGreater(F_t._max_value(dtype), torch.finfo(dtype).max)
667

668
669
670
671
672
673
    def test_convert_image_dtype_float_to_float(self):
        for input_dtype, output_dtypes in cycle_over(float_dtypes()):
            input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
            for output_dtype in output_dtypes:
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
674
675
                    transform_script = torch.jit.script(F.convert_image_dtype)

676
                    output_image = transform(input_image)
677
678
                    output_image_script = transform_script(input_image, output_dtype)

679
                    torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)
680
681
682
683
684
685
686
687
688
689
690
691
692

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0.0, 1.0

                    self.assertAlmostEqual(actual_min, desired_min)
                    self.assertAlmostEqual(actual_max, desired_max)

    def test_convert_image_dtype_float_to_int(self):
        for input_dtype in float_dtypes():
            input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
            for output_dtype in int_dtypes():
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
693
                    transform_script = torch.jit.script(F.convert_image_dtype)
694
695
696
697
698
699
700
701

                    if (input_dtype == torch.float32 and output_dtype in (torch.int32, torch.int64)) or (
                            input_dtype == torch.float64 and output_dtype == torch.int64
                    ):
                        with self.assertRaises(RuntimeError):
                            transform(input_image)
                    else:
                        output_image = transform(input_image)
702
703
                        output_image_script = transform_script(input_image, output_dtype)

704
                        torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)
705
706
707
708
709
710
711
712
713
714
715
716
717

                        actual_min, actual_max = output_image.tolist()
                        desired_min, desired_max = 0, torch.iinfo(output_dtype).max

                        self.assertEqual(actual_min, desired_min)
                        self.assertEqual(actual_max, desired_max)

    def test_convert_image_dtype_int_to_float(self):
        for input_dtype in int_dtypes():
            input_image = torch.tensor((0, torch.iinfo(input_dtype).max), dtype=input_dtype)
            for output_dtype in float_dtypes():
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
718
719
                    transform_script = torch.jit.script(F.convert_image_dtype)

720
                    output_image = transform(input_image)
721
722
                    output_image_script = transform_script(input_image, output_dtype)

723
                    torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0.0, 1.0

                    self.assertAlmostEqual(actual_min, desired_min)
                    self.assertGreaterEqual(actual_min, desired_min)
                    self.assertAlmostEqual(actual_max, desired_max)
                    self.assertLessEqual(actual_max, desired_max)

    def test_convert_image_dtype_int_to_int(self):
        for input_dtype, output_dtypes in cycle_over(int_dtypes()):
            input_max = torch.iinfo(input_dtype).max
            input_image = torch.tensor((0, input_max), dtype=input_dtype)
            for output_dtype in output_dtypes:
                output_max = torch.iinfo(output_dtype).max

                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
742
743
                    transform_script = torch.jit.script(F.convert_image_dtype)

744
                    output_image = transform(input_image)
745
746
                    output_image_script = transform_script(input_image, output_dtype)

747
748
749
750
751
752
                    torch.testing.assert_close(
                        output_image_script,
                        output_image,
                        rtol=0.0,
                        atol=1e-6,
                        msg="{} vs {}".format(output_image_script, output_image),
753
                    )
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0, output_max

                    # see https://github.com/pytorch/vision/pull/2078#issuecomment-641036236 for details
                    if input_max >= output_max:
                        error_term = 0
                    else:
                        error_term = 1 - (torch.iinfo(output_dtype).max + 1) // (torch.iinfo(input_dtype).max + 1)

                    self.assertEqual(actual_min, desired_min)
                    self.assertEqual(actual_max, desired_max + error_term)

    def test_convert_image_dtype_int_to_int_consistency(self):
        for input_dtype, output_dtypes in cycle_over(int_dtypes()):
            input_max = torch.iinfo(input_dtype).max
            input_image = torch.tensor((0, input_max), dtype=input_dtype)
            for output_dtype in output_dtypes:
                output_max = torch.iinfo(output_dtype).max
                if output_max <= input_max:
                    continue

                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
                    inverse_transfrom = transforms.ConvertImageDtype(input_dtype)
                    output_image = inverse_transfrom(transform(input_image))

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0, input_max

                    self.assertEqual(actual_min, desired_min)
                    self.assertEqual(actual_max, desired_max)

787
788
789
790
791
792
793
    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_to_tensor(self):
        trans = transforms.ToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

794
        torch.testing.assert_close(output, expected_output)
795
796
797
798
799
800
801
802
803
804
805
806
807
808

    def test_pil_to_tensor(self):
        test_channels = [1, 3, 4]
        height, width = 4, 4
        trans = transforms.PILToTensor()

        with self.assertRaises(TypeError):
            trans(np.random.rand(1, height, width).tolist())
            trans(np.random.rand(1, height, width))

        for channels in test_channels:
            input_data = torch.ByteTensor(channels, height, width).random_(0, 255)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
809
            torch.testing.assert_close(input_data, output, check_stride=False)
810
811
812
813
814

            input_data = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
            expected_output = input_data.transpose((2, 0, 1))
815
            torch.testing.assert_close(output.numpy(), expected_output)
816
817
818
819
820

            input_data = torch.as_tensor(np.random.rand(channels, height, width).astype(np.float32))
            img = transforms.ToPILImage()(input_data)  # CHW -> HWC and (* 255).byte()
            output = trans(img)  # HWC -> CHW
            expected_output = (input_data * 255).byte()
821
            torch.testing.assert_close(output, expected_output, check_stride=False)
822
823
824
825

        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
        img = transforms.ToPILImage()(input_data.mul(255)).convert('1')
826
827
        output = trans(img).view(torch.uint8).bool().to(torch.uint8)
        torch.testing.assert_close(input_data, output, check_stride=False)
828
829
830
831
832
833
834
835
836

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_pil_to_tensor(self):
        trans = transforms.PILToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
837
        torch.testing.assert_close(output, expected_output)
838
839
840
841

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_resize(self):
        trans = transforms.Compose([
842
            transforms.Resize(256, interpolation=Image.LINEAR),
843
844
845
            transforms.ToTensor(),
        ])

846
847
848
        # Checking if Compose, Resize and ToTensor can be printed as string
        trans.__repr__()

849
850
851
852
853
854
855
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        self.assertLess(np.abs((expected_output - output).mean()), 1e-3)
        self.assertLess((expected_output - output).var(), 1e-5)
        # note the high absolute tolerance
856
        self.assertTrue(np.allclose(output.numpy(), expected_output.numpy(), atol=5e-2))
857
858
859
860
861
862
863
864

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_crop(self):
        trans = transforms.Compose([
            transforms.CenterCrop(256),
            transforms.ToTensor(),
        ])

865
866
867
        # Checking if Compose, CenterCrop and ToTensor can be printed as string
        trans.__repr__()

868
869
870
871
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
872
        torch.testing.assert_close(output, expected_output)
873

874
    def test_1_channel_tensor_to_pil_image(self):
875
876
        to_tensor = transforms.ToTensor()

877
        img_data_float = torch.Tensor(1, 4, 4).uniform_()
878
879
880
881
        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        img_data_int = torch.IntTensor(1, 4, 4).random_()

882
883
884
885
886
887
888
889
890
891
        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
892
                self.assertEqual(img.mode, mode)
893
                torch.testing.assert_close(expected_output, to_tensor(img).numpy(), check_stride=False)
894
895
        # 'F' mode for torch.FloatTensor
        img_F_mode = transforms.ToPILImage(mode='F')(img_data_float)
896
        self.assertEqual(img_F_mode.mode, 'F')
897
898
899
        torch.testing.assert_close(
            np.array(Image.fromarray(img_data_float.squeeze(0).numpy(), mode='F')), np.array(img_F_mode)
        )
900
901
902
903
904
905
906
907
908
909
910
911

    def test_1_channel_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4, 1).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4, 1).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4, 1).random_().numpy()
        img_data_int = torch.IntTensor(4, 4, 1).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
912
                self.assertEqual(img.mode, mode)
913
914
915
                # note: we explicitly convert img's dtype because pytorch doesn't support uint16
                # and otherwise assert_close wouldn't be able to construct a tensor from the uint16 array
                torch.testing.assert_close(img_data[:, :, 0], np.asarray(img).astype(img_data.dtype))
916

surgan12's avatar
surgan12 committed
917
918
919
920
    def test_2_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
921
                self.assertEqual(img.mode, 'LA')  # default should assume LA
surgan12's avatar
surgan12 committed
922
923
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
924
                self.assertEqual(img.mode, mode)
surgan12's avatar
surgan12 committed
925
926
            split = img.split()
            for i in range(2):
927
                torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]), check_stride=False)
surgan12's avatar
surgan12 committed
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944

        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
        for mode in [None, 'LA']:
            verify_img_data(img_data, mode)

        transforms.ToPILImage().__repr__()

        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 or 3 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
            transforms.ToPILImage(mode='RGB')(img_data)

    def test_2_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
945
                self.assertEqual(img.mode, 'LA')  # default should assume LA
surgan12's avatar
surgan12 committed
946
947
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
948
                self.assertEqual(img.mode, mode)
surgan12's avatar
surgan12 committed
949
950
            split = img.split()
            for i in range(2):
951
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
surgan12's avatar
surgan12 committed
952
953
954
955
956
957
958
959
960
961
962
963

        img_data = torch.Tensor(2, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'LA']:
            verify_img_data(img_data, expected_output, mode=mode)

        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 or 3 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
            transforms.ToPILImage(mode='RGB')(img_data)

964
965
966
967
    def test_3_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
968
                self.assertEqual(img.mode, 'RGB')  # default should assume RGB
969
970
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
971
                self.assertEqual(img.mode, mode)
972
973
            split = img.split()
            for i in range(3):
974
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
975

976
977
978
979
        img_data = torch.Tensor(3, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, expected_output, mode=mode)
980

981
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
982
            # should raise if we try a mode for 4 or 1 or 2 channel images
983
984
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
985
            transforms.ToPILImage(mode='LA')(img_data)
986

Varun Agrawal's avatar
Varun Agrawal committed
987
988
989
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(torch.Tensor(1, 3, 4, 4).uniform_())

990
991
992
993
    def test_3_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
994
                self.assertEqual(img.mode, 'RGB')  # default should assume RGB
995
996
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
997
                self.assertEqual(img.mode, mode)
998
999
            split = img.split()
            for i in range(3):
1000
                torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]), check_stride=False)
1001

1002
1003
1004
1005
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, mode)

1006
1007
1008
        # Checking if ToPILImage can be printed as string
        transforms.ToPILImage().__repr__()

1009
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
1010
            # should raise if we try a mode for 4 or 1 or 2 channel images
1011
1012
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
1013
            transforms.ToPILImage(mode='LA')(img_data)
1014
1015
1016
1017
1018

    def test_4_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
1019
                self.assertEqual(img.mode, 'RGBA')  # default should assume RGBA
1020
1021
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
1022
                self.assertEqual(img.mode, mode)
1023
1024
1025

            split = img.split()
            for i in range(4):
1026
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
1027

1028
        img_data = torch.Tensor(4, 4, 4).uniform_()
1029
        expected_output = img_data.mul(255).int().float().div(255)
surgan12's avatar
surgan12 committed
1030
        for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
1031
            verify_img_data(img_data, expected_output, mode)
1032

1033
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
1034
            # should raise if we try a mode for 3 or 1 or 2 channel images
1035
1036
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
1037
            transforms.ToPILImage(mode='LA')(img_data)
1038
1039
1040
1041
1042

    def test_4_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
1043
                self.assertEqual(img.mode, 'RGBA')  # default should assume RGBA
1044
1045
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
1046
                self.assertEqual(img.mode, mode)
1047
1048
            split = img.split()
            for i in range(4):
1049
                torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]), check_stride=False)
1050

1051
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()
surgan12's avatar
surgan12 committed
1052
        for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
1053
            verify_img_data(img_data, mode)
1054

1055
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
1056
            # should raise if we try a mode for 3 or 1 or 2 channel images
1057
1058
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
1059
            transforms.ToPILImage(mode='LA')(img_data)
1060

Varun Agrawal's avatar
Varun Agrawal committed
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
    def test_2d_tensor_to_pil_image(self):
        to_tensor = transforms.ToTensor()

        img_data_float = torch.Tensor(4, 4).uniform_()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(4, 4).random_()
        img_data_int = torch.IntTensor(4, 4).random_()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
1079
                self.assertEqual(img.mode, mode)
1080
                np.testing.assert_allclose(expected_output, to_tensor(img).numpy()[0])
Varun Agrawal's avatar
Varun Agrawal committed
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092

    def test_2d_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4).random_().numpy()
        img_data_int = torch.IntTensor(4, 4).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
1093
                self.assertEqual(img.mode, mode)
1094
                np.testing.assert_allclose(img_data, img)
Varun Agrawal's avatar
Varun Agrawal committed
1095
1096

    def test_tensor_bad_types_to_pil_image(self):
1097
        with self.assertRaisesRegex(ValueError, r'pic should be 2/3 dimensional. Got \d+ dimensions.'):
Varun Agrawal's avatar
Varun Agrawal committed
1098
            transforms.ToPILImage()(torch.ones(1, 3, 4, 4))
1099
1100
        with self.assertRaisesRegex(ValueError, r'pic should not have > 4 channels. Got \d+ channels.'):
            transforms.ToPILImage()(torch.ones(6, 4, 4))
Varun Agrawal's avatar
Varun Agrawal committed
1101

1102
    def test_ndarray_bad_types_to_pil_image(self):
1103
        trans = transforms.ToPILImage()
1104
1105
        reg_msg = r'Input type \w+ is not supported'
        with self.assertRaisesRegex(TypeError, reg_msg):
1106
            trans(np.ones([4, 4, 1], np.int64))
1107
        with self.assertRaisesRegex(TypeError, reg_msg):
1108
            trans(np.ones([4, 4, 1], np.uint16))
1109
        with self.assertRaisesRegex(TypeError, reg_msg):
1110
            trans(np.ones([4, 4, 1], np.uint32))
1111
        with self.assertRaisesRegex(TypeError, reg_msg):
1112
1113
            trans(np.ones([4, 4, 1], np.float64))

1114
        with self.assertRaisesRegex(ValueError, r'pic should be 2/3 dimensional. Got \d+ dimensions.'):
Varun Agrawal's avatar
Varun Agrawal committed
1115
            transforms.ToPILImage()(np.ones([1, 4, 4, 3]))
1116
1117
        with self.assertRaisesRegex(ValueError, r'pic should not have > 4 channels. Got \d+ channels.'):
            transforms.ToPILImage()(np.ones([4, 4, 6]))
Varun Agrawal's avatar
Varun Agrawal committed
1118

1119
1120
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_vertical_flip(self):
1121
1122
        random_state = random.getstate()
        random.seed(42)
1123
1124
1125
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        vimg = img.transpose(Image.FLIP_TOP_BOTTOM)

1126
        num_samples = 250
1127
        num_vertical = 0
1128
        for _ in range(num_samples):
1129
1130
1131
1132
            out = transforms.RandomVerticalFlip()(img)
            if out == vimg:
                num_vertical += 1

1133
1134
        p_value = stats.binom_test(num_vertical, num_samples, p=0.5)
        random.setstate(random_state)
1135
        self.assertGreater(p_value, 0.0001)
1136

1137
1138
1139
1140
1141
1142
1143
1144
1145
        num_samples = 250
        num_vertical = 0
        for _ in range(num_samples):
            out = transforms.RandomVerticalFlip(p=0.7)(img)
            if out == vimg:
                num_vertical += 1

        p_value = stats.binom_test(num_vertical, num_samples, p=0.7)
        random.setstate(random_state)
1146
        self.assertGreater(p_value, 0.0001)
1147

1148
1149
1150
        # Checking if RandomVerticalFlip can be printed as string
        transforms.RandomVerticalFlip().__repr__()

1151
1152
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_horizontal_flip(self):
1153
1154
        random_state = random.getstate()
        random.seed(42)
1155
1156
1157
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        himg = img.transpose(Image.FLIP_LEFT_RIGHT)

1158
        num_samples = 250
1159
        num_horizontal = 0
1160
        for _ in range(num_samples):
1161
1162
1163
1164
            out = transforms.RandomHorizontalFlip()(img)
            if out == himg:
                num_horizontal += 1

1165
1166
        p_value = stats.binom_test(num_horizontal, num_samples, p=0.5)
        random.setstate(random_state)
1167
        self.assertGreater(p_value, 0.0001)
1168

1169
1170
1171
1172
1173
1174
1175
1176
1177
        num_samples = 250
        num_horizontal = 0
        for _ in range(num_samples):
            out = transforms.RandomHorizontalFlip(p=0.7)(img)
            if out == himg:
                num_horizontal += 1

        p_value = stats.binom_test(num_horizontal, num_samples, p=0.7)
        random.setstate(random_state)
1178
        self.assertGreater(p_value, 0.0001)
1179

1180
1181
1182
        # Checking if RandomHorizontalFlip can be printed as string
        transforms.RandomHorizontalFlip().__repr__()

1183
    @unittest.skipIf(stats is None, 'scipy.stats is not available')
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
    def test_normalize(self):
        def samples_from_standard_normal(tensor):
            p_value = stats.kstest(list(tensor.view(-1)), 'norm', args=(0, 1)).pvalue
            return p_value > 0.0001

        random_state = random.getstate()
        random.seed(42)
        for channels in [1, 3]:
            img = torch.rand(channels, 10, 10)
            mean = [img[c].mean() for c in range(channels)]
            std = [img[c].std() for c in range(channels)]
            normalized = transforms.Normalize(mean, std)(img)
1196
            self.assertTrue(samples_from_standard_normal(normalized))
1197
1198
        random.setstate(random_state)

1199
1200
1201
        # Checking if Normalize can be printed as string
        transforms.Normalize(mean, std).__repr__()

1202
1203
1204
        # Checking the optional in-place behaviour
        tensor = torch.rand((1, 16, 16))
        tensor_inplace = transforms.Normalize((0.5,), (0.5,), inplace=True)(tensor)
1205
        assert_equal(tensor, tensor_inplace)
1206

1207
1208
1209
1210
1211
1212
1213
1214
1215
    def test_normalize_different_dtype(self):
        for dtype1 in [torch.float32, torch.float64]:
            img = torch.rand(3, 10, 10, dtype=dtype1)
            for dtype2 in [torch.int64, torch.float32, torch.float64]:
                mean = torch.tensor([1, 2, 3], dtype=dtype2)
                std = torch.tensor([1, 2, 1], dtype=dtype2)
                # checks that it doesn't crash
                transforms.functional.normalize(img, mean, std)

1216
1217
1218
1219
1220
1221
1222
    def test_normalize_3d_tensor(self):
        torch.manual_seed(28)
        n_channels = 3
        img_size = 10
        mean = torch.rand(n_channels)
        std = torch.rand(n_channels)
        img = torch.rand(n_channels, img_size, img_size)
1223
        target = F.normalize(img, mean, std)
1224
1225
1226
1227
1228
1229
1230

        mean_unsqueezed = mean.view(-1, 1, 1)
        std_unsqueezed = std.view(-1, 1, 1)
        result1 = F.normalize(img, mean_unsqueezed, std_unsqueezed)
        result2 = F.normalize(img,
                              mean_unsqueezed.repeat(1, img_size, img_size),
                              std_unsqueezed.repeat(1, img_size, img_size))
1231
1232
        torch.testing.assert_close(target, result1)
        torch.testing.assert_close(target, result2)
1233

1234
1235
1236
1237
1238
1239
1240
    def test_adjust_brightness(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
1241
        y_pil = F.adjust_brightness(x_pil, 1)
1242
        y_np = np.array(y_pil)
1243
        torch.testing.assert_close(y_np, x_np)
1244
1245

        # test 1
1246
        y_pil = F.adjust_brightness(x_pil, 0.5)
1247
1248
1249
        y_np = np.array(y_pil)
        y_ans = [0, 2, 6, 27, 67, 113, 18, 4, 117, 45, 127, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1250
        torch.testing.assert_close(y_np, y_ans)
1251
1252

        # test 2
1253
        y_pil = F.adjust_brightness(x_pil, 2)
1254
1255
1256
        y_np = np.array(y_pil)
        y_ans = [0, 10, 26, 108, 255, 255, 74, 16, 255, 180, 255, 2]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1257
        torch.testing.assert_close(y_np, y_ans)
1258
1259
1260
1261
1262
1263
1264
1265

    def test_adjust_contrast(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
1266
        y_pil = F.adjust_contrast(x_pil, 1)
1267
        y_np = np.array(y_pil)
1268
        torch.testing.assert_close(y_np, x_np)
1269
1270

        # test 1
1271
        y_pil = F.adjust_contrast(x_pil, 0.5)
1272
1273
1274
        y_np = np.array(y_pil)
        y_ans = [43, 45, 49, 70, 110, 156, 61, 47, 160, 88, 170, 43]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1275
        torch.testing.assert_close(y_np, y_ans)
1276
1277

        # test 2
1278
        y_pil = F.adjust_contrast(x_pil, 2)
1279
1280
1281
        y_np = np.array(y_pil)
        y_ans = [0, 0, 0, 22, 184, 255, 0, 0, 255, 94, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1282
        torch.testing.assert_close(y_np, y_ans)
1283

Francisco Massa's avatar
Francisco Massa committed
1284
    @unittest.skipIf(Image.__version__ >= '7', "Temporarily disabled")
1285
1286
1287
1288
1289
1290
1291
    def test_adjust_saturation(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
1292
        y_pil = F.adjust_saturation(x_pil, 1)
1293
        y_np = np.array(y_pil)
1294
        torch.testing.assert_close(y_np, x_np)
1295
1296

        # test 1
1297
        y_pil = F.adjust_saturation(x_pil, 0.5)
1298
1299
1300
        y_np = np.array(y_pil)
        y_ans = [2, 4, 8, 87, 128, 173, 39, 25, 138, 133, 215, 88]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1301
        torch.testing.assert_close(y_np, y_ans)
1302
1303

        # test 2
1304
        y_pil = F.adjust_saturation(x_pil, 2)
1305
1306
1307
        y_np = np.array(y_pil)
        y_ans = [0, 6, 22, 0, 149, 255, 32, 0, 255, 4, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1308
        torch.testing.assert_close(y_np, y_ans)
1309
1310
1311
1312
1313
1314
1315
1316

    def test_adjust_hue(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        with self.assertRaises(ValueError):
1317
1318
            F.adjust_hue(x_pil, -0.7)
            F.adjust_hue(x_pil, 1)
1319
1320
1321

        # test 0: almost same as x_data but not exact.
        # probably because hsv <-> rgb floating point ops
1322
        y_pil = F.adjust_hue(x_pil, 0)
1323
1324
1325
        y_np = np.array(y_pil)
        y_ans = [0, 5, 13, 54, 139, 226, 35, 8, 234, 91, 255, 1]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1326
        torch.testing.assert_close(y_np, y_ans)
1327
1328

        # test 1
1329
        y_pil = F.adjust_hue(x_pil, 0.25)
1330
1331
1332
        y_np = np.array(y_pil)
        y_ans = [13, 0, 12, 224, 54, 226, 234, 8, 99, 1, 222, 255]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1333
        torch.testing.assert_close(y_np, y_ans)
1334
1335

        # test 2
1336
        y_pil = F.adjust_hue(x_pil, -0.25)
1337
1338
1339
        y_np = np.array(y_pil)
        y_ans = [0, 13, 2, 54, 226, 58, 8, 234, 152, 255, 43, 1]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1340
        torch.testing.assert_close(y_np, y_ans)
1341

1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
    def test_adjust_sharpness(self):
        x_shape = [4, 4, 3]
        x_data = [75, 121, 114, 105, 97, 107, 105, 32, 66, 111, 117, 114, 99, 104, 97, 0,
                  0, 65, 108, 101, 120, 97, 110, 100, 101, 114, 32, 86, 114, 121, 110, 105,
                  111, 116, 105, 115, 0, 0, 73, 32, 108, 111, 118, 101, 32, 121, 111, 117]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
        y_pil = F.adjust_sharpness(x_pil, 1)
        y_np = np.array(y_pil)
1353
        torch.testing.assert_close(y_np, x_np)
1354
1355
1356
1357
1358
1359
1360
1361

        # test 1
        y_pil = F.adjust_sharpness(x_pil, 0.5)
        y_np = np.array(y_pil)
        y_ans = [75, 121, 114, 105, 97, 107, 105, 32, 66, 111, 117, 114, 99, 104, 97, 30,
                 30, 74, 103, 96, 114, 97, 110, 100, 101, 114, 32, 81, 103, 108, 102, 101,
                 107, 116, 105, 115, 0, 0, 73, 32, 108, 111, 118, 101, 32, 121, 111, 117]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1362
        torch.testing.assert_close(y_np, y_ans)
1363
1364
1365
1366
1367
1368
1369
1370

        # test 2
        y_pil = F.adjust_sharpness(x_pil, 2)
        y_np = np.array(y_pil)
        y_ans = [75, 121, 114, 105, 97, 107, 105, 32, 66, 111, 117, 114, 99, 104, 97, 0,
                 0, 46, 118, 111, 132, 97, 110, 100, 101, 114, 32, 95, 135, 146, 126, 112,
                 119, 116, 105, 115, 0, 0, 73, 32, 108, 111, 118, 101, 32, 121, 111, 117]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1371
        torch.testing.assert_close(y_np, y_ans)
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381

        # test 3
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_th = torch.tensor(x_np.transpose(2, 0, 1))
        y_pil = F.adjust_sharpness(x_pil, 2)
        y_np = np.array(y_pil).transpose(2, 0, 1)
        y_th = F.adjust_sharpness(x_th, 2)
1382
        torch.testing.assert_close(y_np, y_th.numpy())
1383

1384
1385
1386
1387
1388
1389
1390
    def test_adjust_gamma(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
1391
        y_pil = F.adjust_gamma(x_pil, 1)
1392
        y_np = np.array(y_pil)
1393
        torch.testing.assert_close(y_np, x_np)
1394
1395

        # test 1
1396
        y_pil = F.adjust_gamma(x_pil, 0.5)
1397
        y_np = np.array(y_pil)
1398
        y_ans = [0, 35, 57, 117, 186, 241, 97, 45, 245, 152, 255, 16]
1399
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1400
        torch.testing.assert_close(y_np, y_ans)
1401
1402

        # test 2
1403
        y_pil = F.adjust_gamma(x_pil, 2)
1404
        y_np = np.array(y_pil)
1405
        y_ans = [0, 0, 0, 11, 71, 201, 5, 0, 215, 31, 255, 0]
1406
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1407
        torch.testing.assert_close(y_np, y_ans)
1408
1409
1410
1411
1412
1413
1414
1415

    def test_adjusts_L_mode(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_rgb = Image.fromarray(x_np, mode='RGB')

        x_l = x_rgb.convert('L')
1416
1417
1418
1419
        self.assertEqual(F.adjust_brightness(x_l, 2).mode, 'L')
        self.assertEqual(F.adjust_saturation(x_l, 2).mode, 'L')
        self.assertEqual(F.adjust_contrast(x_l, 2).mode, 'L')
        self.assertEqual(F.adjust_hue(x_l, 0.4).mode, 'L')
1420
        self.assertEqual(F.adjust_sharpness(x_l, 2).mode, 'L')
1421
        self.assertEqual(F.adjust_gamma(x_l, 0.5).mode, 'L')
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433

    def test_color_jitter(self):
        color_jitter = transforms.ColorJitter(2, 2, 2, 0.1)

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')

        for i in range(10):
            y_pil = color_jitter(x_pil)
1434
            self.assertEqual(y_pil.mode, x_pil.mode)
1435
1436

            y_pil_2 = color_jitter(x_pil_2)
1437
            self.assertEqual(y_pil_2.mode, x_pil_2.mode)
1438

1439
1440
1441
        # Checking if ColorJitter can be printed as string
        color_jitter.__repr__()

1442
    def test_linear_transformation(self):
ekka's avatar
ekka committed
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
        num_samples = 1000
        x = torch.randn(num_samples, 3, 10, 10)
        flat_x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
        # compute principal components
        sigma = torch.mm(flat_x.t(), flat_x) / flat_x.size(0)
        u, s, _ = np.linalg.svd(sigma.numpy())
        zca_epsilon = 1e-10  # avoid division by 0
        d = torch.Tensor(np.diag(1. / np.sqrt(s + zca_epsilon)))
        u = torch.Tensor(u)
        principal_components = torch.mm(torch.mm(u, d), u.t())
        mean_vector = (torch.sum(flat_x, dim=0) / flat_x.size(0))
        # initialize whitening matrix
1455
        whitening = transforms.LinearTransformation(principal_components, mean_vector)
ekka's avatar
ekka committed
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
        # estimate covariance and mean using weak law of large number
        num_features = flat_x.size(1)
        cov = 0.0
        mean = 0.0
        for i in x:
            xwhite = whitening(i)
            xwhite = xwhite.view(1, -1).numpy()
            cov += np.dot(xwhite, xwhite.T) / num_features
            mean += np.sum(xwhite) / num_features
        # if rtol for std = 1e-3 then rtol for cov = 2e-3 as std**2 = cov
1466
1467
1468
1469
        torch.testing.assert_close(cov / num_samples, np.identity(1), rtol=2e-3, atol=1e-8, check_dtype=False,
                                   msg="cov not close to 1")
        torch.testing.assert_close(mean / num_samples, 0, rtol=1e-3, atol=1e-8, check_dtype=False,
                                   msg="mean not close to 0")
ekka's avatar
ekka committed
1470

1471
        # Checking if LinearTransformation can be printed as string
ekka's avatar
ekka committed
1472
1473
        whitening.__repr__()

1474
1475
1476
1477
    def test_rotate(self):
        x = np.zeros((100, 100, 3), dtype=np.uint8)
        x[40, 40] = [255, 255, 255]

vfdev's avatar
vfdev committed
1478
        with self.assertRaisesRegex(TypeError, r"img should be PIL Image"):
1479
1480
1481
1482
1483
            F.rotate(x, 10)

        img = F.to_pil_image(x)

        result = F.rotate(img, 45)
1484
        self.assertEqual(result.size, (100, 100))
1485
        r, c, ch = np.where(result)
1486
1487
1488
        self.assertTrue(all(x in r for x in [49, 50]))
        self.assertTrue(all(x in c for x in [36]))
        self.assertTrue(all(x in ch for x in [0, 1, 2]))
1489
1490

        result = F.rotate(img, 45, expand=True)
1491
        self.assertEqual(result.size, (142, 142))
1492
        r, c, ch = np.where(result)
1493
1494
1495
        self.assertTrue(all(x in r for x in [70, 71]))
        self.assertTrue(all(x in c for x in [57]))
        self.assertTrue(all(x in ch for x in [0, 1, 2]))
1496
1497

        result = F.rotate(img, 45, center=(40, 40))
1498
        self.assertEqual(result.size, (100, 100))
1499
        r, c, ch = np.where(result)
1500
1501
1502
        self.assertTrue(all(x in r for x in [40]))
        self.assertTrue(all(x in c for x in [40]))
        self.assertTrue(all(x in ch for x in [0, 1, 2]))
1503
1504
1505
1506

        result_a = F.rotate(img, 90)
        result_b = F.rotate(img, -270)

1507
        assert_equal(np.array(result_a), np.array(result_b))
1508

Philip Meier's avatar
Philip Meier committed
1509
1510
1511
    def test_rotate_fill(self):
        img = F.to_pil_image(np.ones((100, 100, 3), dtype=np.uint8) * 255, "RGB")

1512
        modes = ("L", "RGB", "F")
Philip Meier's avatar
Philip Meier committed
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
        nums_bands = [len(mode) for mode in modes]
        fill = 127

        for mode, num_bands in zip(modes, nums_bands):
            img_conv = img.convert(mode)
            img_rot = F.rotate(img_conv, 45.0, fill=fill)
            pixel = img_rot.getpixel((0, 0))

            if not isinstance(pixel, tuple):
                pixel = (pixel,)
            self.assertTupleEqual(pixel, tuple([fill] * num_bands))

            for wrong_num_bands in set(nums_bands) - {num_bands}:
                with self.assertRaises(ValueError):
                    F.rotate(img_conv, 45.0, fill=tuple([fill] * wrong_num_bands))

1529
    def test_affine(self):
Francisco Massa's avatar
Francisco Massa committed
1530
1531
1532
        input_img = np.zeros((40, 40, 3), dtype=np.uint8)
        cnt = [20, 20]
        for pt in [(16, 16), (20, 16), (20, 20)]:
1533
1534
1535
1536
            for i in range(-5, 5):
                for j in range(-5, 5):
                    input_img[pt[0] + i, pt[1] + j, :] = [255, 155, 55]

vfdev's avatar
vfdev committed
1537
1538
        with self.assertRaises(TypeError, msg="Argument translate should be a sequence"):
            F.affine(input_img, 10, translate=0, scale=1, shear=1)
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549

        pil_img = F.to_pil_image(input_img)

        def _to_3x3_inv(inv_result_matrix):
            result_matrix = np.zeros((3, 3))
            result_matrix[:2, :] = np.array(inv_result_matrix).reshape((2, 3))
            result_matrix[2, 2] = 1
            return np.linalg.inv(result_matrix)

        def _test_transformation(a, t, s, sh):
            a_rad = math.radians(a)
ptrblck's avatar
ptrblck committed
1550
            s_rad = [math.radians(sh_) for sh_ in sh]
1551
1552
1553
1554
1555
            cx, cy = cnt
            tx, ty = t
            sx, sy = s_rad
            rot = a_rad

1556
            # 1) Check transformation matrix:
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
            C = np.array([[1, 0, cx],
                          [0, 1, cy],
                          [0, 0, 1]])
            T = np.array([[1, 0, tx],
                          [0, 1, ty],
                          [0, 0, 1]])
            Cinv = np.linalg.inv(C)

            RS = np.array(
                [[s * math.cos(rot), -s * math.sin(rot), 0],
                 [s * math.sin(rot), s * math.cos(rot), 0],
                 [0, 0, 1]])

            SHx = np.array([[1, -math.tan(sx), 0],
                            [0, 1, 0],
                            [0, 0, 1]])

            SHy = np.array([[1, 0, 0],
                            [-math.tan(sy), 1, 0],
                            [0, 0, 1]])

            RSS = np.matmul(RS, np.matmul(SHy, SHx))

            true_matrix = np.matmul(T, np.matmul(C, np.matmul(RSS, Cinv)))

1582
1583
            result_matrix = _to_3x3_inv(F._get_inverse_affine_matrix(center=cnt, angle=a,
                                                                     translate=t, scale=s, shear=sh))
1584
            self.assertLess(np.sum(np.abs(true_matrix - result_matrix)), 1e-10)
1585
            # 2) Perform inverse mapping:
Francisco Massa's avatar
Francisco Massa committed
1586
            true_result = np.zeros((40, 40, 3), dtype=np.uint8)
1587
1588
1589
            inv_true_matrix = np.linalg.inv(true_matrix)
            for y in range(true_result.shape[0]):
                for x in range(true_result.shape[1]):
1590
1591
1592
1593
1594
1595
                    # Same as for PIL:
                    # https://github.com/python-pillow/Pillow/blob/71f8ec6a0cfc1008076a023c0756542539d057ab/
                    # src/libImaging/Geometry.c#L1060
                    input_pt = np.array([x + 0.5, y + 0.5, 1.0])
                    res = np.floor(np.dot(inv_true_matrix, input_pt)).astype(np.int)
                    _x, _y = res[:2]
1596
1597
1598
1599
                    if 0 <= _x < input_img.shape[1] and 0 <= _y < input_img.shape[0]:
                        true_result[y, x, :] = input_img[_y, _x, :]

            result = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh)
1600
            self.assertEqual(result.size, pil_img.size)
1601
1602
1603
1604
            # Compute number of different pixels:
            np_result = np.array(result)
            n_diff_pixels = np.sum(np_result != true_result) / 3
            # Accept 3 wrong pixels
1605
1606
1607
            self.assertLess(n_diff_pixels, 3,
                            "a={}, t={}, s={}, sh={}\n".format(a, t, s, sh) +
                            "n diff pixels={}\n".format(np.sum(np.array(result)[:, :, 0] != true_result[:, :, 0])))
1608
1609
1610

        # Test rotation
        a = 45
ptrblck's avatar
ptrblck committed
1611
        _test_transformation(a=a, t=(0, 0), s=1.0, sh=(0.0, 0.0))
1612
1613
1614

        # Test translation
        t = [10, 15]
ptrblck's avatar
ptrblck committed
1615
        _test_transformation(a=0.0, t=t, s=1.0, sh=(0.0, 0.0))
1616
1617
1618

        # Test scale
        s = 1.2
ptrblck's avatar
ptrblck committed
1619
        _test_transformation(a=0.0, t=(0.0, 0.0), s=s, sh=(0.0, 0.0))
1620
1621

        # Test shear
ptrblck's avatar
ptrblck committed
1622
        sh = [45.0, 25.0]
1623
1624
1625
1626
1627
        _test_transformation(a=0.0, t=(0.0, 0.0), s=1.0, sh=sh)

        # Test rotation, scale, translation, shear
        for a in range(-90, 90, 25):
            for t1 in range(-10, 10, 5):
1628
                for s in [0.75, 0.98, 1.0, 1.2, 1.4]:
1629
                    for sh in range(-15, 15, 5):
ptrblck's avatar
ptrblck committed
1630
                        _test_transformation(a=a, t=(t1, t1), s=s, sh=(sh, sh))
1631

1632
1633
1634
1635
1636
1637
1638
    def test_random_rotation(self):

        with self.assertRaises(ValueError):
            transforms.RandomRotation(-0.7)
            transforms.RandomRotation([-0.7])
            transforms.RandomRotation([-0.7, 0, 0.7])

1639
1640
1641
1642
1643
1644
1645
        # assert fill being either a Sequence or a Number
        with self.assertRaises(TypeError):
            transforms.RandomRotation(0, fill={})

        t = transforms.RandomRotation(0, fill=None)
        self.assertTrue(t.fill == 0)

1646
1647
        t = transforms.RandomRotation(10)
        angle = t.get_params(t.degrees)
1648
        self.assertTrue(angle > -10 and angle < 10)
1649
1650
1651

        t = transforms.RandomRotation((-10, 10))
        angle = t.get_params(t.degrees)
1652
        self.assertTrue(-10 < angle < 10)
1653

1654
1655
1656
        # Checking if RandomRotation can be printed as string
        t.__repr__()

1657
1658
1659
        # assert deprecation warning and non-BC
        with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"):
            t = transforms.RandomRotation((-10, 10), resample=2)
1660
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
1661
1662

        # assert changed type warning
1663
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
1664
            t = transforms.RandomRotation((-10, 10), interpolation=2)
1665
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
1666

1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
    def test_random_affine(self):

        with self.assertRaises(ValueError):
            transforms.RandomAffine(-0.7)
            transforms.RandomAffine([-0.7])
            transforms.RandomAffine([-0.7, 0, 0.7])

            transforms.RandomAffine([-90, 90], translate=2.0)
            transforms.RandomAffine([-90, 90], translate=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[-1.0, 0.0, 1.0])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, -0.5])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 3.0, -0.5])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=-7)
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10])
ptrblck's avatar
ptrblck committed
1686
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10, 0, 10])
1687

1688
1689
1690
1691
1692
1693
1694
        # assert fill being either a Sequence or a Number
        with self.assertRaises(TypeError):
            transforms.RandomAffine(0, fill={})

        t = transforms.RandomAffine(0, fill=None)
        self.assertTrue(t.fill == 0)

1695
1696
1697
        x = np.zeros((100, 100, 3), dtype=np.uint8)
        img = F.to_pil_image(x)

ptrblck's avatar
ptrblck committed
1698
        t = transforms.RandomAffine(10, translate=[0.5, 0.3], scale=[0.7, 1.3], shear=[-10, 10, 20, 40])
1699
1700
1701
        for _ in range(100):
            angle, translations, scale, shear = t.get_params(t.degrees, t.translate, t.scale, t.shear,
                                                             img_size=img.size)
1702
1703
1704
1705
1706
1707
1708
1709
            self.assertTrue(-10 < angle < 10)
            self.assertTrue(-img.size[0] * 0.5 <= translations[0] <= img.size[0] * 0.5,
                            "{} vs {}".format(translations[0], img.size[0] * 0.5))
            self.assertTrue(-img.size[1] * 0.5 <= translations[1] <= img.size[1] * 0.5,
                            "{} vs {}".format(translations[1], img.size[1] * 0.5))
            self.assertTrue(0.7 < scale < 1.3)
            self.assertTrue(-10 < shear[0] < 10)
            self.assertTrue(-20 < shear[1] < 40)
1710
1711
1712
1713

        # Checking if RandomAffine can be printed as string
        t.__repr__()

1714
        t = transforms.RandomAffine(10, interpolation=transforms.InterpolationMode.BILINEAR)
1715
1716
1717
1718
1719
        self.assertIn("bilinear", t.__repr__())

        # assert deprecation warning and non-BC
        with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"):
            t = transforms.RandomAffine(10, resample=2)
1720
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
1721
1722
1723
1724
1725
1726

        with self.assertWarnsRegex(UserWarning, r"Argument fillcolor is deprecated and will be removed"):
            t = transforms.RandomAffine(10, fillcolor=10)
            self.assertEqual(t.fill, 10)

        # assert changed type warning
1727
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
1728
            t = transforms.RandomAffine(10, interpolation=2)
1729
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
1730

1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
    def test_to_grayscale(self):
        """Unit tests for grayscale transform"""

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        # Test Set: Grayscale an image with desired number of output channels
        # Case 1: RGB -> 1 channel grayscale
        trans1 = transforms.Grayscale(num_output_channels=1)
        gray_pil_1 = trans1(x_pil)
        gray_np_1 = np.array(gray_pil_1)
1746
1747
        self.assertEqual(gray_pil_1.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_1.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1748
        assert_equal(gray_np, gray_np_1)
1749
1750
1751
1752
1753

        # Case 2: RGB -> 3 channel grayscale
        trans2 = transforms.Grayscale(num_output_channels=3)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
1754
1755
        self.assertEqual(gray_pil_2.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_2.shape, tuple(x_shape), 'should be 3 channel')
1756
1757
1758
        assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
        assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
        assert_equal(gray_np, gray_np_2[:, :, 0], check_stride=False)
1759
1760
1761
1762
1763

        # Case 3: 1 channel grayscale -> 1 channel grayscale
        trans3 = transforms.Grayscale(num_output_channels=1)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
1764
1765
        self.assertEqual(gray_pil_3.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_3.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1766
        assert_equal(gray_np, gray_np_3)
1767
1768
1769
1770
1771

        # Case 4: 1 channel grayscale -> 3 channel grayscale
        trans4 = transforms.Grayscale(num_output_channels=3)
        gray_pil_4 = trans4(x_pil_2)
        gray_np_4 = np.array(gray_pil_4)
1772
1773
        self.assertEqual(gray_pil_4.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_4.shape, tuple(x_shape), 'should be 3 channel')
1774
1775
1776
        assert_equal(gray_np_4[:, :, 0], gray_np_4[:, :, 1])
        assert_equal(gray_np_4[:, :, 1], gray_np_4[:, :, 2])
        assert_equal(gray_np, gray_np_4[:, :, 0], check_stride=False)
1777

1778
1779
1780
        # Checking if Grayscale can be printed as string
        trans4.__repr__()

1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_grayscale(self):
        """Unit tests for random grayscale transform"""

        # Test Set 1: RGB -> 3 channel grayscale
        random_state = random.getstate()
        random.seed(42)
        x_shape = [2, 2, 3]
        x_np = np.random.randint(0, 256, x_shape, np.uint8)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        num_samples = 250
        num_gray = 0
        for _ in range(num_samples):
            gray_pil_2 = transforms.RandomGrayscale(p=0.5)(x_pil)
            gray_np_2 = np.array(gray_pil_2)
            if np.array_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1]) and \
1800
1801
                    np.array_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2]) and \
                    np.array_equal(gray_np, gray_np_2[:, :, 0]):
1802
1803
1804
1805
                num_gray = num_gray + 1

        p_value = stats.binom_test(num_gray, num_samples, p=0.5)
        random.setstate(random_state)
1806
        self.assertGreater(p_value, 0.0001)
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826

        # Test Set 2: grayscale -> 1 channel grayscale
        random_state = random.getstate()
        random.seed(42)
        x_shape = [2, 2, 3]
        x_np = np.random.randint(0, 256, x_shape, np.uint8)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        num_samples = 250
        num_gray = 0
        for _ in range(num_samples):
            gray_pil_3 = transforms.RandomGrayscale(p=0.5)(x_pil_2)
            gray_np_3 = np.array(gray_pil_3)
            if np.array_equal(gray_np, gray_np_3):
                num_gray = num_gray + 1

        p_value = stats.binom_test(num_gray, num_samples, p=1.0)  # Note: grayscale is always unchanged
        random.setstate(random_state)
1827
        self.assertGreater(p_value, 0.0001)
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840

        # Test set 3: Explicit tests
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        # Case 3a: RGB -> 3 channel grayscale (grayscaled)
        trans2 = transforms.RandomGrayscale(p=1.0)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
1841
1842
        self.assertEqual(gray_pil_2.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_2.shape, tuple(x_shape), 'should be 3 channel')
1843
1844
1845
        assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
        assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
        assert_equal(gray_np, gray_np_2[:, :, 0], check_stride=False)
1846
1847
1848
1849
1850

        # Case 3b: RGB -> 3 channel grayscale (unchanged)
        trans2 = transforms.RandomGrayscale(p=0.0)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
1851
1852
        self.assertEqual(gray_pil_2.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_2.shape, tuple(x_shape), 'should be 3 channel')
1853
        assert_equal(x_np, gray_np_2)
1854
1855
1856
1857
1858

        # Case 3c: 1 channel grayscale -> 1 channel grayscale (grayscaled)
        trans3 = transforms.RandomGrayscale(p=1.0)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
1859
1860
        self.assertEqual(gray_pil_3.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_3.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1861
        assert_equal(gray_np, gray_np_3)
1862
1863
1864
1865
1866

        # Case 3d: 1 channel grayscale -> 1 channel grayscale (unchanged)
        trans3 = transforms.RandomGrayscale(p=0.0)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
1867
1868
        self.assertEqual(gray_pil_3.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_3.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1869
        assert_equal(gray_np, gray_np_3)
1870

1871
1872
1873
        # Checking if RandomGrayscale can be printed as string
        trans3.__repr__()

1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
    def test_gaussian_blur_asserts(self):
        np_img = np.ones((100, 100, 3), dtype=np.uint8) * 255
        img = F.to_pil_image(np_img, "RGB")

        with self.assertRaisesRegex(ValueError, r"If kernel_size is a sequence its length should be 2"):
            F.gaussian_blur(img, [3])

        with self.assertRaisesRegex(ValueError, r"If kernel_size is a sequence its length should be 2"):
            F.gaussian_blur(img, [3, 3, 3])
        with self.assertRaisesRegex(ValueError, r"Kernel size should be a tuple/list of two integers"):
            transforms.GaussianBlur([3, 3, 3])

        with self.assertRaisesRegex(ValueError, r"kernel_size should have odd and positive integers"):
            F.gaussian_blur(img, [4, 4])
        with self.assertRaisesRegex(ValueError, r"Kernel size value should be an odd and positive number"):
            transforms.GaussianBlur([4, 4])

        with self.assertRaisesRegex(ValueError, r"kernel_size should have odd and positive integers"):
            F.gaussian_blur(img, [-3, -3])
        with self.assertRaisesRegex(ValueError, r"Kernel size value should be an odd and positive number"):
            transforms.GaussianBlur([-3, -3])

        with self.assertRaisesRegex(ValueError, r"If sigma is a sequence, its length should be 2"):
            F.gaussian_blur(img, 3, [1, 1, 1])
        with self.assertRaisesRegex(ValueError, r"sigma should be a single number or a list/tuple with length 2"):
            transforms.GaussianBlur(3, [1, 1, 1])

        with self.assertRaisesRegex(ValueError, r"sigma should have positive values"):
            F.gaussian_blur(img, 3, -1.0)
        with self.assertRaisesRegex(ValueError, r"If sigma is a single number, it must be positive"):
            transforms.GaussianBlur(3, -1.0)

        with self.assertRaisesRegex(TypeError, r"kernel_size should be int or a sequence of integers"):
            F.gaussian_blur(img, "kernel_size_string")
        with self.assertRaisesRegex(ValueError, r"Kernel size should be a tuple/list of two integers"):
            transforms.GaussianBlur("kernel_size_string")

        with self.assertRaisesRegex(TypeError, r"sigma should be either float or sequence of floats"):
            F.gaussian_blur(img, 3, "sigma_string")
        with self.assertRaisesRegex(ValueError, r"sigma should be a single number or a list/tuple with length 2"):
            transforms.GaussianBlur(3, "sigma_string")

1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
    def _test_randomness(self, fn, trans, configs):
        random_state = random.getstate()
        random.seed(42)
        img = transforms.ToPILImage()(torch.rand(3, 16, 18))

        for p in [0.5, 0.7]:
            for config in configs:
                inv_img = fn(img, **config)

                num_samples = 250
                counts = 0
                for _ in range(num_samples):
                    tranformation = trans(p=p, **config)
                    tranformation.__repr__()
                    out = tranformation(img)
                    if out == inv_img:
                        counts += 1

                p_value = stats.binom_test(counts, num_samples, p=p)
                random.setstate(random_state)
                self.assertGreater(p_value, 0.0001)

    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_invert(self):
        self._test_randomness(
            F.invert,
            transforms.RandomInvert,
            [{}]
        )

    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_posterize(self):
        self._test_randomness(
            F.posterize,
            transforms.RandomPosterize,
            [{"bits": 4}]
        )

    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_solarize(self):
        self._test_randomness(
            F.solarize,
            transforms.RandomSolarize,
            [{"threshold": 192}]
        )

    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_adjust_sharpness(self):
        self._test_randomness(
            F.adjust_sharpness,
            transforms.RandomAdjustSharpness,
            [{"sharpness_factor": 2.0}]
        )

    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_autocontrast(self):
        self._test_randomness(
            F.autocontrast,
            transforms.RandomAutocontrast,
            [{}]
        )

    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_equalize(self):
        self._test_randomness(
            F.equalize,
            transforms.RandomEqualize,
            [{}]
        )

    def test_autoaugment(self):
        for policy in transforms.AutoAugmentPolicy:
            for fill in [None, 85, (128, 128, 128)]:
                random.seed(42)
                img = Image.open(GRACE_HOPPER)
                transform = transforms.AutoAugment(policy=policy, fill=fill)
                for _ in range(100):
                    img = transform(img)
                transform.__repr__()

1996
    @unittest.skipIf(stats is None, 'scipy.stats not available')
1997
1998
1999
    def test_random_erasing(self):
        img = torch.ones(3, 128, 128)

2000
        t = transforms.RandomErasing(scale=(0.1, 0.1), ratio=(1 / 3, 3.))
2001
2002
        y, x, h, w, v = t.get_params(img, t.scale, t.ratio, [t.value, ])
        aspect_ratio = h / w
2003
2004
2005
        # Add some tolerance due to the rounding and int conversion used in the transform
        tol = 0.05
        self.assertTrue(1 / 3 - tol <= aspect_ratio <= 3 + tol)
2006
2007
2008
2009
2010
2011
2012
2013
2014

        aspect_ratios = []
        random.seed(42)
        trial = 1000
        for _ in range(trial):
            y, x, h, w, v = t.get_params(img, t.scale, t.ratio, [t.value, ])
            aspect_ratios.append(h / w)

        count_bigger_then_ones = len([1 for aspect_ratio in aspect_ratios if aspect_ratio > 1])
2015
2016
        p_value = stats.binom_test(count_bigger_then_ones, trial, p=0.5)
        self.assertGreater(p_value, 0.0001)
2017

2018
2019
2020
        # Checking if RandomErasing can be printed as string
        t.__repr__()

2021

2022
2023
if __name__ == '__main__':
    unittest.main()