test_transforms.py 38.5 KB
Newer Older
1
2
import torch
import torchvision.transforms as transforms
3
import torchvision.transforms.functional as F
4
5
import unittest
import random
6
import numpy as np
7
8
9
10
11
12
from PIL import Image
try:
    import accimage
except ImportError:
    accimage = None

13
14
15
16
17
try:
    from scipy import stats
except ImportError:
    stats = None

18
GRACE_HOPPER = 'assets/grace_hopper_517x606.jpg'
19

20

21
class Tester(unittest.TestCase):
22

23
24
25
26
    def test_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
27
28
        owidth = random.randint(5, (width - 2) / 2) * 2

29
        img = torch.ones(3, height, width)
30
31
32
        oh1 = (height - oheight) // 2
        ow1 = (width - owidth) // 2
        imgnarrow = img[:, oh1:oh1 + oheight, ow1:ow1 + owidth]
33
34
35
36
37
38
39
        imgnarrow.fill_(0)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        assert result.sum() == 0, "height: " + str(height) + " width: " \
40
                                  + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
41
42
43
44
45
46
47
48
49
        oheight += 1
        owidth += 1
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum1 = result.sum()
        assert sum1 > 1, "height: " + str(height) + " width: " \
50
                         + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
51
        oheight += 1
52
        owidth += 1
53
54
55
56
57
58
59
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum2 = result.sum()
        assert sum2 > 0, "height: " + str(height) + " width: " \
60
                         + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
61
        assert sum2 > sum1, "height: " + str(height) + " width: " \
62
                            + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    def test_five_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for single_dim in [True, False]:
            crop_h = random.randint(1, h)
            crop_w = random.randint(1, w)
            if single_dim:
                crop_h = min(crop_h, crop_w)
                crop_w = crop_h
                transform = transforms.FiveCrop(crop_h)
            else:
                transform = transforms.FiveCrop((crop_h, crop_w))

            img = torch.FloatTensor(3, h, w).uniform_()
            results = transform(to_pil_image(img))

            assert len(results) == 5
            for crop in results:
                assert crop.size == (crop_w, crop_h)

            to_pil_image = transforms.ToPILImage()
            tl = to_pil_image(img[:, 0:crop_h, 0:crop_w])
            tr = to_pil_image(img[:, 0:crop_h, w - crop_w:])
            bl = to_pil_image(img[:, h - crop_h:, 0:crop_w])
            br = to_pil_image(img[:, h - crop_h:, w - crop_w:])
            center = transforms.CenterCrop((crop_h, crop_w))(to_pil_image(img))
            expected_output = (tl, tr, bl, br, center)
            assert results == expected_output

    def test_ten_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for should_vflip in [True, False]:
            for single_dim in [True, False]:
                crop_h = random.randint(1, h)
                crop_w = random.randint(1, w)
                if single_dim:
                    crop_h = min(crop_h, crop_w)
                    crop_w = crop_h
105
106
                    transform = transforms.TenCrop(crop_h,
                                                   vertical_flip=should_vflip)
107
108
                    five_crop = transforms.FiveCrop(crop_h)
                else:
109
110
                    transform = transforms.TenCrop((crop_h, crop_w),
                                                   vertical_flip=should_vflip)
111
112
113
114
115
                    five_crop = transforms.FiveCrop((crop_h, crop_w))

                img = to_pil_image(torch.FloatTensor(3, h, w).uniform_())
                results = transform(img)
                expected_output = five_crop(img)
116
117
118
119
120

                # Checking if FiveCrop and TenCrop can be printed as string
                transform.__repr__()
                five_crop.__repr__()

121
122
123
124
125
126
127
128
129
130
                if should_vflip:
                    vflipped_img = img.transpose(Image.FLIP_TOP_BOTTOM)
                    expected_output += five_crop(vflipped_img)
                else:
                    hflipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
                    expected_output += five_crop(hflipped_img)

                assert len(results) == 10
                assert expected_output == results

131
    def test_resize(self):
132
133
134
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        osize = random.randint(5, 12) * 2
135

136
137
138
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
139
            transforms.Resize(osize),
140
141
142
143
            transforms.ToTensor(),
        ])(img)
        assert osize in result.size()
        if height < width:
144
            assert result.size(1) <= result.size(2)
145
146
147
        elif width < height:
            assert result.size(1) >= result.size(2)

148
149
        result = transforms.Compose([
            transforms.ToPILImage(),
150
            transforms.Resize([osize, osize]),
151
152
153
154
155
156
            transforms.ToTensor(),
        ])(img)
        assert osize in result.size()
        assert result.size(1) == osize
        assert result.size(2) == osize

157
158
159
160
        oheight = random.randint(5, 12) * 2
        owidth = random.randint(5, 12) * 2
        result = transforms.Compose([
            transforms.ToPILImage(),
161
            transforms.Resize((oheight, owidth)),
162
163
164
165
166
167
168
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

        result = transforms.Compose([
            transforms.ToPILImage(),
169
            transforms.Resize([oheight, owidth]),
170
171
172
173
174
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

175
176
177
178
    def test_random_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
179
        owidth = random.randint(5, (width - 2) / 2) * 2
180
181
182
183
184
185
186
187
188
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

189
190
191
192
193
194
195
196
197
        padding = random.randint(1, 20)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth), padding=padding),
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

198
199
200
201
202
203
204
205
206
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height, width)),
            transforms.ToTensor()
        ])(img)
        assert result.size(1) == height
        assert result.size(2) == width
        assert np.allclose(img.numpy(), result.numpy())

207
208
209
210
211
212
213
214
215
216
    def test_pad(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = torch.ones(3, height, width)
        padding = random.randint(1, 20)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Pad(padding),
            transforms.ToTensor(),
        ])(img)
217
218
        assert result.size(1) == height + 2 * padding
        assert result.size(2) == width + 2 * padding
Soumith Chintala's avatar
Soumith Chintala committed
219

220
221
222
223
224
225
226
227
228
229
230
231
232
233
    def test_pad_with_tuple_of_pad_values(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = transforms.ToPILImage()(torch.ones(3, height, width))

        padding = tuple([random.randint(1, 20) for _ in range(2)])
        output = transforms.Pad(padding)(img)
        assert output.size == (width + padding[0] * 2, height + padding[1] * 2)

        padding = tuple([random.randint(1, 20) for _ in range(4)])
        output = transforms.Pad(padding)(img)
        assert output.size[0] == width + padding[0] + padding[2]
        assert output.size[1] == height + padding[1] + padding[3]

234
235
236
        # Checking if Padding can be printed as string
        transforms.Pad(padding).__repr__()

237
    def test_pad_raises_with_invalid_pad_sequence_len(self):
238
239
240
241
242
243
244
245
246
        with self.assertRaises(ValueError):
            transforms.Pad(())

        with self.assertRaises(ValueError):
            transforms.Pad((1, 2, 3))

        with self.assertRaises(ValueError):
            transforms.Pad((1, 2, 3, 4, 5))

Soumith Chintala's avatar
Soumith Chintala committed
247
248
249
250
    def test_lambda(self):
        trans = transforms.Lambda(lambda x: x.add(10))
        x = torch.randn(10)
        y = trans(x)
251
        assert (y.equal(torch.add(x, 10)))
Soumith Chintala's avatar
Soumith Chintala committed
252
253
254
255

        trans = transforms.Lambda(lambda x: x.add_(10))
        x = torch.randn(10)
        y = trans(x)
256
257
        assert (y.equal(x))

258
259
260
        # Checking if Lambda can be printed as string
        trans.__repr__()

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
    def test_random_apply(self):
        random_state = random.getstate()
        random.seed(42)
        random_apply_transform = transforms.RandomApply(
            [
                transforms.RandomRotation((-45, 45)),
                transforms.RandomHorizontalFlip(),
                transforms.RandomVerticalFlip(),
            ], p=0.75
        )
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        num_samples = 250
        num_applies = 0
        for _ in range(num_samples):
            out = random_apply_transform(img)
            if out != img:
                num_applies += 1

        p_value = stats.binom_test(num_applies, num_samples, p=0.75)
        random.setstate(random_state)
        assert p_value > 0.0001

        # Checking if RandomApply can be printed as string
        random_apply_transform.__repr__()

    def test_random_choice(self):
        random_state = random.getstate()
        random.seed(42)
        random_choice_transform = transforms.RandomChoice(
            [
                transforms.Resize(15),
                transforms.Resize(20),
                transforms.CenterCrop(10)
            ]
        )
        img = transforms.ToPILImage()(torch.rand(3, 25, 25))
        num_samples = 250
        num_resize_15 = 0
        num_resize_20 = 0
        num_crop_10 = 0
        for _ in range(num_samples):
            out = random_choice_transform(img)
            if out.size == (15, 15):
                num_resize_15 += 1
            elif out.size == (20, 20):
                num_resize_20 += 1
            elif out.size == (10, 10):
                num_crop_10 += 1

        p_value = stats.binom_test(num_resize_15, num_samples, p=0.33333)
        assert p_value > 0.0001
        p_value = stats.binom_test(num_resize_20, num_samples, p=0.33333)
        assert p_value > 0.0001
        p_value = stats.binom_test(num_crop_10, num_samples, p=0.33333)
        assert p_value > 0.0001

        random.setstate(random_state)
        # Checking if RandomChoice can be printed as string
        random_choice_transform.__repr__()

    def test_random_order(self):
        random_state = random.getstate()
        random.seed(42)
        random_order_transform = transforms.RandomOrder(
            [
                transforms.Resize(20),
                transforms.CenterCrop(10)
            ]
        )
        img = transforms.ToPILImage()(torch.rand(3, 25, 25))
        num_samples = 250
        num_normal_order = 0
        resize_crop_out = transforms.CenterCrop(10)(transforms.Resize(20)(img))
        for _ in range(num_samples):
            out = random_order_transform(img)
            if out == resize_crop_out:
                num_normal_order += 1

        p_value = stats.binom_test(num_normal_order, num_samples, p=0.5)
        random.setstate(random_state)
        assert p_value > 0.0001

        # Checking if RandomOrder can be printed as string
        random_order_transform.__repr__()

346
    def test_to_tensor(self):
347
        test_channels = [1, 3, 4]
348
349
        height, width = 4, 4
        trans = transforms.ToTensor()
350
351
352
353
354
355
356

        for channels in test_channels:
            input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
            assert np.allclose(input_data.numpy(), output.numpy())

357
            ndarray = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
358
359
360
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1)) / 255.0
            assert np.allclose(output.numpy(), expected_output)
361

362
363
364
365
366
            ndarray = np.random.rand(height, width, channels).astype(np.float32)
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1))
            assert np.allclose(output.numpy(), expected_output)

367
368
369
370
371
372
373
374
375
376
377
378
379
    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_to_tensor(self):
        trans = transforms.ToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        assert np.allclose(output.numpy(), expected_output.numpy())

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_resize(self):
        trans = transforms.Compose([
380
            transforms.Resize(256, interpolation=Image.LINEAR),
381
382
383
            transforms.ToTensor(),
        ])

384
385
386
        # Checking if Compose, Resize and ToTensor can be printed as string
        trans.__repr__()

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        self.assertLess(np.abs((expected_output - output).mean()), 1e-3)
        self.assertLess((expected_output - output).var(), 1e-5)
        # note the high absolute tolerance
        assert np.allclose(output.numpy(), expected_output.numpy(), atol=5e-2)

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_crop(self):
        trans = transforms.Compose([
            transforms.CenterCrop(256),
            transforms.ToTensor(),
        ])

403
404
405
        # Checking if Compose, CenterCrop and ToTensor can be printed as string
        trans.__repr__()

406
407
408
409
410
411
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        assert np.allclose(output.numpy(), expected_output.numpy())

412
    def test_1_channel_tensor_to_pil_image(self):
413
414
        to_tensor = transforms.ToTensor()

415
        img_data_float = torch.Tensor(1, 4, 4).uniform_()
416
417
418
419
        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        img_data_int = torch.IntTensor(1, 4, 4).random_()

420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
                assert img.mode == mode
                assert np.allclose(expected_output, to_tensor(img).numpy())

    def test_1_channel_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4, 1).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4, 1).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4, 1).random_().numpy()
        img_data_int = torch.IntTensor(4, 4, 1).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
                assert img.mode == mode
                assert np.allclose(img_data[:, :, 0], img)

    def test_3_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
                assert img.mode == 'RGB'  # default should assume RGB
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
                assert img.mode == mode
            split = img.split()
            for i in range(3):
457
                assert np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy())
458

459
460
461
462
        img_data = torch.Tensor(3, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, expected_output, mode=mode)
463

464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)

    def test_3_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
                assert img.mode == 'RGB'  # default should assume RGB
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
                assert img.mode == mode
            split = img.split()
            for i in range(3):
                assert np.allclose(img_data[:, :, i], split[i])
480

481
482
483
484
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, mode)

485
486
487
        # Checking if ToPILImage can be printed as string
        transforms.ToPILImage().__repr__()

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)

    def test_4_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
                assert img.mode == 'RGBA'  # default should assume RGBA
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
                assert img.mode == mode

            split = img.split()
            for i in range(4):
504
                assert np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy())
505

506
        img_data = torch.Tensor(4, 4, 4).uniform_()
507
        expected_output = img_data.mul(255).int().float().div(255)
508
509
        for mode in [None, 'RGBA', 'CMYK']:
            verify_img_data(img_data, expected_output, mode)
510

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
        with self.assertRaises(ValueError):
            # should raise if we try a mode for 3 or 1 channel images
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)

    def test_4_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
                assert img.mode == 'RGBA'  # default should assume RGBA
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
                assert img.mode == mode
            split = img.split()
            for i in range(4):
                assert np.allclose(img_data[:, :, i], split[i])
527

528
529
530
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()
        for mode in [None, 'RGBA', 'CMYK']:
            verify_img_data(img_data, mode)
531

532
533
534
535
        with self.assertRaises(ValueError):
            # should raise if we try a mode for 3 or 1 channel images
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
536

537
    def test_ndarray_bad_types_to_pil_image(self):
538
        trans = transforms.ToPILImage()
539
        with self.assertRaises(TypeError):
540
541
542
543
544
            trans(np.ones([4, 4, 1], np.int64))
            trans(np.ones([4, 4, 1], np.uint16))
            trans(np.ones([4, 4, 1], np.uint32))
            trans(np.ones([4, 4, 1], np.float64))

545
546
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_vertical_flip(self):
547
548
        random_state = random.getstate()
        random.seed(42)
549
550
551
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        vimg = img.transpose(Image.FLIP_TOP_BOTTOM)

552
        num_samples = 250
553
        num_vertical = 0
554
        for _ in range(num_samples):
555
556
557
558
            out = transforms.RandomVerticalFlip()(img)
            if out == vimg:
                num_vertical += 1

559
560
561
        p_value = stats.binom_test(num_vertical, num_samples, p=0.5)
        random.setstate(random_state)
        assert p_value > 0.0001
562

563
564
565
566
567
568
569
570
571
572
573
        num_samples = 250
        num_vertical = 0
        for _ in range(num_samples):
            out = transforms.RandomVerticalFlip(p=0.7)(img)
            if out == vimg:
                num_vertical += 1

        p_value = stats.binom_test(num_vertical, num_samples, p=0.7)
        random.setstate(random_state)
        assert p_value > 0.0001

574
575
576
        # Checking if RandomVerticalFlip can be printed as string
        transforms.RandomVerticalFlip().__repr__()

577
578
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_horizontal_flip(self):
579
580
        random_state = random.getstate()
        random.seed(42)
581
582
583
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        himg = img.transpose(Image.FLIP_LEFT_RIGHT)

584
        num_samples = 250
585
        num_horizontal = 0
586
        for _ in range(num_samples):
587
588
589
590
            out = transforms.RandomHorizontalFlip()(img)
            if out == himg:
                num_horizontal += 1

591
592
593
        p_value = stats.binom_test(num_horizontal, num_samples, p=0.5)
        random.setstate(random_state)
        assert p_value > 0.0001
594

595
596
597
598
599
600
601
602
603
604
605
        num_samples = 250
        num_horizontal = 0
        for _ in range(num_samples):
            out = transforms.RandomHorizontalFlip(p=0.7)(img)
            if out == himg:
                num_horizontal += 1

        p_value = stats.binom_test(num_horizontal, num_samples, p=0.7)
        random.setstate(random_state)
        assert p_value > 0.0001

606
607
608
        # Checking if RandomHorizontalFlip can be printed as string
        transforms.RandomHorizontalFlip().__repr__()

609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
    @unittest.skipIf(stats is None, 'scipt.stats is not available')
    def test_normalize(self):
        def samples_from_standard_normal(tensor):
            p_value = stats.kstest(list(tensor.view(-1)), 'norm', args=(0, 1)).pvalue
            return p_value > 0.0001

        random_state = random.getstate()
        random.seed(42)
        for channels in [1, 3]:
            img = torch.rand(channels, 10, 10)
            mean = [img[c].mean() for c in range(channels)]
            std = [img[c].std() for c in range(channels)]
            normalized = transforms.Normalize(mean, std)(img)
            assert samples_from_standard_normal(normalized)
        random.setstate(random_state)

625
626
627
        # Checking if Normalize can be printed as string
        transforms.Normalize(mean, std).__repr__()

628
629
630
631
632
633
634
    def test_adjust_brightness(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
635
        y_pil = F.adjust_brightness(x_pil, 1)
636
637
638
639
        y_np = np.array(y_pil)
        assert np.allclose(y_np, x_np)

        # test 1
640
        y_pil = F.adjust_brightness(x_pil, 0.5)
641
642
643
644
645
646
        y_np = np.array(y_pil)
        y_ans = [0, 2, 6, 27, 67, 113, 18, 4, 117, 45, 127, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
647
        y_pil = F.adjust_brightness(x_pil, 2)
648
649
650
651
652
653
654
655
656
657
658
659
        y_np = np.array(y_pil)
        y_ans = [0, 10, 26, 108, 255, 255, 74, 16, 255, 180, 255, 2]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjust_contrast(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
660
        y_pil = F.adjust_contrast(x_pil, 1)
661
662
663
664
        y_np = np.array(y_pil)
        assert np.allclose(y_np, x_np)

        # test 1
665
        y_pil = F.adjust_contrast(x_pil, 0.5)
666
667
668
669
670
671
        y_np = np.array(y_pil)
        y_ans = [43, 45, 49, 70, 110, 156, 61, 47, 160, 88, 170, 43]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
672
        y_pil = F.adjust_contrast(x_pil, 2)
673
674
675
676
677
678
679
680
681
682
683
684
        y_np = np.array(y_pil)
        y_ans = [0, 0, 0, 22, 184, 255, 0, 0, 255, 94, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjust_saturation(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
685
        y_pil = F.adjust_saturation(x_pil, 1)
686
687
688
689
        y_np = np.array(y_pil)
        assert np.allclose(y_np, x_np)

        # test 1
690
        y_pil = F.adjust_saturation(x_pil, 0.5)
691
692
693
694
695
696
        y_np = np.array(y_pil)
        y_ans = [2, 4, 8, 87, 128, 173, 39, 25, 138, 133, 215, 88]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
697
        y_pil = F.adjust_saturation(x_pil, 2)
698
699
700
701
702
703
704
705
706
707
708
709
        y_np = np.array(y_pil)
        y_ans = [0, 6, 22, 0, 149, 255, 32, 0, 255, 4, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjust_hue(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        with self.assertRaises(ValueError):
710
711
            F.adjust_hue(x_pil, -0.7)
            F.adjust_hue(x_pil, 1)
712
713
714

        # test 0: almost same as x_data but not exact.
        # probably because hsv <-> rgb floating point ops
715
        y_pil = F.adjust_hue(x_pil, 0)
716
717
718
719
720
721
        y_np = np.array(y_pil)
        y_ans = [0, 5, 13, 54, 139, 226, 35, 8, 234, 91, 255, 1]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 1
722
        y_pil = F.adjust_hue(x_pil, 0.25)
723
724
725
726
727
728
        y_np = np.array(y_pil)
        y_ans = [13, 0, 12, 224, 54, 226, 234, 8, 99, 1, 222, 255]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
729
        y_pil = F.adjust_hue(x_pil, -0.25)
730
731
732
733
734
735
736
737
738
739
740
741
        y_np = np.array(y_pil)
        y_ans = [0, 13, 2, 54, 226, 58, 8, 234, 152, 255, 43, 1]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjust_gamma(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
742
        y_pil = F.adjust_gamma(x_pil, 1)
743
744
745
746
        y_np = np.array(y_pil)
        assert np.allclose(y_np, x_np)

        # test 1
747
        y_pil = F.adjust_gamma(x_pil, 0.5)
748
749
750
751
752
753
        y_np = np.array(y_pil)
        y_ans = [0, 35, 57, 117, 185, 240, 97, 45, 244, 151, 255, 15]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
754
        y_pil = F.adjust_gamma(x_pil, 2)
755
756
757
758
759
760
761
762
763
764
765
766
        y_np = np.array(y_pil)
        y_ans = [0, 0, 0, 11, 71, 200, 5, 0, 214, 31, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjusts_L_mode(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_rgb = Image.fromarray(x_np, mode='RGB')

        x_l = x_rgb.convert('L')
767
768
769
770
771
        assert F.adjust_brightness(x_l, 2).mode == 'L'
        assert F.adjust_saturation(x_l, 2).mode == 'L'
        assert F.adjust_contrast(x_l, 2).mode == 'L'
        assert F.adjust_hue(x_l, 0.4).mode == 'L'
        assert F.adjust_gamma(x_l, 0.5).mode == 'L'
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788

    def test_color_jitter(self):
        color_jitter = transforms.ColorJitter(2, 2, 2, 0.1)

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')

        for i in range(10):
            y_pil = color_jitter(x_pil)
            assert y_pil.mode == x_pil.mode

            y_pil_2 = color_jitter(x_pil_2)
            assert y_pil_2.mode == x_pil_2.mode

789
790
791
        # Checking if ColorJitter can be printed as string
        color_jitter.__repr__()

792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
    def test_linear_transformation(self):
        x = torch.randn(250, 10, 10, 3)
        flat_x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
        # compute principal components
        sigma = torch.mm(flat_x.t(), flat_x) / flat_x.size(0)
        u, s, _ = np.linalg.svd(sigma.numpy())
        zca_epsilon = 1e-10  # avoid division by 0
        d = torch.Tensor(np.diag(1. / np.sqrt(s + zca_epsilon)))
        u = torch.Tensor(u)
        principal_components = torch.mm(torch.mm(u, d), u.t())
        # initialize whitening matrix
        whitening = transforms.LinearTransformation(principal_components)
        # pass first vector
        xwhite = whitening(x[0].view(10, 10, 3))
        # estimate covariance
        xwhite = xwhite.view(1, 300).numpy()
        cov = np.dot(xwhite, xwhite.T) / x.size(0)
        assert np.allclose(cov, np.identity(1), rtol=1e-3)

811
812
813
        # Checking if LinearTransformation can be printed as string
        whitening.__repr__()

814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
    def test_rotate(self):
        x = np.zeros((100, 100, 3), dtype=np.uint8)
        x[40, 40] = [255, 255, 255]

        with self.assertRaises(TypeError):
            F.rotate(x, 10)

        img = F.to_pil_image(x)

        result = F.rotate(img, 45)
        assert result.size == (100, 100)
        r, c, ch = np.where(result)
        assert all(x in r for x in [49, 50])
        assert all(x in c for x in [36])
        assert all(x in ch for x in [0, 1, 2])

        result = F.rotate(img, 45, expand=True)
        assert result.size == (142, 142)
        r, c, ch = np.where(result)
        assert all(x in r for x in [70, 71])
        assert all(x in c for x in [57])
        assert all(x in ch for x in [0, 1, 2])

        result = F.rotate(img, 45, center=(40, 40))
        assert result.size == (100, 100)
        r, c, ch = np.where(result)
        assert all(x in r for x in [40])
        assert all(x in c for x in [40])
        assert all(x in ch for x in [0, 1, 2])

        result_a = F.rotate(img, 90)
        result_b = F.rotate(img, -270)

        assert np.all(np.array(result_a) == np.array(result_b))

    def test_random_rotation(self):

        with self.assertRaises(ValueError):
            transforms.RandomRotation(-0.7)
            transforms.RandomRotation([-0.7])
            transforms.RandomRotation([-0.7, 0, 0.7])

        t = transforms.RandomRotation(10)
        angle = t.get_params(t.degrees)
        assert angle > -10 and angle < 10

        t = transforms.RandomRotation((-10, 10))
        angle = t.get_params(t.degrees)
        assert angle > -10 and angle < 10

864
865
866
        # Checking if RandomRotation can be printed as string
        t.__repr__()

867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
    def test_to_grayscale(self):
        """Unit tests for grayscale transform"""

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        # Test Set: Grayscale an image with desired number of output channels
        # Case 1: RGB -> 1 channel grayscale
        trans1 = transforms.Grayscale(num_output_channels=1)
        gray_pil_1 = trans1(x_pil)
        gray_np_1 = np.array(gray_pil_1)
        assert gray_pil_1.mode == 'L', 'mode should be L'
        assert gray_np_1.shape == tuple(x_shape[0:2]), 'should be 1 channel'
        np.testing.assert_equal(gray_np, gray_np_1)

        # Case 2: RGB -> 3 channel grayscale
        trans2 = transforms.Grayscale(num_output_channels=3)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
        assert gray_pil_2.mode == 'RGB', 'mode should be RGB'
        assert gray_np_2.shape == tuple(x_shape), 'should be 3 channel'
        np.testing.assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
        np.testing.assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_2[:, :, 0])

        # Case 3: 1 channel grayscale -> 1 channel grayscale
        trans3 = transforms.Grayscale(num_output_channels=1)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
        assert gray_pil_3.mode == 'L', 'mode should be L'
        assert gray_np_3.shape == tuple(x_shape[0:2]), 'should be 1 channel'
        np.testing.assert_equal(gray_np, gray_np_3)

        # Case 4: 1 channel grayscale -> 3 channel grayscale
        trans4 = transforms.Grayscale(num_output_channels=3)
        gray_pil_4 = trans4(x_pil_2)
        gray_np_4 = np.array(gray_pil_4)
        assert gray_pil_4.mode == 'RGB', 'mode should be RGB'
        assert gray_np_4.shape == tuple(x_shape), 'should be 3 channel'
        np.testing.assert_equal(gray_np_4[:, :, 0], gray_np_4[:, :, 1])
        np.testing.assert_equal(gray_np_4[:, :, 1], gray_np_4[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_4[:, :, 0])

914
915
916
        # Checking if Grayscale can be printed as string
        trans4.__repr__()

917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_grayscale(self):
        """Unit tests for random grayscale transform"""

        # Test Set 1: RGB -> 3 channel grayscale
        random_state = random.getstate()
        random.seed(42)
        x_shape = [2, 2, 3]
        x_np = np.random.randint(0, 256, x_shape, np.uint8)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        num_samples = 250
        num_gray = 0
        for _ in range(num_samples):
            gray_pil_2 = transforms.RandomGrayscale(p=0.5)(x_pil)
            gray_np_2 = np.array(gray_pil_2)
            if np.array_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1]) and \
               np.array_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2]) and \
               np.array_equal(gray_np, gray_np_2[:, :, 0]):
                num_gray = num_gray + 1

        p_value = stats.binom_test(num_gray, num_samples, p=0.5)
        random.setstate(random_state)
        assert p_value > 0.0001

        # Test Set 2: grayscale -> 1 channel grayscale
        random_state = random.getstate()
        random.seed(42)
        x_shape = [2, 2, 3]
        x_np = np.random.randint(0, 256, x_shape, np.uint8)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        num_samples = 250
        num_gray = 0
        for _ in range(num_samples):
            gray_pil_3 = transforms.RandomGrayscale(p=0.5)(x_pil_2)
            gray_np_3 = np.array(gray_pil_3)
            if np.array_equal(gray_np, gray_np_3):
                num_gray = num_gray + 1

        p_value = stats.binom_test(num_gray, num_samples, p=1.0)  # Note: grayscale is always unchanged
        random.setstate(random_state)
        assert p_value > 0.0001

        # Test set 3: Explicit tests
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        # Case 3a: RGB -> 3 channel grayscale (grayscaled)
        trans2 = transforms.RandomGrayscale(p=1.0)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
        assert gray_pil_2.mode == 'RGB', 'mode should be RGB'
        assert gray_np_2.shape == tuple(x_shape), 'should be 3 channel'
        np.testing.assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
        np.testing.assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_2[:, :, 0])

        # Case 3b: RGB -> 3 channel grayscale (unchanged)
        trans2 = transforms.RandomGrayscale(p=0.0)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
        assert gray_pil_2.mode == 'RGB', 'mode should be RGB'
        assert gray_np_2.shape == tuple(x_shape), 'should be 3 channel'
        np.testing.assert_equal(x_np, gray_np_2)

        # Case 3c: 1 channel grayscale -> 1 channel grayscale (grayscaled)
        trans3 = transforms.RandomGrayscale(p=1.0)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
        assert gray_pil_3.mode == 'L', 'mode should be L'
        assert gray_np_3.shape == tuple(x_shape[0:2]), 'should be 1 channel'
        np.testing.assert_equal(gray_np, gray_np_3)

        # Case 3d: 1 channel grayscale -> 1 channel grayscale (unchanged)
        trans3 = transforms.RandomGrayscale(p=0.0)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
        assert gray_pil_3.mode == 'L', 'mode should be L'
        assert gray_np_3.shape == tuple(x_shape[0:2]), 'should be 1 channel'
        np.testing.assert_equal(gray_np, gray_np_3)

1007
1008
1009
        # Checking if RandomGrayscale can be printed as string
        trans3.__repr__()

1010

1011
1012
if __name__ == '__main__':
    unittest.main()