test_transforms.py 48.8 KB
Newer Older
1
2
import torch
import torchvision.transforms as transforms
3
import torchvision.transforms.functional as F
4
from torch._utils_internal import get_file_path_2
5
import unittest
6
import math
7
import random
8
import numpy as np
9
10
11
12
13
14
from PIL import Image
try:
    import accimage
except ImportError:
    accimage = None

15
16
17
18
19
try:
    from scipy import stats
except ImportError:
    stats = None

20
GRACE_HOPPER = get_file_path_2('assets/grace_hopper_517x606.jpg')
21

22

23
class Tester(unittest.TestCase):
24

25
26
27
28
    def test_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
29
30
        owidth = random.randint(5, (width - 2) / 2) * 2

31
        img = torch.ones(3, height, width)
32
33
34
        oh1 = (height - oheight) // 2
        ow1 = (width - owidth) // 2
        imgnarrow = img[:, oh1:oh1 + oheight, ow1:ow1 + owidth]
35
36
37
38
39
40
41
        imgnarrow.fill_(0)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        assert result.sum() == 0, "height: " + str(height) + " width: " \
42
                                  + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
43
44
45
46
47
48
49
50
51
        oheight += 1
        owidth += 1
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum1 = result.sum()
        assert sum1 > 1, "height: " + str(height) + " width: " \
52
                         + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
53
        oheight += 1
54
        owidth += 1
55
56
57
58
59
60
61
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum2 = result.sum()
        assert sum2 > 0, "height: " + str(height) + " width: " \
62
                         + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
63
        assert sum2 > sum1, "height: " + str(height) + " width: " \
64
                            + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    def test_five_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for single_dim in [True, False]:
            crop_h = random.randint(1, h)
            crop_w = random.randint(1, w)
            if single_dim:
                crop_h = min(crop_h, crop_w)
                crop_w = crop_h
                transform = transforms.FiveCrop(crop_h)
            else:
                transform = transforms.FiveCrop((crop_h, crop_w))

            img = torch.FloatTensor(3, h, w).uniform_()
            results = transform(to_pil_image(img))

            assert len(results) == 5
            for crop in results:
                assert crop.size == (crop_w, crop_h)

            to_pil_image = transforms.ToPILImage()
            tl = to_pil_image(img[:, 0:crop_h, 0:crop_w])
            tr = to_pil_image(img[:, 0:crop_h, w - crop_w:])
            bl = to_pil_image(img[:, h - crop_h:, 0:crop_w])
            br = to_pil_image(img[:, h - crop_h:, w - crop_w:])
            center = transforms.CenterCrop((crop_h, crop_w))(to_pil_image(img))
            expected_output = (tl, tr, bl, br, center)
            assert results == expected_output

    def test_ten_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for should_vflip in [True, False]:
            for single_dim in [True, False]:
                crop_h = random.randint(1, h)
                crop_w = random.randint(1, w)
                if single_dim:
                    crop_h = min(crop_h, crop_w)
                    crop_w = crop_h
107
108
                    transform = transforms.TenCrop(crop_h,
                                                   vertical_flip=should_vflip)
109
110
                    five_crop = transforms.FiveCrop(crop_h)
                else:
111
112
                    transform = transforms.TenCrop((crop_h, crop_w),
                                                   vertical_flip=should_vflip)
113
114
115
116
117
                    five_crop = transforms.FiveCrop((crop_h, crop_w))

                img = to_pil_image(torch.FloatTensor(3, h, w).uniform_())
                results = transform(img)
                expected_output = five_crop(img)
118
119
120
121
122

                # Checking if FiveCrop and TenCrop can be printed as string
                transform.__repr__()
                five_crop.__repr__()

123
124
125
126
127
128
129
130
131
132
                if should_vflip:
                    vflipped_img = img.transpose(Image.FLIP_TOP_BOTTOM)
                    expected_output += five_crop(vflipped_img)
                else:
                    hflipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
                    expected_output += five_crop(hflipped_img)

                assert len(results) == 10
                assert expected_output == results

133
    def test_resize(self):
134
135
136
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        osize = random.randint(5, 12) * 2
137

138
139
140
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
141
            transforms.Resize(osize),
142
143
144
145
            transforms.ToTensor(),
        ])(img)
        assert osize in result.size()
        if height < width:
146
            assert result.size(1) <= result.size(2)
147
148
149
        elif width < height:
            assert result.size(1) >= result.size(2)

150
151
        result = transforms.Compose([
            transforms.ToPILImage(),
152
            transforms.Resize([osize, osize]),
153
154
155
156
157
158
            transforms.ToTensor(),
        ])(img)
        assert osize in result.size()
        assert result.size(1) == osize
        assert result.size(2) == osize

159
160
161
162
        oheight = random.randint(5, 12) * 2
        owidth = random.randint(5, 12) * 2
        result = transforms.Compose([
            transforms.ToPILImage(),
163
            transforms.Resize((oheight, owidth)),
164
165
166
167
168
169
170
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

        result = transforms.Compose([
            transforms.ToPILImage(),
171
            transforms.Resize([oheight, owidth]),
172
173
174
175
176
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

177
178
179
180
    def test_random_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
181
        owidth = random.randint(5, (width - 2) / 2) * 2
182
183
184
185
186
187
188
189
190
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

191
192
193
194
195
196
197
198
199
        padding = random.randint(1, 20)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth), padding=padding),
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

200
201
202
203
204
205
206
207
208
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height, width)),
            transforms.ToTensor()
        ])(img)
        assert result.size(1) == height
        assert result.size(2) == width
        assert np.allclose(img.numpy(), result.numpy())

209
210
211
212
213
214
215
216
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height + 1, width + 1), pad_if_needed=True),
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == height + 1
        assert result.size(2) == width + 1

217
218
219
220
221
222
223
224
225
226
    def test_pad(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = torch.ones(3, height, width)
        padding = random.randint(1, 20)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Pad(padding),
            transforms.ToTensor(),
        ])(img)
227
228
        assert result.size(1) == height + 2 * padding
        assert result.size(2) == width + 2 * padding
Soumith Chintala's avatar
Soumith Chintala committed
229

230
231
232
233
234
235
236
237
238
239
240
241
242
243
    def test_pad_with_tuple_of_pad_values(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = transforms.ToPILImage()(torch.ones(3, height, width))

        padding = tuple([random.randint(1, 20) for _ in range(2)])
        output = transforms.Pad(padding)(img)
        assert output.size == (width + padding[0] * 2, height + padding[1] * 2)

        padding = tuple([random.randint(1, 20) for _ in range(4)])
        output = transforms.Pad(padding)(img)
        assert output.size[0] == width + padding[0] + padding[2]
        assert output.size[1] == height + padding[1] + padding[3]

244
245
246
        # Checking if Padding can be printed as string
        transforms.Pad(padding).__repr__()

247
248
    def test_pad_with_non_constant_padding_modes(self):
        """Unit tests for edge, reflect, symmetric padding"""
vfdev's avatar
vfdev committed
249
        img = torch.zeros(3, 27, 27).byte()
250
251
252
253
254
255
256
257
258
        img[:, :, 0] = 1  # Constant value added to leftmost edge
        img = transforms.ToPILImage()(img)
        img = F.pad(img, 1, (200, 200, 200))

        # pad 3 to all sidess
        edge_padded_img = F.pad(img, 3, padding_mode='edge')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # edge_pad, edge_pad, edge_pad, constant_pad, constant value added to leftmost edge, 0
        edge_middle_slice = np.asarray(edge_padded_img).transpose(2, 0, 1)[0][17][:6]
vfdev's avatar
vfdev committed
259
        assert np.all(edge_middle_slice == np.asarray([200, 200, 200, 200, 1, 0]))
260
261
262
263
264
265
266
        assert transforms.ToTensor()(edge_padded_img).size() == (3, 35, 35)

        # Pad 3 to left/right, 2 to top/bottom
        reflect_padded_img = F.pad(img, (3, 2), padding_mode='reflect')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # reflect_pad, reflect_pad, reflect_pad, constant_pad, constant value added to leftmost edge, 0
        reflect_middle_slice = np.asarray(reflect_padded_img).transpose(2, 0, 1)[0][17][:6]
vfdev's avatar
vfdev committed
267
        assert np.all(reflect_middle_slice == np.asarray([0, 0, 1, 200, 1, 0]))
268
269
270
271
272
273
274
        assert transforms.ToTensor()(reflect_padded_img).size() == (3, 33, 35)

        # Pad 3 to left, 2 to top, 2 to right, 1 to bottom
        symmetric_padded_img = F.pad(img, (3, 2, 2, 1), padding_mode='symmetric')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # sym_pad, sym_pad, sym_pad, constant_pad, constant value added to leftmost edge, 0
        symmetric_middle_slice = np.asarray(symmetric_padded_img).transpose(2, 0, 1)[0][17][:6]
vfdev's avatar
vfdev committed
275
        assert np.all(symmetric_middle_slice == np.asarray([0, 1, 200, 200, 1, 0]))
276
277
        assert transforms.ToTensor()(symmetric_padded_img).size() == (3, 32, 34)

278
    def test_pad_raises_with_invalid_pad_sequence_len(self):
279
280
281
282
283
284
285
286
287
        with self.assertRaises(ValueError):
            transforms.Pad(())

        with self.assertRaises(ValueError):
            transforms.Pad((1, 2, 3))

        with self.assertRaises(ValueError):
            transforms.Pad((1, 2, 3, 4, 5))

Soumith Chintala's avatar
Soumith Chintala committed
288
289
290
291
    def test_lambda(self):
        trans = transforms.Lambda(lambda x: x.add(10))
        x = torch.randn(10)
        y = trans(x)
292
        assert (y.equal(torch.add(x, 10)))
Soumith Chintala's avatar
Soumith Chintala committed
293
294
295
296

        trans = transforms.Lambda(lambda x: x.add_(10))
        x = torch.randn(10)
        y = trans(x)
297
298
        assert (y.equal(x))

299
300
301
        # Checking if Lambda can be printed as string
        trans.__repr__()

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
    def test_random_apply(self):
        random_state = random.getstate()
        random.seed(42)
        random_apply_transform = transforms.RandomApply(
            [
                transforms.RandomRotation((-45, 45)),
                transforms.RandomHorizontalFlip(),
                transforms.RandomVerticalFlip(),
            ], p=0.75
        )
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        num_samples = 250
        num_applies = 0
        for _ in range(num_samples):
            out = random_apply_transform(img)
            if out != img:
                num_applies += 1

        p_value = stats.binom_test(num_applies, num_samples, p=0.75)
        random.setstate(random_state)
        assert p_value > 0.0001

        # Checking if RandomApply can be printed as string
        random_apply_transform.__repr__()

    def test_random_choice(self):
        random_state = random.getstate()
        random.seed(42)
        random_choice_transform = transforms.RandomChoice(
            [
                transforms.Resize(15),
                transforms.Resize(20),
                transforms.CenterCrop(10)
            ]
        )
        img = transforms.ToPILImage()(torch.rand(3, 25, 25))
        num_samples = 250
        num_resize_15 = 0
        num_resize_20 = 0
        num_crop_10 = 0
        for _ in range(num_samples):
            out = random_choice_transform(img)
            if out.size == (15, 15):
                num_resize_15 += 1
            elif out.size == (20, 20):
                num_resize_20 += 1
            elif out.size == (10, 10):
                num_crop_10 += 1

        p_value = stats.binom_test(num_resize_15, num_samples, p=0.33333)
        assert p_value > 0.0001
        p_value = stats.binom_test(num_resize_20, num_samples, p=0.33333)
        assert p_value > 0.0001
        p_value = stats.binom_test(num_crop_10, num_samples, p=0.33333)
        assert p_value > 0.0001

        random.setstate(random_state)
        # Checking if RandomChoice can be printed as string
        random_choice_transform.__repr__()

    def test_random_order(self):
        random_state = random.getstate()
        random.seed(42)
        random_order_transform = transforms.RandomOrder(
            [
                transforms.Resize(20),
                transforms.CenterCrop(10)
            ]
        )
        img = transforms.ToPILImage()(torch.rand(3, 25, 25))
        num_samples = 250
        num_normal_order = 0
        resize_crop_out = transforms.CenterCrop(10)(transforms.Resize(20)(img))
        for _ in range(num_samples):
            out = random_order_transform(img)
            if out == resize_crop_out:
                num_normal_order += 1

        p_value = stats.binom_test(num_normal_order, num_samples, p=0.5)
        random.setstate(random_state)
        assert p_value > 0.0001

        # Checking if RandomOrder can be printed as string
        random_order_transform.__repr__()

387
    def test_to_tensor(self):
388
        test_channels = [1, 3, 4]
389
390
        height, width = 4, 4
        trans = transforms.ToTensor()
391
392
393
394
395
396
397

        for channels in test_channels:
            input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
            assert np.allclose(input_data.numpy(), output.numpy())

398
            ndarray = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
399
400
401
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1)) / 255.0
            assert np.allclose(output.numpy(), expected_output)
402

403
404
405
406
407
            ndarray = np.random.rand(height, width, channels).astype(np.float32)
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1))
            assert np.allclose(output.numpy(), expected_output)

408
409
410
411
412
413
        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
        img = transforms.ToPILImage()(input_data.mul(255)).convert('1')
        output = trans(img)
        assert np.allclose(input_data.numpy(), output.numpy())

414
415
416
417
418
419
420
421
422
423
424
425
426
    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_to_tensor(self):
        trans = transforms.ToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        assert np.allclose(output.numpy(), expected_output.numpy())

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_resize(self):
        trans = transforms.Compose([
427
            transforms.Resize(256, interpolation=Image.LINEAR),
428
429
430
            transforms.ToTensor(),
        ])

431
432
433
        # Checking if Compose, Resize and ToTensor can be printed as string
        trans.__repr__()

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        self.assertLess(np.abs((expected_output - output).mean()), 1e-3)
        self.assertLess((expected_output - output).var(), 1e-5)
        # note the high absolute tolerance
        assert np.allclose(output.numpy(), expected_output.numpy(), atol=5e-2)

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_crop(self):
        trans = transforms.Compose([
            transforms.CenterCrop(256),
            transforms.ToTensor(),
        ])

450
451
452
        # Checking if Compose, CenterCrop and ToTensor can be printed as string
        trans.__repr__()

453
454
455
456
457
458
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        assert np.allclose(output.numpy(), expected_output.numpy())

459
    def test_1_channel_tensor_to_pil_image(self):
460
461
        to_tensor = transforms.ToTensor()

462
        img_data_float = torch.Tensor(1, 4, 4).uniform_()
463
464
465
466
        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        img_data_int = torch.IntTensor(1, 4, 4).random_()

467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
                assert img.mode == mode
                assert np.allclose(expected_output, to_tensor(img).numpy())

    def test_1_channel_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4, 1).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4, 1).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4, 1).random_().numpy()
        img_data_int = torch.IntTensor(4, 4, 1).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
                assert img.mode == mode
                assert np.allclose(img_data[:, :, 0], img)

    def test_3_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
                assert img.mode == 'RGB'  # default should assume RGB
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
                assert img.mode == mode
            split = img.split()
            for i in range(3):
504
                assert np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy())
505

506
507
508
509
        img_data = torch.Tensor(3, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, expected_output, mode=mode)
510

511
512
513
514
515
        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)

Varun Agrawal's avatar
Varun Agrawal committed
516
517
518
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(torch.Tensor(1, 3, 4, 4).uniform_())

519
520
521
522
523
524
525
526
527
528
529
    def test_3_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
                assert img.mode == 'RGB'  # default should assume RGB
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
                assert img.mode == mode
            split = img.split()
            for i in range(3):
                assert np.allclose(img_data[:, :, i], split[i])
530

531
532
533
534
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, mode)

535
536
537
        # Checking if ToPILImage can be printed as string
        transforms.ToPILImage().__repr__()

538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)

    def test_4_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
                assert img.mode == 'RGBA'  # default should assume RGBA
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
                assert img.mode == mode

            split = img.split()
            for i in range(4):
554
                assert np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy())
555

556
        img_data = torch.Tensor(4, 4, 4).uniform_()
557
        expected_output = img_data.mul(255).int().float().div(255)
558
559
        for mode in [None, 'RGBA', 'CMYK']:
            verify_img_data(img_data, expected_output, mode)
560

561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
        with self.assertRaises(ValueError):
            # should raise if we try a mode for 3 or 1 channel images
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)

    def test_4_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
                assert img.mode == 'RGBA'  # default should assume RGBA
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
                assert img.mode == mode
            split = img.split()
            for i in range(4):
                assert np.allclose(img_data[:, :, i], split[i])
577

578
579
580
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()
        for mode in [None, 'RGBA', 'CMYK']:
            verify_img_data(img_data, mode)
581

582
583
584
585
        with self.assertRaises(ValueError):
            # should raise if we try a mode for 3 or 1 channel images
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
586

Varun Agrawal's avatar
Varun Agrawal committed
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
    def test_2d_tensor_to_pil_image(self):
        to_tensor = transforms.ToTensor()

        img_data_float = torch.Tensor(4, 4).uniform_()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(4, 4).random_()
        img_data_int = torch.IntTensor(4, 4).random_()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
                assert img.mode == mode
                assert np.allclose(expected_output, to_tensor(img).numpy())

    def test_2d_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4).random_().numpy()
        img_data_int = torch.IntTensor(4, 4).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
                assert img.mode == mode
                assert np.allclose(img_data, img)

    def test_tensor_bad_types_to_pil_image(self):
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(torch.ones(1, 3, 4, 4))

626
    def test_ndarray_bad_types_to_pil_image(self):
627
        trans = transforms.ToPILImage()
628
        with self.assertRaises(TypeError):
629
630
631
632
633
            trans(np.ones([4, 4, 1], np.int64))
            trans(np.ones([4, 4, 1], np.uint16))
            trans(np.ones([4, 4, 1], np.uint32))
            trans(np.ones([4, 4, 1], np.float64))

Varun Agrawal's avatar
Varun Agrawal committed
634
635
636
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(np.ones([1, 4, 4, 3]))

637
638
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_vertical_flip(self):
639
640
        random_state = random.getstate()
        random.seed(42)
641
642
643
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        vimg = img.transpose(Image.FLIP_TOP_BOTTOM)

644
        num_samples = 250
645
        num_vertical = 0
646
        for _ in range(num_samples):
647
648
649
650
            out = transforms.RandomVerticalFlip()(img)
            if out == vimg:
                num_vertical += 1

651
652
653
        p_value = stats.binom_test(num_vertical, num_samples, p=0.5)
        random.setstate(random_state)
        assert p_value > 0.0001
654

655
656
657
658
659
660
661
662
663
664
665
        num_samples = 250
        num_vertical = 0
        for _ in range(num_samples):
            out = transforms.RandomVerticalFlip(p=0.7)(img)
            if out == vimg:
                num_vertical += 1

        p_value = stats.binom_test(num_vertical, num_samples, p=0.7)
        random.setstate(random_state)
        assert p_value > 0.0001

666
667
668
        # Checking if RandomVerticalFlip can be printed as string
        transforms.RandomVerticalFlip().__repr__()

669
670
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_horizontal_flip(self):
671
672
        random_state = random.getstate()
        random.seed(42)
673
674
675
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        himg = img.transpose(Image.FLIP_LEFT_RIGHT)

676
        num_samples = 250
677
        num_horizontal = 0
678
        for _ in range(num_samples):
679
680
681
682
            out = transforms.RandomHorizontalFlip()(img)
            if out == himg:
                num_horizontal += 1

683
684
685
        p_value = stats.binom_test(num_horizontal, num_samples, p=0.5)
        random.setstate(random_state)
        assert p_value > 0.0001
686

687
688
689
690
691
692
693
694
695
696
697
        num_samples = 250
        num_horizontal = 0
        for _ in range(num_samples):
            out = transforms.RandomHorizontalFlip(p=0.7)(img)
            if out == himg:
                num_horizontal += 1

        p_value = stats.binom_test(num_horizontal, num_samples, p=0.7)
        random.setstate(random_state)
        assert p_value > 0.0001

698
699
700
        # Checking if RandomHorizontalFlip can be printed as string
        transforms.RandomHorizontalFlip().__repr__()

701
    @unittest.skipIf(stats is None, 'scipy.stats is not available')
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
    def test_normalize(self):
        def samples_from_standard_normal(tensor):
            p_value = stats.kstest(list(tensor.view(-1)), 'norm', args=(0, 1)).pvalue
            return p_value > 0.0001

        random_state = random.getstate()
        random.seed(42)
        for channels in [1, 3]:
            img = torch.rand(channels, 10, 10)
            mean = [img[c].mean() for c in range(channels)]
            std = [img[c].std() for c in range(channels)]
            normalized = transforms.Normalize(mean, std)(img)
            assert samples_from_standard_normal(normalized)
        random.setstate(random_state)

717
718
719
        # Checking if Normalize can be printed as string
        transforms.Normalize(mean, std).__repr__()

720
721
722
723
724
725
726
    def test_adjust_brightness(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
727
        y_pil = F.adjust_brightness(x_pil, 1)
728
729
730
731
        y_np = np.array(y_pil)
        assert np.allclose(y_np, x_np)

        # test 1
732
        y_pil = F.adjust_brightness(x_pil, 0.5)
733
734
735
736
737
738
        y_np = np.array(y_pil)
        y_ans = [0, 2, 6, 27, 67, 113, 18, 4, 117, 45, 127, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
739
        y_pil = F.adjust_brightness(x_pil, 2)
740
741
742
743
744
745
746
747
748
749
750
751
        y_np = np.array(y_pil)
        y_ans = [0, 10, 26, 108, 255, 255, 74, 16, 255, 180, 255, 2]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjust_contrast(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
752
        y_pil = F.adjust_contrast(x_pil, 1)
753
754
755
756
        y_np = np.array(y_pil)
        assert np.allclose(y_np, x_np)

        # test 1
757
        y_pil = F.adjust_contrast(x_pil, 0.5)
758
759
760
761
762
763
        y_np = np.array(y_pil)
        y_ans = [43, 45, 49, 70, 110, 156, 61, 47, 160, 88, 170, 43]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
764
        y_pil = F.adjust_contrast(x_pil, 2)
765
766
767
768
769
770
771
772
773
774
775
776
        y_np = np.array(y_pil)
        y_ans = [0, 0, 0, 22, 184, 255, 0, 0, 255, 94, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjust_saturation(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
777
        y_pil = F.adjust_saturation(x_pil, 1)
778
779
780
781
        y_np = np.array(y_pil)
        assert np.allclose(y_np, x_np)

        # test 1
782
        y_pil = F.adjust_saturation(x_pil, 0.5)
783
784
785
786
787
788
        y_np = np.array(y_pil)
        y_ans = [2, 4, 8, 87, 128, 173, 39, 25, 138, 133, 215, 88]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
789
        y_pil = F.adjust_saturation(x_pil, 2)
790
791
792
793
794
795
796
797
798
799
800
801
        y_np = np.array(y_pil)
        y_ans = [0, 6, 22, 0, 149, 255, 32, 0, 255, 4, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjust_hue(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        with self.assertRaises(ValueError):
802
803
            F.adjust_hue(x_pil, -0.7)
            F.adjust_hue(x_pil, 1)
804
805
806

        # test 0: almost same as x_data but not exact.
        # probably because hsv <-> rgb floating point ops
807
        y_pil = F.adjust_hue(x_pil, 0)
808
809
810
811
812
813
        y_np = np.array(y_pil)
        y_ans = [0, 5, 13, 54, 139, 226, 35, 8, 234, 91, 255, 1]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 1
814
        y_pil = F.adjust_hue(x_pil, 0.25)
815
816
817
818
819
820
        y_np = np.array(y_pil)
        y_ans = [13, 0, 12, 224, 54, 226, 234, 8, 99, 1, 222, 255]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
821
        y_pil = F.adjust_hue(x_pil, -0.25)
822
823
824
825
826
827
828
829
830
831
832
833
        y_np = np.array(y_pil)
        y_ans = [0, 13, 2, 54, 226, 58, 8, 234, 152, 255, 43, 1]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjust_gamma(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
834
        y_pil = F.adjust_gamma(x_pil, 1)
835
836
837
838
        y_np = np.array(y_pil)
        assert np.allclose(y_np, x_np)

        # test 1
839
        y_pil = F.adjust_gamma(x_pil, 0.5)
840
841
842
843
844
845
        y_np = np.array(y_pil)
        y_ans = [0, 35, 57, 117, 185, 240, 97, 45, 244, 151, 255, 15]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
846
        y_pil = F.adjust_gamma(x_pil, 2)
847
848
849
850
851
852
853
854
855
856
857
858
        y_np = np.array(y_pil)
        y_ans = [0, 0, 0, 11, 71, 200, 5, 0, 214, 31, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjusts_L_mode(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_rgb = Image.fromarray(x_np, mode='RGB')

        x_l = x_rgb.convert('L')
859
860
861
862
863
        assert F.adjust_brightness(x_l, 2).mode == 'L'
        assert F.adjust_saturation(x_l, 2).mode == 'L'
        assert F.adjust_contrast(x_l, 2).mode == 'L'
        assert F.adjust_hue(x_l, 0.4).mode == 'L'
        assert F.adjust_gamma(x_l, 0.5).mode == 'L'
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

    def test_color_jitter(self):
        color_jitter = transforms.ColorJitter(2, 2, 2, 0.1)

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')

        for i in range(10):
            y_pil = color_jitter(x_pil)
            assert y_pil.mode == x_pil.mode

            y_pil_2 = color_jitter(x_pil_2)
            assert y_pil_2.mode == x_pil_2.mode

881
882
883
        # Checking if ColorJitter can be printed as string
        color_jitter.__repr__()

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
    def test_linear_transformation(self):
        x = torch.randn(250, 10, 10, 3)
        flat_x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
        # compute principal components
        sigma = torch.mm(flat_x.t(), flat_x) / flat_x.size(0)
        u, s, _ = np.linalg.svd(sigma.numpy())
        zca_epsilon = 1e-10  # avoid division by 0
        d = torch.Tensor(np.diag(1. / np.sqrt(s + zca_epsilon)))
        u = torch.Tensor(u)
        principal_components = torch.mm(torch.mm(u, d), u.t())
        # initialize whitening matrix
        whitening = transforms.LinearTransformation(principal_components)
        # pass first vector
        xwhite = whitening(x[0].view(10, 10, 3))
        # estimate covariance
        xwhite = xwhite.view(1, 300).numpy()
        cov = np.dot(xwhite, xwhite.T) / x.size(0)
        assert np.allclose(cov, np.identity(1), rtol=1e-3)

903
904
905
        # Checking if LinearTransformation can be printed as string
        whitening.__repr__()

906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
    def test_rotate(self):
        x = np.zeros((100, 100, 3), dtype=np.uint8)
        x[40, 40] = [255, 255, 255]

        with self.assertRaises(TypeError):
            F.rotate(x, 10)

        img = F.to_pil_image(x)

        result = F.rotate(img, 45)
        assert result.size == (100, 100)
        r, c, ch = np.where(result)
        assert all(x in r for x in [49, 50])
        assert all(x in c for x in [36])
        assert all(x in ch for x in [0, 1, 2])

        result = F.rotate(img, 45, expand=True)
        assert result.size == (142, 142)
        r, c, ch = np.where(result)
        assert all(x in r for x in [70, 71])
        assert all(x in c for x in [57])
        assert all(x in ch for x in [0, 1, 2])

        result = F.rotate(img, 45, center=(40, 40))
        assert result.size == (100, 100)
        r, c, ch = np.where(result)
        assert all(x in r for x in [40])
        assert all(x in c for x in [40])
        assert all(x in ch for x in [0, 1, 2])

        result_a = F.rotate(img, 90)
        result_b = F.rotate(img, -270)

        assert np.all(np.array(result_a) == np.array(result_b))

941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
    def test_affine(self):
        input_img = np.zeros((200, 200, 3), dtype=np.uint8)
        pts = []
        cnt = [100, 100]
        for pt in [(80, 80), (100, 80), (100, 100)]:
            for i in range(-5, 5):
                for j in range(-5, 5):
                    input_img[pt[0] + i, pt[1] + j, :] = [255, 155, 55]
                    pts.append((pt[0] + i, pt[1] + j))
        pts = list(set(pts))

        with self.assertRaises(TypeError):
            F.affine(input_img, 10)

        pil_img = F.to_pil_image(input_img)

        def _to_3x3_inv(inv_result_matrix):
            result_matrix = np.zeros((3, 3))
            result_matrix[:2, :] = np.array(inv_result_matrix).reshape((2, 3))
            result_matrix[2, 2] = 1
            return np.linalg.inv(result_matrix)

        def _test_transformation(a, t, s, sh):
            a_rad = math.radians(a)
            s_rad = math.radians(sh)
            # 1) Check transformation matrix:
            c_matrix = np.array([[1.0, 0.0, cnt[0]], [0.0, 1.0, cnt[1]], [0.0, 0.0, 1.0]])
            c_inv_matrix = np.linalg.inv(c_matrix)
            t_matrix = np.array([[1.0, 0.0, t[0]],
                                 [0.0, 1.0, t[1]],
                                 [0.0, 0.0, 1.0]])
            r_matrix = np.array([[s * math.cos(a_rad), -s * math.sin(a_rad + s_rad), 0.0],
                                 [s * math.sin(a_rad), s * math.cos(a_rad + s_rad), 0.0],
                                 [0.0, 0.0, 1.0]])
            true_matrix = np.dot(t_matrix, np.dot(c_matrix, np.dot(r_matrix, c_inv_matrix)))
            result_matrix = _to_3x3_inv(F._get_inverse_affine_matrix(center=cnt, angle=a,
                                                                     translate=t, scale=s, shear=sh))
            assert np.sum(np.abs(true_matrix - result_matrix)) < 1e-10
            # 2) Perform inverse mapping:
            true_result = np.zeros((200, 200, 3), dtype=np.uint8)
            inv_true_matrix = np.linalg.inv(true_matrix)
            for y in range(true_result.shape[0]):
                for x in range(true_result.shape[1]):
                    res = np.dot(inv_true_matrix, [x, y, 1])
                    _x = int(res[0] + 0.5)
                    _y = int(res[1] + 0.5)
                    if 0 <= _x < input_img.shape[1] and 0 <= _y < input_img.shape[0]:
                        true_result[y, x, :] = input_img[_y, _x, :]

            result = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh)
            assert result.size == pil_img.size
            # Compute number of different pixels:
            np_result = np.array(result)
            n_diff_pixels = np.sum(np_result != true_result) / 3
            # Accept 3 wrong pixels
            assert n_diff_pixels < 3, \
                "a={}, t={}, s={}, sh={}\n".format(a, t, s, sh) +\
                "n diff pixels={}\n".format(np.sum(np.array(result)[:, :, 0] != true_result[:, :, 0]))

        # Test rotation
        a = 45
        _test_transformation(a=a, t=(0, 0), s=1.0, sh=0.0)

        # Test translation
        t = [10, 15]
        _test_transformation(a=0.0, t=t, s=1.0, sh=0.0)

        # Test scale
        s = 1.2
        _test_transformation(a=0.0, t=(0.0, 0.0), s=s, sh=0.0)

        # Test shear
        sh = 45.0
        _test_transformation(a=0.0, t=(0.0, 0.0), s=1.0, sh=sh)

        # Test rotation, scale, translation, shear
        for a in range(-90, 90, 25):
            for t1 in range(-10, 10, 5):
                for s in [0.75, 0.98, 1.0, 1.1, 1.2]:
                    for sh in range(-15, 15, 5):
                        _test_transformation(a=a, t=(t1, t1), s=s, sh=sh)

1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
    def test_random_rotation(self):

        with self.assertRaises(ValueError):
            transforms.RandomRotation(-0.7)
            transforms.RandomRotation([-0.7])
            transforms.RandomRotation([-0.7, 0, 0.7])

        t = transforms.RandomRotation(10)
        angle = t.get_params(t.degrees)
        assert angle > -10 and angle < 10

        t = transforms.RandomRotation((-10, 10))
        angle = t.get_params(t.degrees)
        assert angle > -10 and angle < 10

1038
1039
1040
        # Checking if RandomRotation can be printed as string
        t.__repr__()

1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
    def test_random_affine(self):

        with self.assertRaises(ValueError):
            transforms.RandomAffine(-0.7)
            transforms.RandomAffine([-0.7])
            transforms.RandomAffine([-0.7, 0, 0.7])

            transforms.RandomAffine([-90, 90], translate=2.0)
            transforms.RandomAffine([-90, 90], translate=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[-1.0, 0.0, 1.0])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, -0.5])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 3.0, -0.5])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=-7)
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10])

        x = np.zeros((100, 100, 3), dtype=np.uint8)
        img = F.to_pil_image(x)

        t = transforms.RandomAffine(10, translate=[0.5, 0.3], scale=[0.7, 1.3], shear=[-10, 10])
        for _ in range(100):
            angle, translations, scale, shear = t.get_params(t.degrees, t.translate, t.scale, t.shear,
                                                             img_size=img.size)
            assert -10 < angle < 10
            assert -img.size[0] * 0.5 <= translations[0] <= img.size[0] * 0.5, \
                "{} vs {}".format(translations[0], img.size[0] * 0.5)
            assert -img.size[1] * 0.5 <= translations[1] <= img.size[1] * 0.5, \
                "{} vs {}".format(translations[1], img.size[1] * 0.5)
            assert 0.7 < scale < 1.3
            assert -10 < shear < 10

        # Checking if RandomAffine can be printed as string
        t.__repr__()

        t = transforms.RandomAffine(10, resample=Image.BILINEAR)
        assert "Image.BILINEAR" in t.__repr__()

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
    def test_to_grayscale(self):
        """Unit tests for grayscale transform"""

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        # Test Set: Grayscale an image with desired number of output channels
        # Case 1: RGB -> 1 channel grayscale
        trans1 = transforms.Grayscale(num_output_channels=1)
        gray_pil_1 = trans1(x_pil)
        gray_np_1 = np.array(gray_pil_1)
        assert gray_pil_1.mode == 'L', 'mode should be L'
        assert gray_np_1.shape == tuple(x_shape[0:2]), 'should be 1 channel'
        np.testing.assert_equal(gray_np, gray_np_1)

        # Case 2: RGB -> 3 channel grayscale
        trans2 = transforms.Grayscale(num_output_channels=3)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
        assert gray_pil_2.mode == 'RGB', 'mode should be RGB'
        assert gray_np_2.shape == tuple(x_shape), 'should be 3 channel'
        np.testing.assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
        np.testing.assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_2[:, :, 0])

        # Case 3: 1 channel grayscale -> 1 channel grayscale
        trans3 = transforms.Grayscale(num_output_channels=1)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
        assert gray_pil_3.mode == 'L', 'mode should be L'
        assert gray_np_3.shape == tuple(x_shape[0:2]), 'should be 1 channel'
        np.testing.assert_equal(gray_np, gray_np_3)

        # Case 4: 1 channel grayscale -> 3 channel grayscale
        trans4 = transforms.Grayscale(num_output_channels=3)
        gray_pil_4 = trans4(x_pil_2)
        gray_np_4 = np.array(gray_pil_4)
        assert gray_pil_4.mode == 'RGB', 'mode should be RGB'
        assert gray_np_4.shape == tuple(x_shape), 'should be 3 channel'
        np.testing.assert_equal(gray_np_4[:, :, 0], gray_np_4[:, :, 1])
        np.testing.assert_equal(gray_np_4[:, :, 1], gray_np_4[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_4[:, :, 0])

1129
1130
1131
        # Checking if Grayscale can be printed as string
        trans4.__repr__()

1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_grayscale(self):
        """Unit tests for random grayscale transform"""

        # Test Set 1: RGB -> 3 channel grayscale
        random_state = random.getstate()
        random.seed(42)
        x_shape = [2, 2, 3]
        x_np = np.random.randint(0, 256, x_shape, np.uint8)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        num_samples = 250
        num_gray = 0
        for _ in range(num_samples):
            gray_pil_2 = transforms.RandomGrayscale(p=0.5)(x_pil)
            gray_np_2 = np.array(gray_pil_2)
            if np.array_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1]) and \
1151
1152
                    np.array_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2]) and \
                    np.array_equal(gray_np, gray_np_2[:, :, 0]):
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
                num_gray = num_gray + 1

        p_value = stats.binom_test(num_gray, num_samples, p=0.5)
        random.setstate(random_state)
        assert p_value > 0.0001

        # Test Set 2: grayscale -> 1 channel grayscale
        random_state = random.getstate()
        random.seed(42)
        x_shape = [2, 2, 3]
        x_np = np.random.randint(0, 256, x_shape, np.uint8)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        num_samples = 250
        num_gray = 0
        for _ in range(num_samples):
            gray_pil_3 = transforms.RandomGrayscale(p=0.5)(x_pil_2)
            gray_np_3 = np.array(gray_pil_3)
            if np.array_equal(gray_np, gray_np_3):
                num_gray = num_gray + 1

        p_value = stats.binom_test(num_gray, num_samples, p=1.0)  # Note: grayscale is always unchanged
        random.setstate(random_state)
        assert p_value > 0.0001

        # Test set 3: Explicit tests
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        # Case 3a: RGB -> 3 channel grayscale (grayscaled)
        trans2 = transforms.RandomGrayscale(p=1.0)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
        assert gray_pil_2.mode == 'RGB', 'mode should be RGB'
        assert gray_np_2.shape == tuple(x_shape), 'should be 3 channel'
        np.testing.assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
        np.testing.assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_2[:, :, 0])

        # Case 3b: RGB -> 3 channel grayscale (unchanged)
        trans2 = transforms.RandomGrayscale(p=0.0)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
        assert gray_pil_2.mode == 'RGB', 'mode should be RGB'
        assert gray_np_2.shape == tuple(x_shape), 'should be 3 channel'
        np.testing.assert_equal(x_np, gray_np_2)

        # Case 3c: 1 channel grayscale -> 1 channel grayscale (grayscaled)
        trans3 = transforms.RandomGrayscale(p=1.0)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
        assert gray_pil_3.mode == 'L', 'mode should be L'
        assert gray_np_3.shape == tuple(x_shape[0:2]), 'should be 1 channel'
        np.testing.assert_equal(gray_np, gray_np_3)

        # Case 3d: 1 channel grayscale -> 1 channel grayscale (unchanged)
        trans3 = transforms.RandomGrayscale(p=0.0)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
        assert gray_pil_3.mode == 'L', 'mode should be L'
        assert gray_np_3.shape == tuple(x_shape[0:2]), 'should be 1 channel'
        np.testing.assert_equal(gray_np, gray_np_3)

1222
1223
1224
        # Checking if RandomGrayscale can be printed as string
        trans3.__repr__()

1225

1226
1227
if __name__ == '__main__':
    unittest.main()