test_transforms.py 73.2 KB
Newer Older
1
import os
2
3
import torch
import torchvision.transforms as transforms
4
import torchvision.transforms.functional as F
5
import torchvision.transforms.functional_tensor as F_t
6
from torch._utils_internal import get_file_path_2
7
from numpy.testing import assert_array_almost_equal
8
import unittest
9
import math
10
import random
11
import numpy as np
12
13
14
15
16
17
from PIL import Image
try:
    import accimage
except ImportError:
    accimage = None

18
19
20
21
22
try:
    from scipy import stats
except ImportError:
    stats = None

23
from common_utils import cycle_over, int_dtypes, float_dtypes
24
25


26
GRACE_HOPPER = get_file_path_2(
27
    os.path.dirname(os.path.abspath(__file__)), 'assets', 'encode_jpeg', 'grace_hopper_517x606.jpg')
28
29


30
class Tester(unittest.TestCase):
31

32
33
34
35
    def test_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
36
37
        owidth = random.randint(5, (width - 2) / 2) * 2

38
        img = torch.ones(3, height, width)
39
40
41
        oh1 = (height - oheight) // 2
        ow1 = (width - owidth) // 2
        imgnarrow = img[:, oh1:oh1 + oheight, ow1:ow1 + owidth]
42
43
44
45
46
47
        imgnarrow.fill_(0)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
48
49
        self.assertEqual(result.sum(), 0,
                         "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
50
51
52
53
54
55
56
57
        oheight += 1
        owidth += 1
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum1 = result.sum()
58
59
        self.assertGreater(sum1, 1,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
60
        oheight += 1
61
        owidth += 1
62
63
64
65
66
67
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum2 = result.sum()
68
69
70
71
        self.assertGreater(sum2, 0,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
        self.assertGreater(sum2, sum1,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
72

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    def test_five_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for single_dim in [True, False]:
            crop_h = random.randint(1, h)
            crop_w = random.randint(1, w)
            if single_dim:
                crop_h = min(crop_h, crop_w)
                crop_w = crop_h
                transform = transforms.FiveCrop(crop_h)
            else:
                transform = transforms.FiveCrop((crop_h, crop_w))

            img = torch.FloatTensor(3, h, w).uniform_()
            results = transform(to_pil_image(img))

90
            self.assertEqual(len(results), 5)
91
            for crop in results:
92
                self.assertEqual(crop.size, (crop_w, crop_h))
93
94
95
96
97
98
99
100

            to_pil_image = transforms.ToPILImage()
            tl = to_pil_image(img[:, 0:crop_h, 0:crop_w])
            tr = to_pil_image(img[:, 0:crop_h, w - crop_w:])
            bl = to_pil_image(img[:, h - crop_h:, 0:crop_w])
            br = to_pil_image(img[:, h - crop_h:, w - crop_w:])
            center = transforms.CenterCrop((crop_h, crop_w))(to_pil_image(img))
            expected_output = (tl, tr, bl, br, center)
101
            self.assertEqual(results, expected_output)
102
103
104
105
106
107
108
109
110
111
112
113

    def test_ten_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for should_vflip in [True, False]:
            for single_dim in [True, False]:
                crop_h = random.randint(1, h)
                crop_w = random.randint(1, w)
                if single_dim:
                    crop_h = min(crop_h, crop_w)
                    crop_w = crop_h
114
115
                    transform = transforms.TenCrop(crop_h,
                                                   vertical_flip=should_vflip)
116
117
                    five_crop = transforms.FiveCrop(crop_h)
                else:
118
119
                    transform = transforms.TenCrop((crop_h, crop_w),
                                                   vertical_flip=should_vflip)
120
121
122
123
124
                    five_crop = transforms.FiveCrop((crop_h, crop_w))

                img = to_pil_image(torch.FloatTensor(3, h, w).uniform_())
                results = transform(img)
                expected_output = five_crop(img)
125
126
127
128
129

                # Checking if FiveCrop and TenCrop can be printed as string
                transform.__repr__()
                five_crop.__repr__()

130
131
132
133
134
135
136
                if should_vflip:
                    vflipped_img = img.transpose(Image.FLIP_TOP_BOTTOM)
                    expected_output += five_crop(vflipped_img)
                else:
                    hflipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
                    expected_output += five_crop(hflipped_img)

137
138
                self.assertEqual(len(results), 10)
                self.assertEqual(results, expected_output)
139

140
141
142
143
144
145
146
147
    def test_randomresized_params(self):
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)
        size = 100
        epsilon = 0.05
148
        min_scale = 0.25
Francisco Massa's avatar
Francisco Massa committed
149
        for _ in range(10):
150
            scale_min = max(round(random.random(), 2), min_scale)
151
            scale_range = (scale_min, scale_min + round(random.random(), 2))
152
            aspect_min = max(round(random.random(), 2), epsilon)
153
154
            aspect_ratio_range = (aspect_min, aspect_min + round(random.random(), 2))
            randresizecrop = transforms.RandomResizedCrop(size, scale_range, aspect_ratio_range)
155
            i, j, h, w = randresizecrop.get_params(img, scale_range, aspect_ratio_range)
156
            aspect_ratio_obtained = w / h
157
158
159
160
161
162
163
            self.assertTrue((min(aspect_ratio_range) - epsilon <= aspect_ratio_obtained and
                             aspect_ratio_obtained <= max(aspect_ratio_range) + epsilon) or
                            aspect_ratio_obtained == 1.0)
            self.assertIsInstance(i, int)
            self.assertIsInstance(j, int)
            self.assertIsInstance(h, int)
            self.assertIsInstance(w, int)
164

165
    def test_randomperspective(self):
Francisco Massa's avatar
Francisco Massa committed
166
        for _ in range(10):
167
168
169
170
171
172
173
174
175
176
            height = random.randint(24, 32) * 2
            width = random.randint(24, 32) * 2
            img = torch.ones(3, height, width)
            to_pil_image = transforms.ToPILImage()
            img = to_pil_image(img)
            perp = transforms.RandomPerspective()
            startpoints, endpoints = perp.get_params(width, height, 0.5)
            tr_img = F.perspective(img, startpoints, endpoints)
            tr_img2 = F.to_tensor(F.perspective(tr_img, endpoints, startpoints))
            tr_img = F.to_tensor(tr_img)
177
178
179
180
            self.assertEqual(img.size[0], width)
            self.assertEqual(img.size[1], height)
            self.assertGreater(torch.nn.functional.mse_loss(tr_img, F.to_tensor(img)) + 0.3,
                               torch.nn.functional.mse_loss(tr_img2, F.to_tensor(img)))
181

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    def test_randomperspective_fill(self):
        height = 100
        width = 100
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)

        modes = ("L", "RGB", "F")
        nums_bands = [len(mode) for mode in modes]
        fill = 127

        for mode, num_bands in zip(modes, nums_bands):
            img_conv = img.convert(mode)
            perspective = transforms.RandomPerspective(p=1, fill=fill)
            tr_img = perspective(img_conv)
            pixel = tr_img.getpixel((0, 0))

            if not isinstance(pixel, tuple):
                pixel = (pixel,)
            self.assertTupleEqual(pixel, tuple([fill] * num_bands))

        for mode, num_bands in zip(modes, nums_bands):
            img_conv = img.convert(mode)
            startpoints, endpoints = transforms.RandomPerspective.get_params(width, height, 0.5)
            tr_img = F.perspective(img_conv, startpoints, endpoints, fill=fill)
            pixel = tr_img.getpixel((0, 0))
208

209
210
211
212
213
214
215
216
            if not isinstance(pixel, tuple):
                pixel = (pixel,)
            self.assertTupleEqual(pixel, tuple([fill] * num_bands))

            for wrong_num_bands in set(nums_bands) - {num_bands}:
                with self.assertRaises(ValueError):
                    F.perspective(img_conv, startpoints, endpoints, fill=tuple([fill] * wrong_num_bands))

217
    def test_resize(self):
218

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
        input_sizes = [
            # height, width
            # square image
            (28, 28),
            (27, 27),
            # rectangular image: h < w
            (28, 34),
            (29, 35),
            # rectangular image: h > w
            (34, 28),
            (35, 29),
        ]
        test_output_sizes_1 = [
            # single integer
            22, 27, 28, 36,
            # single integer in tuple/list
            [22, ], (27, ),
        ]
        test_output_sizes_2 = [
            # two integers
            [22, 22], [22, 28], [22, 36],
            [27, 22], [36, 22], [28, 28],
            [28, 37], [37, 27], [37, 37]
        ]

        for height, width in input_sizes:
            img = Image.new("RGB", size=(width, height), color=127)

            for osize in test_output_sizes_1:

                t = transforms.Resize(osize)
                result = t(img)

                msg = "{}, {} - {}".format(height, width, osize)
                osize = osize[0] if isinstance(osize, (list, tuple)) else osize
                # If size is an int, smaller edge of the image will be matched to this number.
                # i.e, if height > width, then image will be rescaled to (size * height / width, size).
                if height < width:
                    expected_size = (int(osize * width / height), osize)  # (w, h)
                    self.assertEqual(result.size, expected_size, msg=msg)
                elif width < height:
                    expected_size = (osize, int(osize * height / width))  # (w, h)
                    self.assertEqual(result.size, expected_size, msg=msg)
                else:
                    expected_size = (osize, osize)  # (w, h)
                    self.assertEqual(result.size, expected_size, msg=msg)
265

266
267
        for height, width in input_sizes:
            img = Image.new("RGB", size=(width, height), color=127)
268

269
270
            for osize in test_output_sizes_2:
                oheight, owidth = osize
271

272
273
                t = transforms.Resize(osize)
                result = t(img)
274

275
                self.assertEqual((owidth, oheight), result.size)
276

277
278
279
280
    def test_random_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
281
        owidth = random.randint(5, (width - 2) / 2) * 2
282
283
284
285
286
287
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
288
289
        self.assertEqual(result.size(1), oheight)
        self.assertEqual(result.size(2), owidth)
290

291
292
293
294
295
296
        padding = random.randint(1, 20)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth), padding=padding),
            transforms.ToTensor(),
        ])(img)
297
298
        self.assertEqual(result.size(1), oheight)
        self.assertEqual(result.size(2), owidth)
299

300
301
302
303
304
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height, width)),
            transforms.ToTensor()
        ])(img)
305
306
307
        self.assertEqual(result.size(1), height)
        self.assertEqual(result.size(2), width)
        self.assertTrue(np.allclose(img.numpy(), result.numpy()))
308

309
310
311
312
313
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height + 1, width + 1), pad_if_needed=True),
            transforms.ToTensor(),
        ])(img)
314
315
        self.assertEqual(result.size(1), height + 1)
        self.assertEqual(result.size(2), width + 1)
316

vfdev's avatar
vfdev committed
317
318
319
320
321
        t = transforms.RandomCrop(48)
        img = torch.ones(3, 32, 32)
        with self.assertRaisesRegex(ValueError, r"Required crop size .+ is larger then input image size .+"):
            t(img)

322
323
324
325
326
    def test_pad(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = torch.ones(3, height, width)
        padding = random.randint(1, 20)
327
        fill = random.randint(1, 50)
328
329
        result = transforms.Compose([
            transforms.ToPILImage(),
330
            transforms.Pad(padding, fill=fill),
331
332
            transforms.ToTensor(),
        ])(img)
333
334
        self.assertEqual(result.size(1), height + 2 * padding)
        self.assertEqual(result.size(2), width + 2 * padding)
335
336
337
338
339
340
341
342
        # check that all elements in the padded region correspond
        # to the pad value
        fill_v = fill / 255
        eps = 1e-5
        self.assertTrue((result[:, :padding, :] - fill_v).abs().max() < eps)
        self.assertTrue((result[:, :, :padding] - fill_v).abs().max() < eps)
        self.assertRaises(ValueError, transforms.Pad(padding, fill=(1, 2)),
                          transforms.ToPILImage()(img))
Soumith Chintala's avatar
Soumith Chintala committed
343

344
345
346
347
348
349
350
    def test_pad_with_tuple_of_pad_values(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = transforms.ToPILImage()(torch.ones(3, height, width))

        padding = tuple([random.randint(1, 20) for _ in range(2)])
        output = transforms.Pad(padding)(img)
351
        self.assertEqual(output.size, (width + padding[0] * 2, height + padding[1] * 2))
352
353
354

        padding = tuple([random.randint(1, 20) for _ in range(4)])
        output = transforms.Pad(padding)(img)
355
356
        self.assertEqual(output.size[0], width + padding[0] + padding[2])
        self.assertEqual(output.size[1], height + padding[1] + padding[3])
357

358
359
360
        # Checking if Padding can be printed as string
        transforms.Pad(padding).__repr__()

361
362
    def test_pad_with_non_constant_padding_modes(self):
        """Unit tests for edge, reflect, symmetric padding"""
vfdev's avatar
vfdev committed
363
        img = torch.zeros(3, 27, 27).byte()
364
365
366
367
368
369
370
371
372
        img[:, :, 0] = 1  # Constant value added to leftmost edge
        img = transforms.ToPILImage()(img)
        img = F.pad(img, 1, (200, 200, 200))

        # pad 3 to all sidess
        edge_padded_img = F.pad(img, 3, padding_mode='edge')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # edge_pad, edge_pad, edge_pad, constant_pad, constant value added to leftmost edge, 0
        edge_middle_slice = np.asarray(edge_padded_img).transpose(2, 0, 1)[0][17][:6]
373
374
        self.assertTrue(np.all(edge_middle_slice == np.asarray([200, 200, 200, 200, 1, 0])))
        self.assertEqual(transforms.ToTensor()(edge_padded_img).size(), (3, 35, 35))
375
376
377
378
379
380

        # Pad 3 to left/right, 2 to top/bottom
        reflect_padded_img = F.pad(img, (3, 2), padding_mode='reflect')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # reflect_pad, reflect_pad, reflect_pad, constant_pad, constant value added to leftmost edge, 0
        reflect_middle_slice = np.asarray(reflect_padded_img).transpose(2, 0, 1)[0][17][:6]
381
382
        self.assertTrue(np.all(reflect_middle_slice == np.asarray([0, 0, 1, 200, 1, 0])))
        self.assertEqual(transforms.ToTensor()(reflect_padded_img).size(), (3, 33, 35))
383
384
385
386
387
388

        # Pad 3 to left, 2 to top, 2 to right, 1 to bottom
        symmetric_padded_img = F.pad(img, (3, 2, 2, 1), padding_mode='symmetric')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # sym_pad, sym_pad, sym_pad, constant_pad, constant value added to leftmost edge, 0
        symmetric_middle_slice = np.asarray(symmetric_padded_img).transpose(2, 0, 1)[0][17][:6]
389
390
        self.assertTrue(np.all(symmetric_middle_slice == np.asarray([0, 1, 200, 200, 1, 0])))
        self.assertEqual(transforms.ToTensor()(symmetric_padded_img).size(), (3, 32, 34))
391

392
393
394
395
396
397
398
399
400
401
        # Check negative padding explicitly for symmetric case, since it is not
        # implemented for tensor case to compare to
        # Crop 1 to left, pad 2 to top, pad 3 to right, crop 3 to bottom
        symmetric_padded_img_neg = F.pad(img, (-1, 2, 3, -3), padding_mode='symmetric')
        symmetric_neg_middle_left = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][:3]
        symmetric_neg_middle_right = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][-4:]
        self.assertTrue(np.all(symmetric_neg_middle_left == np.asarray([1, 0, 0])))
        self.assertTrue(np.all(symmetric_neg_middle_right == np.asarray([200, 200, 0, 0])))
        self.assertEqual(transforms.ToTensor()(symmetric_padded_img_neg).size(), (3, 28, 31))

402
    def test_pad_raises_with_invalid_pad_sequence_len(self):
403
404
405
406
407
408
409
410
411
        with self.assertRaises(ValueError):
            transforms.Pad(())

        with self.assertRaises(ValueError):
            transforms.Pad((1, 2, 3))

        with self.assertRaises(ValueError):
            transforms.Pad((1, 2, 3, 4, 5))

412
413
414
415
416
417
418
419
    def test_pad_with_mode_F_images(self):
        pad = 2
        transform = transforms.Pad(pad)

        img = Image.new("F", (10, 10))
        padded_img = transform(img)
        self.assertSequenceEqual(padded_img.size, [edge_size + 2 * pad for edge_size in img.size])

Soumith Chintala's avatar
Soumith Chintala committed
420
421
422
423
    def test_lambda(self):
        trans = transforms.Lambda(lambda x: x.add(10))
        x = torch.randn(10)
        y = trans(x)
424
        self.assertTrue(y.equal(torch.add(x, 10)))
Soumith Chintala's avatar
Soumith Chintala committed
425
426
427
428

        trans = transforms.Lambda(lambda x: x.add_(10))
        x = torch.randn(10)
        y = trans(x)
429
        self.assertTrue(y.equal(x))
430

431
432
433
        # Checking if Lambda can be printed as string
        trans.__repr__()

434
    @unittest.skipIf(stats is None, 'scipy.stats not available')
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
    def test_random_apply(self):
        random_state = random.getstate()
        random.seed(42)
        random_apply_transform = transforms.RandomApply(
            [
                transforms.RandomRotation((-45, 45)),
                transforms.RandomHorizontalFlip(),
                transforms.RandomVerticalFlip(),
            ], p=0.75
        )
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        num_samples = 250
        num_applies = 0
        for _ in range(num_samples):
            out = random_apply_transform(img)
            if out != img:
                num_applies += 1

        p_value = stats.binom_test(num_applies, num_samples, p=0.75)
        random.setstate(random_state)
455
        self.assertGreater(p_value, 0.0001)
456
457
458
459

        # Checking if RandomApply can be printed as string
        random_apply_transform.__repr__()

460
    @unittest.skipIf(stats is None, 'scipy.stats not available')
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
    def test_random_choice(self):
        random_state = random.getstate()
        random.seed(42)
        random_choice_transform = transforms.RandomChoice(
            [
                transforms.Resize(15),
                transforms.Resize(20),
                transforms.CenterCrop(10)
            ]
        )
        img = transforms.ToPILImage()(torch.rand(3, 25, 25))
        num_samples = 250
        num_resize_15 = 0
        num_resize_20 = 0
        num_crop_10 = 0
        for _ in range(num_samples):
            out = random_choice_transform(img)
            if out.size == (15, 15):
                num_resize_15 += 1
            elif out.size == (20, 20):
                num_resize_20 += 1
            elif out.size == (10, 10):
                num_crop_10 += 1

        p_value = stats.binom_test(num_resize_15, num_samples, p=0.33333)
486
        self.assertGreater(p_value, 0.0001)
487
        p_value = stats.binom_test(num_resize_20, num_samples, p=0.33333)
488
        self.assertGreater(p_value, 0.0001)
489
        p_value = stats.binom_test(num_crop_10, num_samples, p=0.33333)
490
        self.assertGreater(p_value, 0.0001)
491
492
493
494
495

        random.setstate(random_state)
        # Checking if RandomChoice can be printed as string
        random_choice_transform.__repr__()

496
    @unittest.skipIf(stats is None, 'scipy.stats not available')
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
    def test_random_order(self):
        random_state = random.getstate()
        random.seed(42)
        random_order_transform = transforms.RandomOrder(
            [
                transforms.Resize(20),
                transforms.CenterCrop(10)
            ]
        )
        img = transforms.ToPILImage()(torch.rand(3, 25, 25))
        num_samples = 250
        num_normal_order = 0
        resize_crop_out = transforms.CenterCrop(10)(transforms.Resize(20)(img))
        for _ in range(num_samples):
            out = random_order_transform(img)
            if out == resize_crop_out:
                num_normal_order += 1

        p_value = stats.binom_test(num_normal_order, num_samples, p=0.5)
        random.setstate(random_state)
517
        self.assertGreater(p_value, 0.0001)
518
519
520
521

        # Checking if RandomOrder can be printed as string
        random_order_transform.__repr__()

522
    def test_to_tensor(self):
523
        test_channels = [1, 3, 4]
524
525
        height, width = 4, 4
        trans = transforms.ToTensor()
526

527
528
529
530
531
532
533
        with self.assertRaises(TypeError):
            trans(np.random.rand(1, height, width).tolist())

        with self.assertRaises(ValueError):
            trans(np.random.rand(height))
            trans(np.random.rand(1, 1, height, width))

534
535
536
537
        for channels in test_channels:
            input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
538
            self.assertTrue(np.allclose(input_data.numpy(), output.numpy()))
539

540
            ndarray = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
541
542
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1)) / 255.0
543
            self.assertTrue(np.allclose(output.numpy(), expected_output))
544

545
546
547
            ndarray = np.random.rand(height, width, channels).astype(np.float32)
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1))
548
            self.assertTrue(np.allclose(output.numpy(), expected_output))
549

550
551
552
553
        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
        img = transforms.ToPILImage()(input_data.mul(255)).convert('1')
        output = trans(img)
554
        self.assertTrue(np.allclose(input_data.numpy(), output.numpy()))
555

556
557
558
559
560
561
562
    def test_max_value(self):
        for dtype in int_dtypes():
            self.assertEqual(F_t._max_value(dtype), torch.iinfo(dtype).max)

        for dtype in float_dtypes():
            self.assertGreater(F_t._max_value(dtype), torch.finfo(dtype).max)

563
564
565
566
567
568
    def test_convert_image_dtype_float_to_float(self):
        for input_dtype, output_dtypes in cycle_over(float_dtypes()):
            input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
            for output_dtype in output_dtypes:
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
569
570
                    transform_script = torch.jit.script(F.convert_image_dtype)

571
                    output_image = transform(input_image)
572
573
574
575
                    output_image_script = transform_script(input_image, output_dtype)

                    script_diff = output_image_script - output_image
                    self.assertLess(script_diff.abs().max(), 1e-6)
576
577
578
579
580
581
582
583
584
585
586
587
588

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0.0, 1.0

                    self.assertAlmostEqual(actual_min, desired_min)
                    self.assertAlmostEqual(actual_max, desired_max)

    def test_convert_image_dtype_float_to_int(self):
        for input_dtype in float_dtypes():
            input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
            for output_dtype in int_dtypes():
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
589
                    transform_script = torch.jit.script(F.convert_image_dtype)
590
591
592
593
594
595
596
597

                    if (input_dtype == torch.float32 and output_dtype in (torch.int32, torch.int64)) or (
                            input_dtype == torch.float64 and output_dtype == torch.int64
                    ):
                        with self.assertRaises(RuntimeError):
                            transform(input_image)
                    else:
                        output_image = transform(input_image)
598
599
600
601
                        output_image_script = transform_script(input_image, output_dtype)

                        script_diff = output_image_script - output_image
                        self.assertLess(script_diff.abs().max(), 1e-6)
602
603
604
605
606
607
608
609
610
611
612
613
614

                        actual_min, actual_max = output_image.tolist()
                        desired_min, desired_max = 0, torch.iinfo(output_dtype).max

                        self.assertEqual(actual_min, desired_min)
                        self.assertEqual(actual_max, desired_max)

    def test_convert_image_dtype_int_to_float(self):
        for input_dtype in int_dtypes():
            input_image = torch.tensor((0, torch.iinfo(input_dtype).max), dtype=input_dtype)
            for output_dtype in float_dtypes():
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
615
616
                    transform_script = torch.jit.script(F.convert_image_dtype)

617
                    output_image = transform(input_image)
618
619
620
621
                    output_image_script = transform_script(input_image, output_dtype)

                    script_diff = output_image_script - output_image
                    self.assertLess(script_diff.abs().max(), 1e-6)
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0.0, 1.0

                    self.assertAlmostEqual(actual_min, desired_min)
                    self.assertGreaterEqual(actual_min, desired_min)
                    self.assertAlmostEqual(actual_max, desired_max)
                    self.assertLessEqual(actual_max, desired_max)

    def test_convert_image_dtype_int_to_int(self):
        for input_dtype, output_dtypes in cycle_over(int_dtypes()):
            input_max = torch.iinfo(input_dtype).max
            input_image = torch.tensor((0, input_max), dtype=input_dtype)
            for output_dtype in output_dtypes:
                output_max = torch.iinfo(output_dtype).max

                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
640
641
                    transform_script = torch.jit.script(F.convert_image_dtype)

642
                    output_image = transform(input_image)
643
644
645
646
647
648
                    output_image_script = transform_script(input_image, output_dtype)

                    script_diff = output_image_script.float() - output_image.float()
                    self.assertLess(
                        script_diff.abs().max(), 1e-6, msg="{} vs {}".format(output_image_script, output_image)
                    )
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0, output_max

                    # see https://github.com/pytorch/vision/pull/2078#issuecomment-641036236 for details
                    if input_max >= output_max:
                        error_term = 0
                    else:
                        error_term = 1 - (torch.iinfo(output_dtype).max + 1) // (torch.iinfo(input_dtype).max + 1)

                    self.assertEqual(actual_min, desired_min)
                    self.assertEqual(actual_max, desired_max + error_term)

    def test_convert_image_dtype_int_to_int_consistency(self):
        for input_dtype, output_dtypes in cycle_over(int_dtypes()):
            input_max = torch.iinfo(input_dtype).max
            input_image = torch.tensor((0, input_max), dtype=input_dtype)
            for output_dtype in output_dtypes:
                output_max = torch.iinfo(output_dtype).max
                if output_max <= input_max:
                    continue

                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
                    inverse_transfrom = transforms.ConvertImageDtype(input_dtype)
                    output_image = inverse_transfrom(transform(input_image))

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0, input_max

                    self.assertEqual(actual_min, desired_min)
                    self.assertEqual(actual_max, desired_max)

682
683
684
685
686
687
688
689
    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_to_tensor(self):
        trans = transforms.ToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
        self.assertTrue(np.allclose(output.numpy(), expected_output.numpy()))

    def test_pil_to_tensor(self):
        test_channels = [1, 3, 4]
        height, width = 4, 4
        trans = transforms.PILToTensor()

        with self.assertRaises(TypeError):
            trans(np.random.rand(1, height, width).tolist())
            trans(np.random.rand(1, height, width))

        for channels in test_channels:
            input_data = torch.ByteTensor(channels, height, width).random_(0, 255)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
            self.assertTrue(np.allclose(input_data.numpy(), output.numpy()))

            input_data = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
            expected_output = input_data.transpose((2, 0, 1))
            self.assertTrue(np.allclose(output.numpy(), expected_output))

            input_data = torch.as_tensor(np.random.rand(channels, height, width).astype(np.float32))
            img = transforms.ToPILImage()(input_data)  # CHW -> HWC and (* 255).byte()
            output = trans(img)  # HWC -> CHW
            expected_output = (input_data * 255).byte()
            self.assertTrue(np.allclose(output.numpy(), expected_output.numpy()))

        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
        img = transforms.ToPILImage()(input_data.mul(255)).convert('1')
        output = trans(img)
        self.assertTrue(np.allclose(input_data.numpy(), output.numpy()))

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_pil_to_tensor(self):
        trans = transforms.PILToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
733
        self.assertTrue(np.allclose(output.numpy(), expected_output.numpy()))
734
735
736
737

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_resize(self):
        trans = transforms.Compose([
738
            transforms.Resize(256, interpolation=Image.LINEAR),
739
740
741
            transforms.ToTensor(),
        ])

742
743
744
        # Checking if Compose, Resize and ToTensor can be printed as string
        trans.__repr__()

745
746
747
748
749
750
751
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        self.assertLess(np.abs((expected_output - output).mean()), 1e-3)
        self.assertLess((expected_output - output).var(), 1e-5)
        # note the high absolute tolerance
752
        self.assertTrue(np.allclose(output.numpy(), expected_output.numpy(), atol=5e-2))
753
754
755
756
757
758
759
760

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_crop(self):
        trans = transforms.Compose([
            transforms.CenterCrop(256),
            transforms.ToTensor(),
        ])

761
762
763
        # Checking if Compose, CenterCrop and ToTensor can be printed as string
        trans.__repr__()

764
765
766
767
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
768
        self.assertTrue(np.allclose(output.numpy(), expected_output.numpy()))
769

770
    def test_1_channel_tensor_to_pil_image(self):
771
772
        to_tensor = transforms.ToTensor()

773
        img_data_float = torch.Tensor(1, 4, 4).uniform_()
774
775
776
777
        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        img_data_int = torch.IntTensor(1, 4, 4).random_()

778
779
780
781
782
783
784
785
786
787
        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
788
789
                self.assertEqual(img.mode, mode)
                self.assertTrue(np.allclose(expected_output, to_tensor(img).numpy()))
790
791
        # 'F' mode for torch.FloatTensor
        img_F_mode = transforms.ToPILImage(mode='F')(img_data_float)
792
793
794
        self.assertEqual(img_F_mode.mode, 'F')
        self.assertTrue(np.allclose(np.array(Image.fromarray(img_data_float.squeeze(0).numpy(), mode='F')),
                                    np.array(img_F_mode)))
795
796
797
798
799
800
801
802
803
804
805
806

    def test_1_channel_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4, 1).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4, 1).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4, 1).random_().numpy()
        img_data_int = torch.IntTensor(4, 4, 1).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
807
808
                self.assertEqual(img.mode, mode)
                self.assertTrue(np.allclose(img_data[:, :, 0], img))
809

surgan12's avatar
surgan12 committed
810
811
812
813
    def test_2_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
814
                self.assertEqual(img.mode, 'LA')  # default should assume LA
surgan12's avatar
surgan12 committed
815
816
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
817
                self.assertEqual(img.mode, mode)
surgan12's avatar
surgan12 committed
818
819
            split = img.split()
            for i in range(2):
820
                self.assertTrue(np.allclose(img_data[:, :, i], split[i]))
surgan12's avatar
surgan12 committed
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837

        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
        for mode in [None, 'LA']:
            verify_img_data(img_data, mode)

        transforms.ToPILImage().__repr__()

        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 or 3 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
            transforms.ToPILImage(mode='RGB')(img_data)

    def test_2_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
838
                self.assertEqual(img.mode, 'LA')  # default should assume LA
surgan12's avatar
surgan12 committed
839
840
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
841
                self.assertEqual(img.mode, mode)
surgan12's avatar
surgan12 committed
842
843
            split = img.split()
            for i in range(2):
844
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
surgan12's avatar
surgan12 committed
845
846
847
848
849
850
851
852
853
854
855
856

        img_data = torch.Tensor(2, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'LA']:
            verify_img_data(img_data, expected_output, mode=mode)

        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 or 3 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
            transforms.ToPILImage(mode='RGB')(img_data)

857
858
859
860
    def test_3_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
861
                self.assertEqual(img.mode, 'RGB')  # default should assume RGB
862
863
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
864
                self.assertEqual(img.mode, mode)
865
866
            split = img.split()
            for i in range(3):
867
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
868

869
870
871
872
        img_data = torch.Tensor(3, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, expected_output, mode=mode)
873

874
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
875
            # should raise if we try a mode for 4 or 1 or 2 channel images
876
877
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
878
            transforms.ToPILImage(mode='LA')(img_data)
879

Varun Agrawal's avatar
Varun Agrawal committed
880
881
882
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(torch.Tensor(1, 3, 4, 4).uniform_())

883
884
885
886
    def test_3_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
887
                self.assertEqual(img.mode, 'RGB')  # default should assume RGB
888
889
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
890
                self.assertEqual(img.mode, mode)
891
892
            split = img.split()
            for i in range(3):
893
                self.assertTrue(np.allclose(img_data[:, :, i], split[i]))
894

895
896
897
898
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, mode)

899
900
901
        # Checking if ToPILImage can be printed as string
        transforms.ToPILImage().__repr__()

902
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
903
            # should raise if we try a mode for 4 or 1 or 2 channel images
904
905
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
906
            transforms.ToPILImage(mode='LA')(img_data)
907
908
909
910
911

    def test_4_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
912
                self.assertEqual(img.mode, 'RGBA')  # default should assume RGBA
913
914
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
915
                self.assertEqual(img.mode, mode)
916
917
918

            split = img.split()
            for i in range(4):
919
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
920

921
        img_data = torch.Tensor(4, 4, 4).uniform_()
922
        expected_output = img_data.mul(255).int().float().div(255)
surgan12's avatar
surgan12 committed
923
        for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
924
            verify_img_data(img_data, expected_output, mode)
925

926
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
927
            # should raise if we try a mode for 3 or 1 or 2 channel images
928
929
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
930
            transforms.ToPILImage(mode='LA')(img_data)
931
932
933
934
935

    def test_4_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
936
                self.assertEqual(img.mode, 'RGBA')  # default should assume RGBA
937
938
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
939
                self.assertEqual(img.mode, mode)
940
941
            split = img.split()
            for i in range(4):
942
                self.assertTrue(np.allclose(img_data[:, :, i], split[i]))
943

944
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()
surgan12's avatar
surgan12 committed
945
        for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
946
            verify_img_data(img_data, mode)
947

948
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
949
            # should raise if we try a mode for 3 or 1 or 2 channel images
950
951
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
952
            transforms.ToPILImage(mode='LA')(img_data)
953

Varun Agrawal's avatar
Varun Agrawal committed
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
    def test_2d_tensor_to_pil_image(self):
        to_tensor = transforms.ToTensor()

        img_data_float = torch.Tensor(4, 4).uniform_()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(4, 4).random_()
        img_data_int = torch.IntTensor(4, 4).random_()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
972
973
                self.assertEqual(img.mode, mode)
                self.assertTrue(np.allclose(expected_output, to_tensor(img).numpy()))
Varun Agrawal's avatar
Varun Agrawal committed
974
975
976
977
978
979
980
981
982
983
984
985

    def test_2d_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4).random_().numpy()
        img_data_int = torch.IntTensor(4, 4).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
986
987
                self.assertEqual(img.mode, mode)
                self.assertTrue(np.allclose(img_data, img))
Varun Agrawal's avatar
Varun Agrawal committed
988
989
990
991
992

    def test_tensor_bad_types_to_pil_image(self):
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(torch.ones(1, 3, 4, 4))

993
    def test_ndarray_bad_types_to_pil_image(self):
994
        trans = transforms.ToPILImage()
995
        with self.assertRaises(TypeError):
996
997
998
999
1000
            trans(np.ones([4, 4, 1], np.int64))
            trans(np.ones([4, 4, 1], np.uint16))
            trans(np.ones([4, 4, 1], np.uint32))
            trans(np.ones([4, 4, 1], np.float64))

Varun Agrawal's avatar
Varun Agrawal committed
1001
1002
1003
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(np.ones([1, 4, 4, 3]))

1004
1005
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_vertical_flip(self):
1006
1007
        random_state = random.getstate()
        random.seed(42)
1008
1009
1010
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        vimg = img.transpose(Image.FLIP_TOP_BOTTOM)

1011
        num_samples = 250
1012
        num_vertical = 0
1013
        for _ in range(num_samples):
1014
1015
1016
1017
            out = transforms.RandomVerticalFlip()(img)
            if out == vimg:
                num_vertical += 1

1018
1019
        p_value = stats.binom_test(num_vertical, num_samples, p=0.5)
        random.setstate(random_state)
1020
        self.assertGreater(p_value, 0.0001)
1021

1022
1023
1024
1025
1026
1027
1028
1029
1030
        num_samples = 250
        num_vertical = 0
        for _ in range(num_samples):
            out = transforms.RandomVerticalFlip(p=0.7)(img)
            if out == vimg:
                num_vertical += 1

        p_value = stats.binom_test(num_vertical, num_samples, p=0.7)
        random.setstate(random_state)
1031
        self.assertGreater(p_value, 0.0001)
1032

1033
1034
1035
        # Checking if RandomVerticalFlip can be printed as string
        transforms.RandomVerticalFlip().__repr__()

1036
1037
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_horizontal_flip(self):
1038
1039
        random_state = random.getstate()
        random.seed(42)
1040
1041
1042
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        himg = img.transpose(Image.FLIP_LEFT_RIGHT)

1043
        num_samples = 250
1044
        num_horizontal = 0
1045
        for _ in range(num_samples):
1046
1047
1048
1049
            out = transforms.RandomHorizontalFlip()(img)
            if out == himg:
                num_horizontal += 1

1050
1051
        p_value = stats.binom_test(num_horizontal, num_samples, p=0.5)
        random.setstate(random_state)
1052
        self.assertGreater(p_value, 0.0001)
1053

1054
1055
1056
1057
1058
1059
1060
1061
1062
        num_samples = 250
        num_horizontal = 0
        for _ in range(num_samples):
            out = transforms.RandomHorizontalFlip(p=0.7)(img)
            if out == himg:
                num_horizontal += 1

        p_value = stats.binom_test(num_horizontal, num_samples, p=0.7)
        random.setstate(random_state)
1063
        self.assertGreater(p_value, 0.0001)
1064

1065
1066
1067
        # Checking if RandomHorizontalFlip can be printed as string
        transforms.RandomHorizontalFlip().__repr__()

1068
    @unittest.skipIf(stats is None, 'scipy.stats is not available')
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
    def test_normalize(self):
        def samples_from_standard_normal(tensor):
            p_value = stats.kstest(list(tensor.view(-1)), 'norm', args=(0, 1)).pvalue
            return p_value > 0.0001

        random_state = random.getstate()
        random.seed(42)
        for channels in [1, 3]:
            img = torch.rand(channels, 10, 10)
            mean = [img[c].mean() for c in range(channels)]
            std = [img[c].std() for c in range(channels)]
            normalized = transforms.Normalize(mean, std)(img)
1081
            self.assertTrue(samples_from_standard_normal(normalized))
1082
1083
        random.setstate(random_state)

1084
1085
1086
        # Checking if Normalize can be printed as string
        transforms.Normalize(mean, std).__repr__()

1087
1088
1089
        # Checking the optional in-place behaviour
        tensor = torch.rand((1, 16, 16))
        tensor_inplace = transforms.Normalize((0.5,), (0.5,), inplace=True)(tensor)
1090
        self.assertTrue(torch.equal(tensor, tensor_inplace))
1091

1092
1093
1094
1095
1096
1097
1098
1099
1100
    def test_normalize_different_dtype(self):
        for dtype1 in [torch.float32, torch.float64]:
            img = torch.rand(3, 10, 10, dtype=dtype1)
            for dtype2 in [torch.int64, torch.float32, torch.float64]:
                mean = torch.tensor([1, 2, 3], dtype=dtype2)
                std = torch.tensor([1, 2, 1], dtype=dtype2)
                # checks that it doesn't crash
                transforms.functional.normalize(img, mean, std)

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
    def test_normalize_3d_tensor(self):
        torch.manual_seed(28)
        n_channels = 3
        img_size = 10
        mean = torch.rand(n_channels)
        std = torch.rand(n_channels)
        img = torch.rand(n_channels, img_size, img_size)
        target = F.normalize(img, mean, std).numpy()

        mean_unsqueezed = mean.view(-1, 1, 1)
        std_unsqueezed = std.view(-1, 1, 1)
        result1 = F.normalize(img, mean_unsqueezed, std_unsqueezed)
        result2 = F.normalize(img,
                              mean_unsqueezed.repeat(1, img_size, img_size),
                              std_unsqueezed.repeat(1, img_size, img_size))
        assert_array_almost_equal(target, result1.numpy())
        assert_array_almost_equal(target, result2.numpy())

1119
1120
1121
1122
1123
1124
1125
    def test_adjust_brightness(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
1126
        y_pil = F.adjust_brightness(x_pil, 1)
1127
        y_np = np.array(y_pil)
1128
        self.assertTrue(np.allclose(y_np, x_np))
1129
1130

        # test 1
1131
        y_pil = F.adjust_brightness(x_pil, 0.5)
1132
1133
1134
        y_np = np.array(y_pil)
        y_ans = [0, 2, 6, 27, 67, 113, 18, 4, 117, 45, 127, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1135
        self.assertTrue(np.allclose(y_np, y_ans))
1136
1137

        # test 2
1138
        y_pil = F.adjust_brightness(x_pil, 2)
1139
1140
1141
        y_np = np.array(y_pil)
        y_ans = [0, 10, 26, 108, 255, 255, 74, 16, 255, 180, 255, 2]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1142
        self.assertTrue(np.allclose(y_np, y_ans))
1143
1144
1145
1146
1147
1148
1149
1150

    def test_adjust_contrast(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
1151
        y_pil = F.adjust_contrast(x_pil, 1)
1152
        y_np = np.array(y_pil)
1153
        self.assertTrue(np.allclose(y_np, x_np))
1154
1155

        # test 1
1156
        y_pil = F.adjust_contrast(x_pil, 0.5)
1157
1158
1159
        y_np = np.array(y_pil)
        y_ans = [43, 45, 49, 70, 110, 156, 61, 47, 160, 88, 170, 43]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1160
        self.assertTrue(np.allclose(y_np, y_ans))
1161
1162

        # test 2
1163
        y_pil = F.adjust_contrast(x_pil, 2)
1164
1165
1166
        y_np = np.array(y_pil)
        y_ans = [0, 0, 0, 22, 184, 255, 0, 0, 255, 94, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1167
        self.assertTrue(np.allclose(y_np, y_ans))
1168

Francisco Massa's avatar
Francisco Massa committed
1169
    @unittest.skipIf(Image.__version__ >= '7', "Temporarily disabled")
1170
1171
1172
1173
1174
1175
1176
    def test_adjust_saturation(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
1177
        y_pil = F.adjust_saturation(x_pil, 1)
1178
        y_np = np.array(y_pil)
1179
        self.assertTrue(np.allclose(y_np, x_np))
1180
1181

        # test 1
1182
        y_pil = F.adjust_saturation(x_pil, 0.5)
1183
1184
1185
        y_np = np.array(y_pil)
        y_ans = [2, 4, 8, 87, 128, 173, 39, 25, 138, 133, 215, 88]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1186
        self.assertTrue(np.allclose(y_np, y_ans))
1187
1188

        # test 2
1189
        y_pil = F.adjust_saturation(x_pil, 2)
1190
1191
1192
        y_np = np.array(y_pil)
        y_ans = [0, 6, 22, 0, 149, 255, 32, 0, 255, 4, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1193
        self.assertTrue(np.allclose(y_np, y_ans))
1194
1195
1196
1197
1198
1199
1200
1201

    def test_adjust_hue(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        with self.assertRaises(ValueError):
1202
1203
            F.adjust_hue(x_pil, -0.7)
            F.adjust_hue(x_pil, 1)
1204
1205
1206

        # test 0: almost same as x_data but not exact.
        # probably because hsv <-> rgb floating point ops
1207
        y_pil = F.adjust_hue(x_pil, 0)
1208
1209
1210
        y_np = np.array(y_pil)
        y_ans = [0, 5, 13, 54, 139, 226, 35, 8, 234, 91, 255, 1]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1211
        self.assertTrue(np.allclose(y_np, y_ans))
1212
1213

        # test 1
1214
        y_pil = F.adjust_hue(x_pil, 0.25)
1215
1216
1217
        y_np = np.array(y_pil)
        y_ans = [13, 0, 12, 224, 54, 226, 234, 8, 99, 1, 222, 255]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1218
        self.assertTrue(np.allclose(y_np, y_ans))
1219
1220

        # test 2
1221
        y_pil = F.adjust_hue(x_pil, -0.25)
1222
1223
1224
        y_np = np.array(y_pil)
        y_ans = [0, 13, 2, 54, 226, 58, 8, 234, 152, 255, 43, 1]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1225
        self.assertTrue(np.allclose(y_np, y_ans))
1226
1227
1228
1229
1230
1231
1232
1233

    def test_adjust_gamma(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
1234
        y_pil = F.adjust_gamma(x_pil, 1)
1235
        y_np = np.array(y_pil)
1236
        self.assertTrue(np.allclose(y_np, x_np))
1237
1238

        # test 1
1239
        y_pil = F.adjust_gamma(x_pil, 0.5)
1240
        y_np = np.array(y_pil)
1241
        y_ans = [0, 35, 57, 117, 186, 241, 97, 45, 245, 152, 255, 16]
1242
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1243
        self.assertTrue(np.allclose(y_np, y_ans))
1244
1245

        # test 2
1246
        y_pil = F.adjust_gamma(x_pil, 2)
1247
        y_np = np.array(y_pil)
1248
        y_ans = [0, 0, 0, 11, 71, 201, 5, 0, 215, 31, 255, 0]
1249
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1250
        self.assertTrue(np.allclose(y_np, y_ans))
1251
1252
1253
1254
1255
1256
1257
1258

    def test_adjusts_L_mode(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_rgb = Image.fromarray(x_np, mode='RGB')

        x_l = x_rgb.convert('L')
1259
1260
1261
1262
1263
        self.assertEqual(F.adjust_brightness(x_l, 2).mode, 'L')
        self.assertEqual(F.adjust_saturation(x_l, 2).mode, 'L')
        self.assertEqual(F.adjust_contrast(x_l, 2).mode, 'L')
        self.assertEqual(F.adjust_hue(x_l, 0.4).mode, 'L')
        self.assertEqual(F.adjust_gamma(x_l, 0.5).mode, 'L')
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

    def test_color_jitter(self):
        color_jitter = transforms.ColorJitter(2, 2, 2, 0.1)

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')

        for i in range(10):
            y_pil = color_jitter(x_pil)
1276
            self.assertEqual(y_pil.mode, x_pil.mode)
1277
1278

            y_pil_2 = color_jitter(x_pil_2)
1279
            self.assertEqual(y_pil_2.mode, x_pil_2.mode)
1280

1281
1282
1283
        # Checking if ColorJitter can be printed as string
        color_jitter.__repr__()

1284
    def test_linear_transformation(self):
ekka's avatar
ekka committed
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
        num_samples = 1000
        x = torch.randn(num_samples, 3, 10, 10)
        flat_x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
        # compute principal components
        sigma = torch.mm(flat_x.t(), flat_x) / flat_x.size(0)
        u, s, _ = np.linalg.svd(sigma.numpy())
        zca_epsilon = 1e-10  # avoid division by 0
        d = torch.Tensor(np.diag(1. / np.sqrt(s + zca_epsilon)))
        u = torch.Tensor(u)
        principal_components = torch.mm(torch.mm(u, d), u.t())
        mean_vector = (torch.sum(flat_x, dim=0) / flat_x.size(0))
        # initialize whitening matrix
1297
        whitening = transforms.LinearTransformation(principal_components, mean_vector)
ekka's avatar
ekka committed
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
        # estimate covariance and mean using weak law of large number
        num_features = flat_x.size(1)
        cov = 0.0
        mean = 0.0
        for i in x:
            xwhite = whitening(i)
            xwhite = xwhite.view(1, -1).numpy()
            cov += np.dot(xwhite, xwhite.T) / num_features
            mean += np.sum(xwhite) / num_features
        # if rtol for std = 1e-3 then rtol for cov = 2e-3 as std**2 = cov
1308
1309
1310
1311
        self.assertTrue(np.allclose(cov / num_samples, np.identity(1), rtol=2e-3),
                        "cov not close to 1")
        self.assertTrue(np.allclose(mean / num_samples, 0, rtol=1e-3),
                        "mean not close to 0")
ekka's avatar
ekka committed
1312

1313
        # Checking if LinearTransformation can be printed as string
ekka's avatar
ekka committed
1314
1315
        whitening.__repr__()

1316
1317
1318
1319
    def test_rotate(self):
        x = np.zeros((100, 100, 3), dtype=np.uint8)
        x[40, 40] = [255, 255, 255]

vfdev's avatar
vfdev committed
1320
        with self.assertRaisesRegex(TypeError, r"img should be PIL Image"):
1321
1322
1323
1324
1325
            F.rotate(x, 10)

        img = F.to_pil_image(x)

        result = F.rotate(img, 45)
1326
        self.assertEqual(result.size, (100, 100))
1327
        r, c, ch = np.where(result)
1328
1329
1330
        self.assertTrue(all(x in r for x in [49, 50]))
        self.assertTrue(all(x in c for x in [36]))
        self.assertTrue(all(x in ch for x in [0, 1, 2]))
1331
1332

        result = F.rotate(img, 45, expand=True)
1333
        self.assertEqual(result.size, (142, 142))
1334
        r, c, ch = np.where(result)
1335
1336
1337
        self.assertTrue(all(x in r for x in [70, 71]))
        self.assertTrue(all(x in c for x in [57]))
        self.assertTrue(all(x in ch for x in [0, 1, 2]))
1338
1339

        result = F.rotate(img, 45, center=(40, 40))
1340
        self.assertEqual(result.size, (100, 100))
1341
        r, c, ch = np.where(result)
1342
1343
1344
        self.assertTrue(all(x in r for x in [40]))
        self.assertTrue(all(x in c for x in [40]))
        self.assertTrue(all(x in ch for x in [0, 1, 2]))
1345
1346
1347
1348

        result_a = F.rotate(img, 90)
        result_b = F.rotate(img, -270)

1349
        self.assertTrue(np.all(np.array(result_a) == np.array(result_b)))
1350

Philip Meier's avatar
Philip Meier committed
1351
1352
1353
    def test_rotate_fill(self):
        img = F.to_pil_image(np.ones((100, 100, 3), dtype=np.uint8) * 255, "RGB")

1354
        modes = ("L", "RGB", "F")
Philip Meier's avatar
Philip Meier committed
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
        nums_bands = [len(mode) for mode in modes]
        fill = 127

        for mode, num_bands in zip(modes, nums_bands):
            img_conv = img.convert(mode)
            img_rot = F.rotate(img_conv, 45.0, fill=fill)
            pixel = img_rot.getpixel((0, 0))

            if not isinstance(pixel, tuple):
                pixel = (pixel,)
            self.assertTupleEqual(pixel, tuple([fill] * num_bands))

            for wrong_num_bands in set(nums_bands) - {num_bands}:
                with self.assertRaises(ValueError):
                    F.rotate(img_conv, 45.0, fill=tuple([fill] * wrong_num_bands))

1371
    def test_affine(self):
Francisco Massa's avatar
Francisco Massa committed
1372
1373
1374
        input_img = np.zeros((40, 40, 3), dtype=np.uint8)
        cnt = [20, 20]
        for pt in [(16, 16), (20, 16), (20, 20)]:
1375
1376
1377
1378
            for i in range(-5, 5):
                for j in range(-5, 5):
                    input_img[pt[0] + i, pt[1] + j, :] = [255, 155, 55]

vfdev's avatar
vfdev committed
1379
1380
        with self.assertRaises(TypeError, msg="Argument translate should be a sequence"):
            F.affine(input_img, 10, translate=0, scale=1, shear=1)
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

        pil_img = F.to_pil_image(input_img)

        def _to_3x3_inv(inv_result_matrix):
            result_matrix = np.zeros((3, 3))
            result_matrix[:2, :] = np.array(inv_result_matrix).reshape((2, 3))
            result_matrix[2, 2] = 1
            return np.linalg.inv(result_matrix)

        def _test_transformation(a, t, s, sh):
            a_rad = math.radians(a)
ptrblck's avatar
ptrblck committed
1392
            s_rad = [math.radians(sh_) for sh_ in sh]
1393
1394
1395
1396
1397
            cx, cy = cnt
            tx, ty = t
            sx, sy = s_rad
            rot = a_rad

1398
            # 1) Check transformation matrix:
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
            C = np.array([[1, 0, cx],
                          [0, 1, cy],
                          [0, 0, 1]])
            T = np.array([[1, 0, tx],
                          [0, 1, ty],
                          [0, 0, 1]])
            Cinv = np.linalg.inv(C)

            RS = np.array(
                [[s * math.cos(rot), -s * math.sin(rot), 0],
                 [s * math.sin(rot), s * math.cos(rot), 0],
                 [0, 0, 1]])

            SHx = np.array([[1, -math.tan(sx), 0],
                            [0, 1, 0],
                            [0, 0, 1]])

            SHy = np.array([[1, 0, 0],
                            [-math.tan(sy), 1, 0],
                            [0, 0, 1]])

            RSS = np.matmul(RS, np.matmul(SHy, SHx))

            true_matrix = np.matmul(T, np.matmul(C, np.matmul(RSS, Cinv)))

1424
1425
            result_matrix = _to_3x3_inv(F._get_inverse_affine_matrix(center=cnt, angle=a,
                                                                     translate=t, scale=s, shear=sh))
1426
            self.assertLess(np.sum(np.abs(true_matrix - result_matrix)), 1e-10)
1427
            # 2) Perform inverse mapping:
Francisco Massa's avatar
Francisco Massa committed
1428
            true_result = np.zeros((40, 40, 3), dtype=np.uint8)
1429
1430
1431
            inv_true_matrix = np.linalg.inv(true_matrix)
            for y in range(true_result.shape[0]):
                for x in range(true_result.shape[1]):
1432
1433
1434
1435
1436
1437
                    # Same as for PIL:
                    # https://github.com/python-pillow/Pillow/blob/71f8ec6a0cfc1008076a023c0756542539d057ab/
                    # src/libImaging/Geometry.c#L1060
                    input_pt = np.array([x + 0.5, y + 0.5, 1.0])
                    res = np.floor(np.dot(inv_true_matrix, input_pt)).astype(np.int)
                    _x, _y = res[:2]
1438
1439
1440
1441
                    if 0 <= _x < input_img.shape[1] and 0 <= _y < input_img.shape[0]:
                        true_result[y, x, :] = input_img[_y, _x, :]

            result = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh)
1442
            self.assertEqual(result.size, pil_img.size)
1443
1444
1445
1446
            # Compute number of different pixels:
            np_result = np.array(result)
            n_diff_pixels = np.sum(np_result != true_result) / 3
            # Accept 3 wrong pixels
1447
1448
1449
            self.assertLess(n_diff_pixels, 3,
                            "a={}, t={}, s={}, sh={}\n".format(a, t, s, sh) +
                            "n diff pixels={}\n".format(np.sum(np.array(result)[:, :, 0] != true_result[:, :, 0])))
1450
1451
1452

        # Test rotation
        a = 45
ptrblck's avatar
ptrblck committed
1453
        _test_transformation(a=a, t=(0, 0), s=1.0, sh=(0.0, 0.0))
1454
1455
1456

        # Test translation
        t = [10, 15]
ptrblck's avatar
ptrblck committed
1457
        _test_transformation(a=0.0, t=t, s=1.0, sh=(0.0, 0.0))
1458
1459
1460

        # Test scale
        s = 1.2
ptrblck's avatar
ptrblck committed
1461
        _test_transformation(a=0.0, t=(0.0, 0.0), s=s, sh=(0.0, 0.0))
1462
1463

        # Test shear
ptrblck's avatar
ptrblck committed
1464
        sh = [45.0, 25.0]
1465
1466
1467
1468
1469
        _test_transformation(a=0.0, t=(0.0, 0.0), s=1.0, sh=sh)

        # Test rotation, scale, translation, shear
        for a in range(-90, 90, 25):
            for t1 in range(-10, 10, 5):
1470
                for s in [0.75, 0.98, 1.0, 1.2, 1.4]:
1471
                    for sh in range(-15, 15, 5):
ptrblck's avatar
ptrblck committed
1472
                        _test_transformation(a=a, t=(t1, t1), s=s, sh=(sh, sh))
1473

1474
1475
1476
1477
1478
1479
1480
1481
1482
    def test_random_rotation(self):

        with self.assertRaises(ValueError):
            transforms.RandomRotation(-0.7)
            transforms.RandomRotation([-0.7])
            transforms.RandomRotation([-0.7, 0, 0.7])

        t = transforms.RandomRotation(10)
        angle = t.get_params(t.degrees)
1483
        self.assertTrue(angle > -10 and angle < 10)
1484
1485
1486

        t = transforms.RandomRotation((-10, 10))
        angle = t.get_params(t.degrees)
1487
        self.assertTrue(angle > -10 and angle < 10)
1488

1489
1490
1491
        # Checking if RandomRotation can be printed as string
        t.__repr__()

1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
    def test_random_affine(self):

        with self.assertRaises(ValueError):
            transforms.RandomAffine(-0.7)
            transforms.RandomAffine([-0.7])
            transforms.RandomAffine([-0.7, 0, 0.7])

            transforms.RandomAffine([-90, 90], translate=2.0)
            transforms.RandomAffine([-90, 90], translate=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[-1.0, 0.0, 1.0])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, -0.5])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 3.0, -0.5])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=-7)
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10])
ptrblck's avatar
ptrblck committed
1511
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10, 0, 10])
1512
1513
1514
1515

        x = np.zeros((100, 100, 3), dtype=np.uint8)
        img = F.to_pil_image(x)

ptrblck's avatar
ptrblck committed
1516
        t = transforms.RandomAffine(10, translate=[0.5, 0.3], scale=[0.7, 1.3], shear=[-10, 10, 20, 40])
1517
1518
1519
        for _ in range(100):
            angle, translations, scale, shear = t.get_params(t.degrees, t.translate, t.scale, t.shear,
                                                             img_size=img.size)
1520
1521
1522
1523
1524
1525
1526
1527
            self.assertTrue(-10 < angle < 10)
            self.assertTrue(-img.size[0] * 0.5 <= translations[0] <= img.size[0] * 0.5,
                            "{} vs {}".format(translations[0], img.size[0] * 0.5))
            self.assertTrue(-img.size[1] * 0.5 <= translations[1] <= img.size[1] * 0.5,
                            "{} vs {}".format(translations[1], img.size[1] * 0.5))
            self.assertTrue(0.7 < scale < 1.3)
            self.assertTrue(-10 < shear[0] < 10)
            self.assertTrue(-20 < shear[1] < 40)
1528
1529
1530
1531
1532

        # Checking if RandomAffine can be printed as string
        t.__repr__()

        t = transforms.RandomAffine(10, resample=Image.BILINEAR)
1533
        self.assertIn("Image.BILINEAR", t.__repr__())
1534

1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
    def test_to_grayscale(self):
        """Unit tests for grayscale transform"""

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        # Test Set: Grayscale an image with desired number of output channels
        # Case 1: RGB -> 1 channel grayscale
        trans1 = transforms.Grayscale(num_output_channels=1)
        gray_pil_1 = trans1(x_pil)
        gray_np_1 = np.array(gray_pil_1)
1550
1551
        self.assertEqual(gray_pil_1.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_1.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1552
1553
1554
1555
1556
1557
        np.testing.assert_equal(gray_np, gray_np_1)

        # Case 2: RGB -> 3 channel grayscale
        trans2 = transforms.Grayscale(num_output_channels=3)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
1558
1559
        self.assertEqual(gray_pil_2.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_2.shape, tuple(x_shape), 'should be 3 channel')
1560
1561
1562
1563
1564
1565
1566
1567
        np.testing.assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
        np.testing.assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_2[:, :, 0])

        # Case 3: 1 channel grayscale -> 1 channel grayscale
        trans3 = transforms.Grayscale(num_output_channels=1)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
1568
1569
        self.assertEqual(gray_pil_3.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_3.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1570
1571
1572
1573
1574
1575
        np.testing.assert_equal(gray_np, gray_np_3)

        # Case 4: 1 channel grayscale -> 3 channel grayscale
        trans4 = transforms.Grayscale(num_output_channels=3)
        gray_pil_4 = trans4(x_pil_2)
        gray_np_4 = np.array(gray_pil_4)
1576
1577
        self.assertEqual(gray_pil_4.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_4.shape, tuple(x_shape), 'should be 3 channel')
1578
1579
1580
1581
        np.testing.assert_equal(gray_np_4[:, :, 0], gray_np_4[:, :, 1])
        np.testing.assert_equal(gray_np_4[:, :, 1], gray_np_4[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_4[:, :, 0])

1582
1583
1584
        # Checking if Grayscale can be printed as string
        trans4.__repr__()

1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_grayscale(self):
        """Unit tests for random grayscale transform"""

        # Test Set 1: RGB -> 3 channel grayscale
        random_state = random.getstate()
        random.seed(42)
        x_shape = [2, 2, 3]
        x_np = np.random.randint(0, 256, x_shape, np.uint8)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        num_samples = 250
        num_gray = 0
        for _ in range(num_samples):
            gray_pil_2 = transforms.RandomGrayscale(p=0.5)(x_pil)
            gray_np_2 = np.array(gray_pil_2)
            if np.array_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1]) and \
1604
1605
                    np.array_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2]) and \
                    np.array_equal(gray_np, gray_np_2[:, :, 0]):
1606
1607
1608
1609
                num_gray = num_gray + 1

        p_value = stats.binom_test(num_gray, num_samples, p=0.5)
        random.setstate(random_state)
1610
        self.assertGreater(p_value, 0.0001)
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630

        # Test Set 2: grayscale -> 1 channel grayscale
        random_state = random.getstate()
        random.seed(42)
        x_shape = [2, 2, 3]
        x_np = np.random.randint(0, 256, x_shape, np.uint8)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        num_samples = 250
        num_gray = 0
        for _ in range(num_samples):
            gray_pil_3 = transforms.RandomGrayscale(p=0.5)(x_pil_2)
            gray_np_3 = np.array(gray_pil_3)
            if np.array_equal(gray_np, gray_np_3):
                num_gray = num_gray + 1

        p_value = stats.binom_test(num_gray, num_samples, p=1.0)  # Note: grayscale is always unchanged
        random.setstate(random_state)
1631
        self.assertGreater(p_value, 0.0001)
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

        # Test set 3: Explicit tests
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        # Case 3a: RGB -> 3 channel grayscale (grayscaled)
        trans2 = transforms.RandomGrayscale(p=1.0)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
1645
1646
        self.assertEqual(gray_pil_2.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_2.shape, tuple(x_shape), 'should be 3 channel')
1647
1648
1649
1650
1651
1652
1653
1654
        np.testing.assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
        np.testing.assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_2[:, :, 0])

        # Case 3b: RGB -> 3 channel grayscale (unchanged)
        trans2 = transforms.RandomGrayscale(p=0.0)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
1655
1656
        self.assertEqual(gray_pil_2.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_2.shape, tuple(x_shape), 'should be 3 channel')
1657
1658
1659
1660
1661
1662
        np.testing.assert_equal(x_np, gray_np_2)

        # Case 3c: 1 channel grayscale -> 1 channel grayscale (grayscaled)
        trans3 = transforms.RandomGrayscale(p=1.0)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
1663
1664
        self.assertEqual(gray_pil_3.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_3.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1665
1666
1667
1668
1669
1670
        np.testing.assert_equal(gray_np, gray_np_3)

        # Case 3d: 1 channel grayscale -> 1 channel grayscale (unchanged)
        trans3 = transforms.RandomGrayscale(p=0.0)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
1671
1672
        self.assertEqual(gray_pil_3.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_3.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1673
1674
        np.testing.assert_equal(gray_np, gray_np_3)

1675
1676
1677
        # Checking if RandomGrayscale can be printed as string
        trans3.__repr__()

1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
    def test_gaussian_blur_asserts(self):
        np_img = np.ones((100, 100, 3), dtype=np.uint8) * 255
        img = F.to_pil_image(np_img, "RGB")

        with self.assertRaisesRegex(ValueError, r"If kernel_size is a sequence its length should be 2"):
            F.gaussian_blur(img, [3])

        with self.assertRaisesRegex(ValueError, r"If kernel_size is a sequence its length should be 2"):
            F.gaussian_blur(img, [3, 3, 3])
        with self.assertRaisesRegex(ValueError, r"Kernel size should be a tuple/list of two integers"):
            transforms.GaussianBlur([3, 3, 3])

        with self.assertRaisesRegex(ValueError, r"kernel_size should have odd and positive integers"):
            F.gaussian_blur(img, [4, 4])
        with self.assertRaisesRegex(ValueError, r"Kernel size value should be an odd and positive number"):
            transforms.GaussianBlur([4, 4])

        with self.assertRaisesRegex(ValueError, r"kernel_size should have odd and positive integers"):
            F.gaussian_blur(img, [-3, -3])
        with self.assertRaisesRegex(ValueError, r"Kernel size value should be an odd and positive number"):
            transforms.GaussianBlur([-3, -3])

        with self.assertRaisesRegex(ValueError, r"If sigma is a sequence, its length should be 2"):
            F.gaussian_blur(img, 3, [1, 1, 1])
        with self.assertRaisesRegex(ValueError, r"sigma should be a single number or a list/tuple with length 2"):
            transforms.GaussianBlur(3, [1, 1, 1])

        with self.assertRaisesRegex(ValueError, r"sigma should have positive values"):
            F.gaussian_blur(img, 3, -1.0)
        with self.assertRaisesRegex(ValueError, r"If sigma is a single number, it must be positive"):
            transforms.GaussianBlur(3, -1.0)

        with self.assertRaisesRegex(TypeError, r"kernel_size should be int or a sequence of integers"):
            F.gaussian_blur(img, "kernel_size_string")
        with self.assertRaisesRegex(ValueError, r"Kernel size should be a tuple/list of two integers"):
            transforms.GaussianBlur("kernel_size_string")

        with self.assertRaisesRegex(TypeError, r"sigma should be either float or sequence of floats"):
            F.gaussian_blur(img, 3, "sigma_string")
        with self.assertRaisesRegex(ValueError, r"sigma should be a single number or a list/tuple with length 2"):
            transforms.GaussianBlur(3, "sigma_string")

1720

1721
1722
if __name__ == '__main__':
    unittest.main()