test_transforms.py 84.6 KB
Newer Older
1
import itertools
2
import os
3
4
import torch
import torchvision.transforms as transforms
5
import torchvision.transforms.functional as F
6
import torchvision.transforms.functional_tensor as F_t
7
from torch._utils_internal import get_file_path_2
8
from numpy.testing import assert_array_almost_equal
9
import unittest
10
import math
11
import random
12
import numpy as np
13
14
15
16
17
18
from PIL import Image
try:
    import accimage
except ImportError:
    accimage = None

19
20
21
22
23
try:
    from scipy import stats
except ImportError:
    stats = None

24
from common_utils import cycle_over, int_dtypes, float_dtypes
25
26


27
GRACE_HOPPER = get_file_path_2(
28
    os.path.dirname(os.path.abspath(__file__)), 'assets', 'encode_jpeg', 'grace_hopper_517x606.jpg')
29
30


31
class Tester(unittest.TestCase):
32

33
    def test_center_crop(self):
34
35
36
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
37
38
        owidth = random.randint(5, (width - 2) / 2) * 2

39
        img = torch.ones(3, height, width)
40
41
42
        oh1 = (height - oheight) // 2
        ow1 = (width - owidth) // 2
        imgnarrow = img[:, oh1:oh1 + oheight, ow1:ow1 + owidth]
43
44
45
46
47
48
        imgnarrow.fill_(0)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
49
50
        self.assertEqual(result.sum(), 0,
                         "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
51
52
53
54
55
56
57
58
        oheight += 1
        owidth += 1
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum1 = result.sum()
59
60
        self.assertGreater(sum1, 1,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
61
        oheight += 1
62
        owidth += 1
63
64
65
66
67
68
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum2 = result.sum()
69
70
71
72
        self.assertGreater(sum2, 0,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
        self.assertGreater(sum2, sum1,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
73

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    def test_center_crop_2(self):
        """ Tests when center crop size is larger than image size, along any dimension"""
        even_image_size = (random.randint(10, 32) * 2, random.randint(10, 32) * 2)
        odd_image_size = (even_image_size[0] + 1, even_image_size[1] + 1)

        # Since height is independent of width, we can ignore images with odd height and even width and vice-versa.
        input_image_sizes = [even_image_size, odd_image_size]

        # Get different crop sizes
        delta = random.choice((1, 3, 5))
        crop_size_delta = [-2 * delta, -delta, 0, delta, 2 * delta]
        crop_size_params = itertools.product(input_image_sizes, crop_size_delta, crop_size_delta)

        for (input_image_size, delta_height, delta_width) in crop_size_params:
            img = torch.ones(3, *input_image_size)
            crop_size = (input_image_size[0] + delta_height, input_image_size[1] + delta_width)

            # Test both transforms, one with PIL input and one with tensor
            output_pil = transforms.Compose([
                transforms.ToPILImage(),
                transforms.CenterCrop(crop_size),
                transforms.ToTensor()],
            )(img)
            self.assertEqual(output_pil.size()[1:3], crop_size,
                             "image_size: {} crop_size: {}".format(input_image_size, crop_size))

            output_tensor = transforms.CenterCrop(crop_size)(img)
            self.assertEqual(output_tensor.size()[1:3], crop_size,
                             "image_size: {} crop_size: {}".format(input_image_size, crop_size))

            # Ensure output for PIL and Tensor are equal
            self.assertEqual((output_tensor - output_pil).sum(), 0,
                             "image_size: {} crop_size: {}".format(input_image_size, crop_size))

            # Check if content in center of both image and cropped output is same.
            center_size = (min(crop_size[0], input_image_size[0]), min(crop_size[1], input_image_size[1]))
            crop_center_tl, input_center_tl = [0, 0], [0, 0]
            for index in range(2):
                if crop_size[index] > input_image_size[index]:
                    crop_center_tl[index] = (crop_size[index] - input_image_size[index]) // 2
                else:
                    input_center_tl[index] = (input_image_size[index] - crop_size[index]) // 2

            output_center = output_pil[
                :,
                crop_center_tl[0]:crop_center_tl[0] + center_size[0],
                crop_center_tl[1]:crop_center_tl[1] + center_size[1]
            ]

            img_center = img[
                :,
                input_center_tl[0]:input_center_tl[0] + center_size[0],
                input_center_tl[1]:input_center_tl[1] + center_size[1]
            ]

            self.assertEqual((output_center - img_center).sum(), 0,
                             "image_size: {} crop_size: {}".format(input_image_size, crop_size))

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    def test_five_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for single_dim in [True, False]:
            crop_h = random.randint(1, h)
            crop_w = random.randint(1, w)
            if single_dim:
                crop_h = min(crop_h, crop_w)
                crop_w = crop_h
                transform = transforms.FiveCrop(crop_h)
            else:
                transform = transforms.FiveCrop((crop_h, crop_w))

            img = torch.FloatTensor(3, h, w).uniform_()
            results = transform(to_pil_image(img))

149
            self.assertEqual(len(results), 5)
150
            for crop in results:
151
                self.assertEqual(crop.size, (crop_w, crop_h))
152
153
154
155
156
157
158
159

            to_pil_image = transforms.ToPILImage()
            tl = to_pil_image(img[:, 0:crop_h, 0:crop_w])
            tr = to_pil_image(img[:, 0:crop_h, w - crop_w:])
            bl = to_pil_image(img[:, h - crop_h:, 0:crop_w])
            br = to_pil_image(img[:, h - crop_h:, w - crop_w:])
            center = transforms.CenterCrop((crop_h, crop_w))(to_pil_image(img))
            expected_output = (tl, tr, bl, br, center)
160
            self.assertEqual(results, expected_output)
161
162
163
164
165
166
167
168
169
170
171
172

    def test_ten_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for should_vflip in [True, False]:
            for single_dim in [True, False]:
                crop_h = random.randint(1, h)
                crop_w = random.randint(1, w)
                if single_dim:
                    crop_h = min(crop_h, crop_w)
                    crop_w = crop_h
173
174
                    transform = transforms.TenCrop(crop_h,
                                                   vertical_flip=should_vflip)
175
176
                    five_crop = transforms.FiveCrop(crop_h)
                else:
177
178
                    transform = transforms.TenCrop((crop_h, crop_w),
                                                   vertical_flip=should_vflip)
179
180
181
182
183
                    five_crop = transforms.FiveCrop((crop_h, crop_w))

                img = to_pil_image(torch.FloatTensor(3, h, w).uniform_())
                results = transform(img)
                expected_output = five_crop(img)
184
185
186
187
188

                # Checking if FiveCrop and TenCrop can be printed as string
                transform.__repr__()
                five_crop.__repr__()

189
190
191
192
193
194
195
                if should_vflip:
                    vflipped_img = img.transpose(Image.FLIP_TOP_BOTTOM)
                    expected_output += five_crop(vflipped_img)
                else:
                    hflipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
                    expected_output += five_crop(hflipped_img)

196
197
                self.assertEqual(len(results), 10)
                self.assertEqual(results, expected_output)
198

199
200
201
202
203
204
205
206
    def test_randomresized_params(self):
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)
        size = 100
        epsilon = 0.05
207
        min_scale = 0.25
Francisco Massa's avatar
Francisco Massa committed
208
        for _ in range(10):
209
            scale_min = max(round(random.random(), 2), min_scale)
210
            scale_range = (scale_min, scale_min + round(random.random(), 2))
211
            aspect_min = max(round(random.random(), 2), epsilon)
212
213
            aspect_ratio_range = (aspect_min, aspect_min + round(random.random(), 2))
            randresizecrop = transforms.RandomResizedCrop(size, scale_range, aspect_ratio_range)
214
            i, j, h, w = randresizecrop.get_params(img, scale_range, aspect_ratio_range)
215
            aspect_ratio_obtained = w / h
216
217
218
219
220
221
222
            self.assertTrue((min(aspect_ratio_range) - epsilon <= aspect_ratio_obtained and
                             aspect_ratio_obtained <= max(aspect_ratio_range) + epsilon) or
                            aspect_ratio_obtained == 1.0)
            self.assertIsInstance(i, int)
            self.assertIsInstance(j, int)
            self.assertIsInstance(h, int)
            self.assertIsInstance(w, int)
223

224
    def test_randomperspective(self):
Francisco Massa's avatar
Francisco Massa committed
225
        for _ in range(10):
226
227
228
229
230
231
232
233
234
235
            height = random.randint(24, 32) * 2
            width = random.randint(24, 32) * 2
            img = torch.ones(3, height, width)
            to_pil_image = transforms.ToPILImage()
            img = to_pil_image(img)
            perp = transforms.RandomPerspective()
            startpoints, endpoints = perp.get_params(width, height, 0.5)
            tr_img = F.perspective(img, startpoints, endpoints)
            tr_img2 = F.to_tensor(F.perspective(tr_img, endpoints, startpoints))
            tr_img = F.to_tensor(tr_img)
236
237
238
239
            self.assertEqual(img.size[0], width)
            self.assertEqual(img.size[1], height)
            self.assertGreater(torch.nn.functional.mse_loss(tr_img, F.to_tensor(img)) + 0.3,
                               torch.nn.functional.mse_loss(tr_img2, F.to_tensor(img)))
240

241
    def test_randomperspective_fill(self):
242
243
244
245
246
247
248
249

        # assert fill being either a Sequence or a Number
        with self.assertRaises(TypeError):
            transforms.RandomPerspective(fill={})

        t = transforms.RandomPerspective(fill=None)
        self.assertTrue(t.fill == 0)

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
        height = 100
        width = 100
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)

        modes = ("L", "RGB", "F")
        nums_bands = [len(mode) for mode in modes]
        fill = 127

        for mode, num_bands in zip(modes, nums_bands):
            img_conv = img.convert(mode)
            perspective = transforms.RandomPerspective(p=1, fill=fill)
            tr_img = perspective(img_conv)
            pixel = tr_img.getpixel((0, 0))

            if not isinstance(pixel, tuple):
                pixel = (pixel,)
            self.assertTupleEqual(pixel, tuple([fill] * num_bands))

        for mode, num_bands in zip(modes, nums_bands):
            img_conv = img.convert(mode)
            startpoints, endpoints = transforms.RandomPerspective.get_params(width, height, 0.5)
            tr_img = F.perspective(img_conv, startpoints, endpoints, fill=fill)
            pixel = tr_img.getpixel((0, 0))
275

276
277
278
279
280
281
282
283
            if not isinstance(pixel, tuple):
                pixel = (pixel,)
            self.assertTupleEqual(pixel, tuple([fill] * num_bands))

            for wrong_num_bands in set(nums_bands) - {num_bands}:
                with self.assertRaises(ValueError):
                    F.perspective(img_conv, startpoints, endpoints, fill=tuple([fill] * wrong_num_bands))

284
    def test_resize(self):
285

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
        input_sizes = [
            # height, width
            # square image
            (28, 28),
            (27, 27),
            # rectangular image: h < w
            (28, 34),
            (29, 35),
            # rectangular image: h > w
            (34, 28),
            (35, 29),
        ]
        test_output_sizes_1 = [
            # single integer
            22, 27, 28, 36,
            # single integer in tuple/list
            [22, ], (27, ),
        ]
        test_output_sizes_2 = [
            # two integers
            [22, 22], [22, 28], [22, 36],
            [27, 22], [36, 22], [28, 28],
            [28, 37], [37, 27], [37, 37]
        ]

        for height, width in input_sizes:
            img = Image.new("RGB", size=(width, height), color=127)

            for osize in test_output_sizes_1:

                t = transforms.Resize(osize)
                result = t(img)

                msg = "{}, {} - {}".format(height, width, osize)
                osize = osize[0] if isinstance(osize, (list, tuple)) else osize
                # If size is an int, smaller edge of the image will be matched to this number.
                # i.e, if height > width, then image will be rescaled to (size * height / width, size).
                if height < width:
                    expected_size = (int(osize * width / height), osize)  # (w, h)
                    self.assertEqual(result.size, expected_size, msg=msg)
                elif width < height:
                    expected_size = (osize, int(osize * height / width))  # (w, h)
                    self.assertEqual(result.size, expected_size, msg=msg)
                else:
                    expected_size = (osize, osize)  # (w, h)
                    self.assertEqual(result.size, expected_size, msg=msg)
332

333
334
        for height, width in input_sizes:
            img = Image.new("RGB", size=(width, height), color=127)
335

336
337
            for osize in test_output_sizes_2:
                oheight, owidth = osize
338

339
340
                t = transforms.Resize(osize)
                result = t(img)
341

342
                self.assertEqual((owidth, oheight), result.size)
343

344
345
346
347
    def test_random_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
348
        owidth = random.randint(5, (width - 2) / 2) * 2
349
350
351
352
353
354
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
355
356
        self.assertEqual(result.size(1), oheight)
        self.assertEqual(result.size(2), owidth)
357

358
359
360
361
362
363
        padding = random.randint(1, 20)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth), padding=padding),
            transforms.ToTensor(),
        ])(img)
364
365
        self.assertEqual(result.size(1), oheight)
        self.assertEqual(result.size(2), owidth)
366

367
368
369
370
371
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height, width)),
            transforms.ToTensor()
        ])(img)
372
373
374
        self.assertEqual(result.size(1), height)
        self.assertEqual(result.size(2), width)
        self.assertTrue(np.allclose(img.numpy(), result.numpy()))
375

376
377
378
379
380
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height + 1, width + 1), pad_if_needed=True),
            transforms.ToTensor(),
        ])(img)
381
382
        self.assertEqual(result.size(1), height + 1)
        self.assertEqual(result.size(2), width + 1)
383

vfdev's avatar
vfdev committed
384
385
386
387
388
        t = transforms.RandomCrop(48)
        img = torch.ones(3, 32, 32)
        with self.assertRaisesRegex(ValueError, r"Required crop size .+ is larger then input image size .+"):
            t(img)

389
390
391
392
393
    def test_pad(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = torch.ones(3, height, width)
        padding = random.randint(1, 20)
394
        fill = random.randint(1, 50)
395
396
        result = transforms.Compose([
            transforms.ToPILImage(),
397
            transforms.Pad(padding, fill=fill),
398
399
            transforms.ToTensor(),
        ])(img)
400
401
        self.assertEqual(result.size(1), height + 2 * padding)
        self.assertEqual(result.size(2), width + 2 * padding)
402
403
404
405
406
407
408
409
        # check that all elements in the padded region correspond
        # to the pad value
        fill_v = fill / 255
        eps = 1e-5
        self.assertTrue((result[:, :padding, :] - fill_v).abs().max() < eps)
        self.assertTrue((result[:, :, :padding] - fill_v).abs().max() < eps)
        self.assertRaises(ValueError, transforms.Pad(padding, fill=(1, 2)),
                          transforms.ToPILImage()(img))
Soumith Chintala's avatar
Soumith Chintala committed
410

411
412
413
414
415
416
417
    def test_pad_with_tuple_of_pad_values(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = transforms.ToPILImage()(torch.ones(3, height, width))

        padding = tuple([random.randint(1, 20) for _ in range(2)])
        output = transforms.Pad(padding)(img)
418
        self.assertEqual(output.size, (width + padding[0] * 2, height + padding[1] * 2))
419
420
421

        padding = tuple([random.randint(1, 20) for _ in range(4)])
        output = transforms.Pad(padding)(img)
422
423
        self.assertEqual(output.size[0], width + padding[0] + padding[2])
        self.assertEqual(output.size[1], height + padding[1] + padding[3])
424

425
426
427
        # Checking if Padding can be printed as string
        transforms.Pad(padding).__repr__()

428
429
    def test_pad_with_non_constant_padding_modes(self):
        """Unit tests for edge, reflect, symmetric padding"""
vfdev's avatar
vfdev committed
430
        img = torch.zeros(3, 27, 27).byte()
431
432
433
434
435
436
437
438
439
        img[:, :, 0] = 1  # Constant value added to leftmost edge
        img = transforms.ToPILImage()(img)
        img = F.pad(img, 1, (200, 200, 200))

        # pad 3 to all sidess
        edge_padded_img = F.pad(img, 3, padding_mode='edge')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # edge_pad, edge_pad, edge_pad, constant_pad, constant value added to leftmost edge, 0
        edge_middle_slice = np.asarray(edge_padded_img).transpose(2, 0, 1)[0][17][:6]
440
441
        self.assertTrue(np.all(edge_middle_slice == np.asarray([200, 200, 200, 200, 1, 0])))
        self.assertEqual(transforms.ToTensor()(edge_padded_img).size(), (3, 35, 35))
442
443
444
445
446
447

        # Pad 3 to left/right, 2 to top/bottom
        reflect_padded_img = F.pad(img, (3, 2), padding_mode='reflect')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # reflect_pad, reflect_pad, reflect_pad, constant_pad, constant value added to leftmost edge, 0
        reflect_middle_slice = np.asarray(reflect_padded_img).transpose(2, 0, 1)[0][17][:6]
448
449
        self.assertTrue(np.all(reflect_middle_slice == np.asarray([0, 0, 1, 200, 1, 0])))
        self.assertEqual(transforms.ToTensor()(reflect_padded_img).size(), (3, 33, 35))
450
451
452
453
454
455

        # Pad 3 to left, 2 to top, 2 to right, 1 to bottom
        symmetric_padded_img = F.pad(img, (3, 2, 2, 1), padding_mode='symmetric')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # sym_pad, sym_pad, sym_pad, constant_pad, constant value added to leftmost edge, 0
        symmetric_middle_slice = np.asarray(symmetric_padded_img).transpose(2, 0, 1)[0][17][:6]
456
457
        self.assertTrue(np.all(symmetric_middle_slice == np.asarray([0, 1, 200, 200, 1, 0])))
        self.assertEqual(transforms.ToTensor()(symmetric_padded_img).size(), (3, 32, 34))
458

459
460
461
462
463
464
465
466
467
468
        # Check negative padding explicitly for symmetric case, since it is not
        # implemented for tensor case to compare to
        # Crop 1 to left, pad 2 to top, pad 3 to right, crop 3 to bottom
        symmetric_padded_img_neg = F.pad(img, (-1, 2, 3, -3), padding_mode='symmetric')
        symmetric_neg_middle_left = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][:3]
        symmetric_neg_middle_right = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][-4:]
        self.assertTrue(np.all(symmetric_neg_middle_left == np.asarray([1, 0, 0])))
        self.assertTrue(np.all(symmetric_neg_middle_right == np.asarray([200, 200, 0, 0])))
        self.assertEqual(transforms.ToTensor()(symmetric_padded_img_neg).size(), (3, 28, 31))

469
    def test_pad_raises_with_invalid_pad_sequence_len(self):
470
471
472
473
474
475
476
477
478
        with self.assertRaises(ValueError):
            transforms.Pad(())

        with self.assertRaises(ValueError):
            transforms.Pad((1, 2, 3))

        with self.assertRaises(ValueError):
            transforms.Pad((1, 2, 3, 4, 5))

479
480
481
482
483
484
485
486
    def test_pad_with_mode_F_images(self):
        pad = 2
        transform = transforms.Pad(pad)

        img = Image.new("F", (10, 10))
        padded_img = transform(img)
        self.assertSequenceEqual(padded_img.size, [edge_size + 2 * pad for edge_size in img.size])

Soumith Chintala's avatar
Soumith Chintala committed
487
488
489
490
    def test_lambda(self):
        trans = transforms.Lambda(lambda x: x.add(10))
        x = torch.randn(10)
        y = trans(x)
491
        self.assertTrue(y.equal(torch.add(x, 10)))
Soumith Chintala's avatar
Soumith Chintala committed
492
493
494
495

        trans = transforms.Lambda(lambda x: x.add_(10))
        x = torch.randn(10)
        y = trans(x)
496
        self.assertTrue(y.equal(x))
497

498
499
500
        # Checking if Lambda can be printed as string
        trans.__repr__()

501
    @unittest.skipIf(stats is None, 'scipy.stats not available')
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
    def test_random_apply(self):
        random_state = random.getstate()
        random.seed(42)
        random_apply_transform = transforms.RandomApply(
            [
                transforms.RandomRotation((-45, 45)),
                transforms.RandomHorizontalFlip(),
                transforms.RandomVerticalFlip(),
            ], p=0.75
        )
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        num_samples = 250
        num_applies = 0
        for _ in range(num_samples):
            out = random_apply_transform(img)
            if out != img:
                num_applies += 1

        p_value = stats.binom_test(num_applies, num_samples, p=0.75)
        random.setstate(random_state)
522
        self.assertGreater(p_value, 0.0001)
523
524
525
526

        # Checking if RandomApply can be printed as string
        random_apply_transform.__repr__()

527
    @unittest.skipIf(stats is None, 'scipy.stats not available')
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
    def test_random_choice(self):
        random_state = random.getstate()
        random.seed(42)
        random_choice_transform = transforms.RandomChoice(
            [
                transforms.Resize(15),
                transforms.Resize(20),
                transforms.CenterCrop(10)
            ]
        )
        img = transforms.ToPILImage()(torch.rand(3, 25, 25))
        num_samples = 250
        num_resize_15 = 0
        num_resize_20 = 0
        num_crop_10 = 0
        for _ in range(num_samples):
            out = random_choice_transform(img)
            if out.size == (15, 15):
                num_resize_15 += 1
            elif out.size == (20, 20):
                num_resize_20 += 1
            elif out.size == (10, 10):
                num_crop_10 += 1

        p_value = stats.binom_test(num_resize_15, num_samples, p=0.33333)
553
        self.assertGreater(p_value, 0.0001)
554
        p_value = stats.binom_test(num_resize_20, num_samples, p=0.33333)
555
        self.assertGreater(p_value, 0.0001)
556
        p_value = stats.binom_test(num_crop_10, num_samples, p=0.33333)
557
        self.assertGreater(p_value, 0.0001)
558
559
560
561
562

        random.setstate(random_state)
        # Checking if RandomChoice can be printed as string
        random_choice_transform.__repr__()

563
    @unittest.skipIf(stats is None, 'scipy.stats not available')
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
    def test_random_order(self):
        random_state = random.getstate()
        random.seed(42)
        random_order_transform = transforms.RandomOrder(
            [
                transforms.Resize(20),
                transforms.CenterCrop(10)
            ]
        )
        img = transforms.ToPILImage()(torch.rand(3, 25, 25))
        num_samples = 250
        num_normal_order = 0
        resize_crop_out = transforms.CenterCrop(10)(transforms.Resize(20)(img))
        for _ in range(num_samples):
            out = random_order_transform(img)
            if out == resize_crop_out:
                num_normal_order += 1

        p_value = stats.binom_test(num_normal_order, num_samples, p=0.5)
        random.setstate(random_state)
584
        self.assertGreater(p_value, 0.0001)
585
586
587
588

        # Checking if RandomOrder can be printed as string
        random_order_transform.__repr__()

589
    def test_to_tensor(self):
590
        test_channels = [1, 3, 4]
591
592
        height, width = 4, 4
        trans = transforms.ToTensor()
593

594
595
596
597
598
599
600
        with self.assertRaises(TypeError):
            trans(np.random.rand(1, height, width).tolist())

        with self.assertRaises(ValueError):
            trans(np.random.rand(height))
            trans(np.random.rand(1, 1, height, width))

601
602
603
604
        for channels in test_channels:
            input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
605
            self.assertTrue(np.allclose(input_data.numpy(), output.numpy()))
606

607
            ndarray = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
608
609
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1)) / 255.0
610
            self.assertTrue(np.allclose(output.numpy(), expected_output))
611

612
613
614
            ndarray = np.random.rand(height, width, channels).astype(np.float32)
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1))
615
            self.assertTrue(np.allclose(output.numpy(), expected_output))
616

617
618
619
620
        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
        img = transforms.ToPILImage()(input_data.mul(255)).convert('1')
        output = trans(img)
621
        self.assertTrue(np.allclose(input_data.numpy(), output.numpy()))
622

623
624
625
626
    def test_max_value(self):
        for dtype in int_dtypes():
            self.assertEqual(F_t._max_value(dtype), torch.iinfo(dtype).max)

627
628
629
630
        # remove float testing as it can lead to errors such as
        # runtime error: 5.7896e+76 is outside the range of representable values of type 'float'
        # for dtype in float_dtypes():
        #     self.assertGreater(F_t._max_value(dtype), torch.finfo(dtype).max)
631

632
633
634
635
636
637
    def test_convert_image_dtype_float_to_float(self):
        for input_dtype, output_dtypes in cycle_over(float_dtypes()):
            input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
            for output_dtype in output_dtypes:
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
638
639
                    transform_script = torch.jit.script(F.convert_image_dtype)

640
                    output_image = transform(input_image)
641
642
643
644
                    output_image_script = transform_script(input_image, output_dtype)

                    script_diff = output_image_script - output_image
                    self.assertLess(script_diff.abs().max(), 1e-6)
645
646
647
648
649
650
651
652
653
654
655
656
657

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0.0, 1.0

                    self.assertAlmostEqual(actual_min, desired_min)
                    self.assertAlmostEqual(actual_max, desired_max)

    def test_convert_image_dtype_float_to_int(self):
        for input_dtype in float_dtypes():
            input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
            for output_dtype in int_dtypes():
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
658
                    transform_script = torch.jit.script(F.convert_image_dtype)
659
660
661
662
663
664
665
666

                    if (input_dtype == torch.float32 and output_dtype in (torch.int32, torch.int64)) or (
                            input_dtype == torch.float64 and output_dtype == torch.int64
                    ):
                        with self.assertRaises(RuntimeError):
                            transform(input_image)
                    else:
                        output_image = transform(input_image)
667
668
669
670
                        output_image_script = transform_script(input_image, output_dtype)

                        script_diff = output_image_script - output_image
                        self.assertLess(script_diff.abs().max(), 1e-6)
671
672
673
674
675
676
677
678
679
680
681
682
683

                        actual_min, actual_max = output_image.tolist()
                        desired_min, desired_max = 0, torch.iinfo(output_dtype).max

                        self.assertEqual(actual_min, desired_min)
                        self.assertEqual(actual_max, desired_max)

    def test_convert_image_dtype_int_to_float(self):
        for input_dtype in int_dtypes():
            input_image = torch.tensor((0, torch.iinfo(input_dtype).max), dtype=input_dtype)
            for output_dtype in float_dtypes():
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
684
685
                    transform_script = torch.jit.script(F.convert_image_dtype)

686
                    output_image = transform(input_image)
687
688
689
690
                    output_image_script = transform_script(input_image, output_dtype)

                    script_diff = output_image_script - output_image
                    self.assertLess(script_diff.abs().max(), 1e-6)
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0.0, 1.0

                    self.assertAlmostEqual(actual_min, desired_min)
                    self.assertGreaterEqual(actual_min, desired_min)
                    self.assertAlmostEqual(actual_max, desired_max)
                    self.assertLessEqual(actual_max, desired_max)

    def test_convert_image_dtype_int_to_int(self):
        for input_dtype, output_dtypes in cycle_over(int_dtypes()):
            input_max = torch.iinfo(input_dtype).max
            input_image = torch.tensor((0, input_max), dtype=input_dtype)
            for output_dtype in output_dtypes:
                output_max = torch.iinfo(output_dtype).max

                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
709
710
                    transform_script = torch.jit.script(F.convert_image_dtype)

711
                    output_image = transform(input_image)
712
713
714
715
716
717
                    output_image_script = transform_script(input_image, output_dtype)

                    script_diff = output_image_script.float() - output_image.float()
                    self.assertLess(
                        script_diff.abs().max(), 1e-6, msg="{} vs {}".format(output_image_script, output_image)
                    )
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0, output_max

                    # see https://github.com/pytorch/vision/pull/2078#issuecomment-641036236 for details
                    if input_max >= output_max:
                        error_term = 0
                    else:
                        error_term = 1 - (torch.iinfo(output_dtype).max + 1) // (torch.iinfo(input_dtype).max + 1)

                    self.assertEqual(actual_min, desired_min)
                    self.assertEqual(actual_max, desired_max + error_term)

    def test_convert_image_dtype_int_to_int_consistency(self):
        for input_dtype, output_dtypes in cycle_over(int_dtypes()):
            input_max = torch.iinfo(input_dtype).max
            input_image = torch.tensor((0, input_max), dtype=input_dtype)
            for output_dtype in output_dtypes:
                output_max = torch.iinfo(output_dtype).max
                if output_max <= input_max:
                    continue

                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
                    inverse_transfrom = transforms.ConvertImageDtype(input_dtype)
                    output_image = inverse_transfrom(transform(input_image))

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0, input_max

                    self.assertEqual(actual_min, desired_min)
                    self.assertEqual(actual_max, desired_max)

751
752
753
754
755
756
757
758
    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_to_tensor(self):
        trans = transforms.ToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
        self.assertTrue(np.allclose(output.numpy(), expected_output.numpy()))

    def test_pil_to_tensor(self):
        test_channels = [1, 3, 4]
        height, width = 4, 4
        trans = transforms.PILToTensor()

        with self.assertRaises(TypeError):
            trans(np.random.rand(1, height, width).tolist())
            trans(np.random.rand(1, height, width))

        for channels in test_channels:
            input_data = torch.ByteTensor(channels, height, width).random_(0, 255)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
            self.assertTrue(np.allclose(input_data.numpy(), output.numpy()))

            input_data = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
            expected_output = input_data.transpose((2, 0, 1))
            self.assertTrue(np.allclose(output.numpy(), expected_output))

            input_data = torch.as_tensor(np.random.rand(channels, height, width).astype(np.float32))
            img = transforms.ToPILImage()(input_data)  # CHW -> HWC and (* 255).byte()
            output = trans(img)  # HWC -> CHW
            expected_output = (input_data * 255).byte()
            self.assertTrue(np.allclose(output.numpy(), expected_output.numpy()))

        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
        img = transforms.ToPILImage()(input_data.mul(255)).convert('1')
        output = trans(img)
        self.assertTrue(np.allclose(input_data.numpy(), output.numpy()))

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_pil_to_tensor(self):
        trans = transforms.PILToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
802
        self.assertTrue(np.allclose(output.numpy(), expected_output.numpy()))
803
804
805
806

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_resize(self):
        trans = transforms.Compose([
807
            transforms.Resize(256, interpolation=Image.LINEAR),
808
809
810
            transforms.ToTensor(),
        ])

811
812
813
        # Checking if Compose, Resize and ToTensor can be printed as string
        trans.__repr__()

814
815
816
817
818
819
820
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        self.assertLess(np.abs((expected_output - output).mean()), 1e-3)
        self.assertLess((expected_output - output).var(), 1e-5)
        # note the high absolute tolerance
821
        self.assertTrue(np.allclose(output.numpy(), expected_output.numpy(), atol=5e-2))
822
823
824
825
826
827
828
829

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_crop(self):
        trans = transforms.Compose([
            transforms.CenterCrop(256),
            transforms.ToTensor(),
        ])

830
831
832
        # Checking if Compose, CenterCrop and ToTensor can be printed as string
        trans.__repr__()

833
834
835
836
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
837
        self.assertTrue(np.allclose(output.numpy(), expected_output.numpy()))
838

839
    def test_1_channel_tensor_to_pil_image(self):
840
841
        to_tensor = transforms.ToTensor()

842
        img_data_float = torch.Tensor(1, 4, 4).uniform_()
843
844
845
846
        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        img_data_int = torch.IntTensor(1, 4, 4).random_()

847
848
849
850
851
852
853
854
855
856
        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
857
858
                self.assertEqual(img.mode, mode)
                self.assertTrue(np.allclose(expected_output, to_tensor(img).numpy()))
859
860
        # 'F' mode for torch.FloatTensor
        img_F_mode = transforms.ToPILImage(mode='F')(img_data_float)
861
862
863
        self.assertEqual(img_F_mode.mode, 'F')
        self.assertTrue(np.allclose(np.array(Image.fromarray(img_data_float.squeeze(0).numpy(), mode='F')),
                                    np.array(img_F_mode)))
864
865
866
867
868
869
870
871
872
873
874
875

    def test_1_channel_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4, 1).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4, 1).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4, 1).random_().numpy()
        img_data_int = torch.IntTensor(4, 4, 1).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
876
877
                self.assertEqual(img.mode, mode)
                self.assertTrue(np.allclose(img_data[:, :, 0], img))
878

surgan12's avatar
surgan12 committed
879
880
881
882
    def test_2_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
883
                self.assertEqual(img.mode, 'LA')  # default should assume LA
surgan12's avatar
surgan12 committed
884
885
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
886
                self.assertEqual(img.mode, mode)
surgan12's avatar
surgan12 committed
887
888
            split = img.split()
            for i in range(2):
889
                self.assertTrue(np.allclose(img_data[:, :, i], split[i]))
surgan12's avatar
surgan12 committed
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906

        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
        for mode in [None, 'LA']:
            verify_img_data(img_data, mode)

        transforms.ToPILImage().__repr__()

        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 or 3 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
            transforms.ToPILImage(mode='RGB')(img_data)

    def test_2_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
907
                self.assertEqual(img.mode, 'LA')  # default should assume LA
surgan12's avatar
surgan12 committed
908
909
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
910
                self.assertEqual(img.mode, mode)
surgan12's avatar
surgan12 committed
911
912
            split = img.split()
            for i in range(2):
913
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
surgan12's avatar
surgan12 committed
914
915
916
917
918
919
920
921
922
923
924
925

        img_data = torch.Tensor(2, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'LA']:
            verify_img_data(img_data, expected_output, mode=mode)

        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 or 3 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
            transforms.ToPILImage(mode='RGB')(img_data)

926
927
928
929
    def test_3_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
930
                self.assertEqual(img.mode, 'RGB')  # default should assume RGB
931
932
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
933
                self.assertEqual(img.mode, mode)
934
935
            split = img.split()
            for i in range(3):
936
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
937

938
939
940
941
        img_data = torch.Tensor(3, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, expected_output, mode=mode)
942

943
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
944
            # should raise if we try a mode for 4 or 1 or 2 channel images
945
946
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
947
            transforms.ToPILImage(mode='LA')(img_data)
948

Varun Agrawal's avatar
Varun Agrawal committed
949
950
951
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(torch.Tensor(1, 3, 4, 4).uniform_())

952
953
954
955
    def test_3_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
956
                self.assertEqual(img.mode, 'RGB')  # default should assume RGB
957
958
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
959
                self.assertEqual(img.mode, mode)
960
961
            split = img.split()
            for i in range(3):
962
                self.assertTrue(np.allclose(img_data[:, :, i], split[i]))
963

964
965
966
967
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, mode)

968
969
970
        # Checking if ToPILImage can be printed as string
        transforms.ToPILImage().__repr__()

971
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
972
            # should raise if we try a mode for 4 or 1 or 2 channel images
973
974
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
975
            transforms.ToPILImage(mode='LA')(img_data)
976
977
978
979
980

    def test_4_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
981
                self.assertEqual(img.mode, 'RGBA')  # default should assume RGBA
982
983
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
984
                self.assertEqual(img.mode, mode)
985
986
987

            split = img.split()
            for i in range(4):
988
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
989

990
        img_data = torch.Tensor(4, 4, 4).uniform_()
991
        expected_output = img_data.mul(255).int().float().div(255)
surgan12's avatar
surgan12 committed
992
        for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
993
            verify_img_data(img_data, expected_output, mode)
994

995
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
996
            # should raise if we try a mode for 3 or 1 or 2 channel images
997
998
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
999
            transforms.ToPILImage(mode='LA')(img_data)
1000
1001
1002
1003
1004

    def test_4_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
1005
                self.assertEqual(img.mode, 'RGBA')  # default should assume RGBA
1006
1007
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
1008
                self.assertEqual(img.mode, mode)
1009
1010
            split = img.split()
            for i in range(4):
1011
                self.assertTrue(np.allclose(img_data[:, :, i], split[i]))
1012

1013
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()
surgan12's avatar
surgan12 committed
1014
        for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
1015
            verify_img_data(img_data, mode)
1016

1017
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
1018
            # should raise if we try a mode for 3 or 1 or 2 channel images
1019
1020
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
1021
            transforms.ToPILImage(mode='LA')(img_data)
1022

Varun Agrawal's avatar
Varun Agrawal committed
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
    def test_2d_tensor_to_pil_image(self):
        to_tensor = transforms.ToTensor()

        img_data_float = torch.Tensor(4, 4).uniform_()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(4, 4).random_()
        img_data_int = torch.IntTensor(4, 4).random_()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
1041
1042
                self.assertEqual(img.mode, mode)
                self.assertTrue(np.allclose(expected_output, to_tensor(img).numpy()))
Varun Agrawal's avatar
Varun Agrawal committed
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054

    def test_2d_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4).random_().numpy()
        img_data_int = torch.IntTensor(4, 4).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
1055
1056
                self.assertEqual(img.mode, mode)
                self.assertTrue(np.allclose(img_data, img))
Varun Agrawal's avatar
Varun Agrawal committed
1057
1058

    def test_tensor_bad_types_to_pil_image(self):
1059
        with self.assertRaisesRegex(ValueError, r'pic should be 2/3 dimensional. Got \d+ dimensions.'):
Varun Agrawal's avatar
Varun Agrawal committed
1060
            transforms.ToPILImage()(torch.ones(1, 3, 4, 4))
1061
1062
        with self.assertRaisesRegex(ValueError, r'pic should not have > 4 channels. Got \d+ channels.'):
            transforms.ToPILImage()(torch.ones(6, 4, 4))
Varun Agrawal's avatar
Varun Agrawal committed
1063

1064
    def test_ndarray_bad_types_to_pil_image(self):
1065
        trans = transforms.ToPILImage()
1066
1067
        reg_msg = r'Input type \w+ is not supported'
        with self.assertRaisesRegex(TypeError, reg_msg):
1068
            trans(np.ones([4, 4, 1], np.int64))
1069
        with self.assertRaisesRegex(TypeError, reg_msg):
1070
            trans(np.ones([4, 4, 1], np.uint16))
1071
        with self.assertRaisesRegex(TypeError, reg_msg):
1072
            trans(np.ones([4, 4, 1], np.uint32))
1073
        with self.assertRaisesRegex(TypeError, reg_msg):
1074
1075
            trans(np.ones([4, 4, 1], np.float64))

1076
        with self.assertRaisesRegex(ValueError, r'pic should be 2/3 dimensional. Got \d+ dimensions.'):
Varun Agrawal's avatar
Varun Agrawal committed
1077
            transforms.ToPILImage()(np.ones([1, 4, 4, 3]))
1078
1079
        with self.assertRaisesRegex(ValueError, r'pic should not have > 4 channels. Got \d+ channels.'):
            transforms.ToPILImage()(np.ones([4, 4, 6]))
Varun Agrawal's avatar
Varun Agrawal committed
1080

1081
1082
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_vertical_flip(self):
1083
1084
        random_state = random.getstate()
        random.seed(42)
1085
1086
1087
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        vimg = img.transpose(Image.FLIP_TOP_BOTTOM)

1088
        num_samples = 250
1089
        num_vertical = 0
1090
        for _ in range(num_samples):
1091
1092
1093
1094
            out = transforms.RandomVerticalFlip()(img)
            if out == vimg:
                num_vertical += 1

1095
1096
        p_value = stats.binom_test(num_vertical, num_samples, p=0.5)
        random.setstate(random_state)
1097
        self.assertGreater(p_value, 0.0001)
1098

1099
1100
1101
1102
1103
1104
1105
1106
1107
        num_samples = 250
        num_vertical = 0
        for _ in range(num_samples):
            out = transforms.RandomVerticalFlip(p=0.7)(img)
            if out == vimg:
                num_vertical += 1

        p_value = stats.binom_test(num_vertical, num_samples, p=0.7)
        random.setstate(random_state)
1108
        self.assertGreater(p_value, 0.0001)
1109

1110
1111
1112
        # Checking if RandomVerticalFlip can be printed as string
        transforms.RandomVerticalFlip().__repr__()

1113
1114
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_horizontal_flip(self):
1115
1116
        random_state = random.getstate()
        random.seed(42)
1117
1118
1119
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        himg = img.transpose(Image.FLIP_LEFT_RIGHT)

1120
        num_samples = 250
1121
        num_horizontal = 0
1122
        for _ in range(num_samples):
1123
1124
1125
1126
            out = transforms.RandomHorizontalFlip()(img)
            if out == himg:
                num_horizontal += 1

1127
1128
        p_value = stats.binom_test(num_horizontal, num_samples, p=0.5)
        random.setstate(random_state)
1129
        self.assertGreater(p_value, 0.0001)
1130

1131
1132
1133
1134
1135
1136
1137
1138
1139
        num_samples = 250
        num_horizontal = 0
        for _ in range(num_samples):
            out = transforms.RandomHorizontalFlip(p=0.7)(img)
            if out == himg:
                num_horizontal += 1

        p_value = stats.binom_test(num_horizontal, num_samples, p=0.7)
        random.setstate(random_state)
1140
        self.assertGreater(p_value, 0.0001)
1141

1142
1143
1144
        # Checking if RandomHorizontalFlip can be printed as string
        transforms.RandomHorizontalFlip().__repr__()

1145
    @unittest.skipIf(stats is None, 'scipy.stats is not available')
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
    def test_normalize(self):
        def samples_from_standard_normal(tensor):
            p_value = stats.kstest(list(tensor.view(-1)), 'norm', args=(0, 1)).pvalue
            return p_value > 0.0001

        random_state = random.getstate()
        random.seed(42)
        for channels in [1, 3]:
            img = torch.rand(channels, 10, 10)
            mean = [img[c].mean() for c in range(channels)]
            std = [img[c].std() for c in range(channels)]
            normalized = transforms.Normalize(mean, std)(img)
1158
            self.assertTrue(samples_from_standard_normal(normalized))
1159
1160
        random.setstate(random_state)

1161
1162
1163
        # Checking if Normalize can be printed as string
        transforms.Normalize(mean, std).__repr__()

1164
1165
1166
        # Checking the optional in-place behaviour
        tensor = torch.rand((1, 16, 16))
        tensor_inplace = transforms.Normalize((0.5,), (0.5,), inplace=True)(tensor)
1167
        self.assertTrue(torch.equal(tensor, tensor_inplace))
1168

1169
1170
1171
1172
1173
1174
1175
1176
1177
    def test_normalize_different_dtype(self):
        for dtype1 in [torch.float32, torch.float64]:
            img = torch.rand(3, 10, 10, dtype=dtype1)
            for dtype2 in [torch.int64, torch.float32, torch.float64]:
                mean = torch.tensor([1, 2, 3], dtype=dtype2)
                std = torch.tensor([1, 2, 1], dtype=dtype2)
                # checks that it doesn't crash
                transforms.functional.normalize(img, mean, std)

1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
    def test_normalize_3d_tensor(self):
        torch.manual_seed(28)
        n_channels = 3
        img_size = 10
        mean = torch.rand(n_channels)
        std = torch.rand(n_channels)
        img = torch.rand(n_channels, img_size, img_size)
        target = F.normalize(img, mean, std).numpy()

        mean_unsqueezed = mean.view(-1, 1, 1)
        std_unsqueezed = std.view(-1, 1, 1)
        result1 = F.normalize(img, mean_unsqueezed, std_unsqueezed)
        result2 = F.normalize(img,
                              mean_unsqueezed.repeat(1, img_size, img_size),
                              std_unsqueezed.repeat(1, img_size, img_size))
        assert_array_almost_equal(target, result1.numpy())
        assert_array_almost_equal(target, result2.numpy())

1196
1197
1198
1199
1200
1201
1202
    def test_adjust_brightness(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
1203
        y_pil = F.adjust_brightness(x_pil, 1)
1204
        y_np = np.array(y_pil)
1205
        self.assertTrue(np.allclose(y_np, x_np))
1206
1207

        # test 1
1208
        y_pil = F.adjust_brightness(x_pil, 0.5)
1209
1210
1211
        y_np = np.array(y_pil)
        y_ans = [0, 2, 6, 27, 67, 113, 18, 4, 117, 45, 127, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1212
        self.assertTrue(np.allclose(y_np, y_ans))
1213
1214

        # test 2
1215
        y_pil = F.adjust_brightness(x_pil, 2)
1216
1217
1218
        y_np = np.array(y_pil)
        y_ans = [0, 10, 26, 108, 255, 255, 74, 16, 255, 180, 255, 2]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1219
        self.assertTrue(np.allclose(y_np, y_ans))
1220
1221
1222
1223
1224
1225
1226
1227

    def test_adjust_contrast(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
1228
        y_pil = F.adjust_contrast(x_pil, 1)
1229
        y_np = np.array(y_pil)
1230
        self.assertTrue(np.allclose(y_np, x_np))
1231
1232

        # test 1
1233
        y_pil = F.adjust_contrast(x_pil, 0.5)
1234
1235
1236
        y_np = np.array(y_pil)
        y_ans = [43, 45, 49, 70, 110, 156, 61, 47, 160, 88, 170, 43]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1237
        self.assertTrue(np.allclose(y_np, y_ans))
1238
1239

        # test 2
1240
        y_pil = F.adjust_contrast(x_pil, 2)
1241
1242
1243
        y_np = np.array(y_pil)
        y_ans = [0, 0, 0, 22, 184, 255, 0, 0, 255, 94, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1244
        self.assertTrue(np.allclose(y_np, y_ans))
1245

Francisco Massa's avatar
Francisco Massa committed
1246
    @unittest.skipIf(Image.__version__ >= '7', "Temporarily disabled")
1247
1248
1249
1250
1251
1252
1253
    def test_adjust_saturation(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
1254
        y_pil = F.adjust_saturation(x_pil, 1)
1255
        y_np = np.array(y_pil)
1256
        self.assertTrue(np.allclose(y_np, x_np))
1257
1258

        # test 1
1259
        y_pil = F.adjust_saturation(x_pil, 0.5)
1260
1261
1262
        y_np = np.array(y_pil)
        y_ans = [2, 4, 8, 87, 128, 173, 39, 25, 138, 133, 215, 88]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1263
        self.assertTrue(np.allclose(y_np, y_ans))
1264
1265

        # test 2
1266
        y_pil = F.adjust_saturation(x_pil, 2)
1267
1268
1269
        y_np = np.array(y_pil)
        y_ans = [0, 6, 22, 0, 149, 255, 32, 0, 255, 4, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1270
        self.assertTrue(np.allclose(y_np, y_ans))
1271
1272
1273
1274
1275
1276
1277
1278

    def test_adjust_hue(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        with self.assertRaises(ValueError):
1279
1280
            F.adjust_hue(x_pil, -0.7)
            F.adjust_hue(x_pil, 1)
1281
1282
1283

        # test 0: almost same as x_data but not exact.
        # probably because hsv <-> rgb floating point ops
1284
        y_pil = F.adjust_hue(x_pil, 0)
1285
1286
1287
        y_np = np.array(y_pil)
        y_ans = [0, 5, 13, 54, 139, 226, 35, 8, 234, 91, 255, 1]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1288
        self.assertTrue(np.allclose(y_np, y_ans))
1289
1290

        # test 1
1291
        y_pil = F.adjust_hue(x_pil, 0.25)
1292
1293
1294
        y_np = np.array(y_pil)
        y_ans = [13, 0, 12, 224, 54, 226, 234, 8, 99, 1, 222, 255]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1295
        self.assertTrue(np.allclose(y_np, y_ans))
1296
1297

        # test 2
1298
        y_pil = F.adjust_hue(x_pil, -0.25)
1299
1300
1301
        y_np = np.array(y_pil)
        y_ans = [0, 13, 2, 54, 226, 58, 8, 234, 152, 255, 43, 1]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1302
        self.assertTrue(np.allclose(y_np, y_ans))
1303

1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
    def test_adjust_sharpness(self):
        x_shape = [4, 4, 3]
        x_data = [75, 121, 114, 105, 97, 107, 105, 32, 66, 111, 117, 114, 99, 104, 97, 0,
                  0, 65, 108, 101, 120, 97, 110, 100, 101, 114, 32, 86, 114, 121, 110, 105,
                  111, 116, 105, 115, 0, 0, 73, 32, 108, 111, 118, 101, 32, 121, 111, 117]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
        y_pil = F.adjust_sharpness(x_pil, 1)
        y_np = np.array(y_pil)
        self.assertTrue(np.allclose(y_np, x_np))

        # test 1
        y_pil = F.adjust_sharpness(x_pil, 0.5)
        y_np = np.array(y_pil)
        y_ans = [75, 121, 114, 105, 97, 107, 105, 32, 66, 111, 117, 114, 99, 104, 97, 30,
                 30, 74, 103, 96, 114, 97, 110, 100, 101, 114, 32, 81, 103, 108, 102, 101,
                 107, 116, 105, 115, 0, 0, 73, 32, 108, 111, 118, 101, 32, 121, 111, 117]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        self.assertTrue(np.allclose(y_np, y_ans))

        # test 2
        y_pil = F.adjust_sharpness(x_pil, 2)
        y_np = np.array(y_pil)
        y_ans = [75, 121, 114, 105, 97, 107, 105, 32, 66, 111, 117, 114, 99, 104, 97, 0,
                 0, 46, 118, 111, 132, 97, 110, 100, 101, 114, 32, 95, 135, 146, 126, 112,
                 119, 116, 105, 115, 0, 0, 73, 32, 108, 111, 118, 101, 32, 121, 111, 117]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        self.assertTrue(np.allclose(y_np, y_ans))

        # test 3
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_th = torch.tensor(x_np.transpose(2, 0, 1))
        y_pil = F.adjust_sharpness(x_pil, 2)
        y_np = np.array(y_pil).transpose(2, 0, 1)
        y_th = F.adjust_sharpness(x_th, 2)
        self.assertTrue(np.allclose(y_np, y_th.numpy()))

1346
1347
1348
1349
1350
1351
1352
    def test_adjust_gamma(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
1353
        y_pil = F.adjust_gamma(x_pil, 1)
1354
        y_np = np.array(y_pil)
1355
        self.assertTrue(np.allclose(y_np, x_np))
1356
1357

        # test 1
1358
        y_pil = F.adjust_gamma(x_pil, 0.5)
1359
        y_np = np.array(y_pil)
1360
        y_ans = [0, 35, 57, 117, 186, 241, 97, 45, 245, 152, 255, 16]
1361
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1362
        self.assertTrue(np.allclose(y_np, y_ans))
1363
1364

        # test 2
1365
        y_pil = F.adjust_gamma(x_pil, 2)
1366
        y_np = np.array(y_pil)
1367
        y_ans = [0, 0, 0, 11, 71, 201, 5, 0, 215, 31, 255, 0]
1368
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1369
        self.assertTrue(np.allclose(y_np, y_ans))
1370
1371
1372
1373
1374
1375
1376
1377

    def test_adjusts_L_mode(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_rgb = Image.fromarray(x_np, mode='RGB')

        x_l = x_rgb.convert('L')
1378
1379
1380
1381
        self.assertEqual(F.adjust_brightness(x_l, 2).mode, 'L')
        self.assertEqual(F.adjust_saturation(x_l, 2).mode, 'L')
        self.assertEqual(F.adjust_contrast(x_l, 2).mode, 'L')
        self.assertEqual(F.adjust_hue(x_l, 0.4).mode, 'L')
1382
        self.assertEqual(F.adjust_sharpness(x_l, 2).mode, 'L')
1383
        self.assertEqual(F.adjust_gamma(x_l, 0.5).mode, 'L')
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395

    def test_color_jitter(self):
        color_jitter = transforms.ColorJitter(2, 2, 2, 0.1)

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')

        for i in range(10):
            y_pil = color_jitter(x_pil)
1396
            self.assertEqual(y_pil.mode, x_pil.mode)
1397
1398

            y_pil_2 = color_jitter(x_pil_2)
1399
            self.assertEqual(y_pil_2.mode, x_pil_2.mode)
1400

1401
1402
1403
        # Checking if ColorJitter can be printed as string
        color_jitter.__repr__()

1404
    def test_linear_transformation(self):
ekka's avatar
ekka committed
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
        num_samples = 1000
        x = torch.randn(num_samples, 3, 10, 10)
        flat_x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
        # compute principal components
        sigma = torch.mm(flat_x.t(), flat_x) / flat_x.size(0)
        u, s, _ = np.linalg.svd(sigma.numpy())
        zca_epsilon = 1e-10  # avoid division by 0
        d = torch.Tensor(np.diag(1. / np.sqrt(s + zca_epsilon)))
        u = torch.Tensor(u)
        principal_components = torch.mm(torch.mm(u, d), u.t())
        mean_vector = (torch.sum(flat_x, dim=0) / flat_x.size(0))
        # initialize whitening matrix
1417
        whitening = transforms.LinearTransformation(principal_components, mean_vector)
ekka's avatar
ekka committed
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
        # estimate covariance and mean using weak law of large number
        num_features = flat_x.size(1)
        cov = 0.0
        mean = 0.0
        for i in x:
            xwhite = whitening(i)
            xwhite = xwhite.view(1, -1).numpy()
            cov += np.dot(xwhite, xwhite.T) / num_features
            mean += np.sum(xwhite) / num_features
        # if rtol for std = 1e-3 then rtol for cov = 2e-3 as std**2 = cov
1428
1429
1430
1431
        self.assertTrue(np.allclose(cov / num_samples, np.identity(1), rtol=2e-3),
                        "cov not close to 1")
        self.assertTrue(np.allclose(mean / num_samples, 0, rtol=1e-3),
                        "mean not close to 0")
ekka's avatar
ekka committed
1432

1433
        # Checking if LinearTransformation can be printed as string
ekka's avatar
ekka committed
1434
1435
        whitening.__repr__()

1436
1437
1438
1439
    def test_rotate(self):
        x = np.zeros((100, 100, 3), dtype=np.uint8)
        x[40, 40] = [255, 255, 255]

vfdev's avatar
vfdev committed
1440
        with self.assertRaisesRegex(TypeError, r"img should be PIL Image"):
1441
1442
1443
1444
1445
            F.rotate(x, 10)

        img = F.to_pil_image(x)

        result = F.rotate(img, 45)
1446
        self.assertEqual(result.size, (100, 100))
1447
        r, c, ch = np.where(result)
1448
1449
1450
        self.assertTrue(all(x in r for x in [49, 50]))
        self.assertTrue(all(x in c for x in [36]))
        self.assertTrue(all(x in ch for x in [0, 1, 2]))
1451
1452

        result = F.rotate(img, 45, expand=True)
1453
        self.assertEqual(result.size, (142, 142))
1454
        r, c, ch = np.where(result)
1455
1456
1457
        self.assertTrue(all(x in r for x in [70, 71]))
        self.assertTrue(all(x in c for x in [57]))
        self.assertTrue(all(x in ch for x in [0, 1, 2]))
1458
1459

        result = F.rotate(img, 45, center=(40, 40))
1460
        self.assertEqual(result.size, (100, 100))
1461
        r, c, ch = np.where(result)
1462
1463
1464
        self.assertTrue(all(x in r for x in [40]))
        self.assertTrue(all(x in c for x in [40]))
        self.assertTrue(all(x in ch for x in [0, 1, 2]))
1465
1466
1467
1468

        result_a = F.rotate(img, 90)
        result_b = F.rotate(img, -270)

1469
        self.assertTrue(np.all(np.array(result_a) == np.array(result_b)))
1470

Philip Meier's avatar
Philip Meier committed
1471
1472
1473
    def test_rotate_fill(self):
        img = F.to_pil_image(np.ones((100, 100, 3), dtype=np.uint8) * 255, "RGB")

1474
        modes = ("L", "RGB", "F")
Philip Meier's avatar
Philip Meier committed
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
        nums_bands = [len(mode) for mode in modes]
        fill = 127

        for mode, num_bands in zip(modes, nums_bands):
            img_conv = img.convert(mode)
            img_rot = F.rotate(img_conv, 45.0, fill=fill)
            pixel = img_rot.getpixel((0, 0))

            if not isinstance(pixel, tuple):
                pixel = (pixel,)
            self.assertTupleEqual(pixel, tuple([fill] * num_bands))

            for wrong_num_bands in set(nums_bands) - {num_bands}:
                with self.assertRaises(ValueError):
                    F.rotate(img_conv, 45.0, fill=tuple([fill] * wrong_num_bands))

1491
    def test_affine(self):
Francisco Massa's avatar
Francisco Massa committed
1492
1493
1494
        input_img = np.zeros((40, 40, 3), dtype=np.uint8)
        cnt = [20, 20]
        for pt in [(16, 16), (20, 16), (20, 20)]:
1495
1496
1497
1498
            for i in range(-5, 5):
                for j in range(-5, 5):
                    input_img[pt[0] + i, pt[1] + j, :] = [255, 155, 55]

vfdev's avatar
vfdev committed
1499
1500
        with self.assertRaises(TypeError, msg="Argument translate should be a sequence"):
            F.affine(input_img, 10, translate=0, scale=1, shear=1)
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

        pil_img = F.to_pil_image(input_img)

        def _to_3x3_inv(inv_result_matrix):
            result_matrix = np.zeros((3, 3))
            result_matrix[:2, :] = np.array(inv_result_matrix).reshape((2, 3))
            result_matrix[2, 2] = 1
            return np.linalg.inv(result_matrix)

        def _test_transformation(a, t, s, sh):
            a_rad = math.radians(a)
ptrblck's avatar
ptrblck committed
1512
            s_rad = [math.radians(sh_) for sh_ in sh]
1513
1514
1515
1516
1517
            cx, cy = cnt
            tx, ty = t
            sx, sy = s_rad
            rot = a_rad

1518
            # 1) Check transformation matrix:
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
            C = np.array([[1, 0, cx],
                          [0, 1, cy],
                          [0, 0, 1]])
            T = np.array([[1, 0, tx],
                          [0, 1, ty],
                          [0, 0, 1]])
            Cinv = np.linalg.inv(C)

            RS = np.array(
                [[s * math.cos(rot), -s * math.sin(rot), 0],
                 [s * math.sin(rot), s * math.cos(rot), 0],
                 [0, 0, 1]])

            SHx = np.array([[1, -math.tan(sx), 0],
                            [0, 1, 0],
                            [0, 0, 1]])

            SHy = np.array([[1, 0, 0],
                            [-math.tan(sy), 1, 0],
                            [0, 0, 1]])

            RSS = np.matmul(RS, np.matmul(SHy, SHx))

            true_matrix = np.matmul(T, np.matmul(C, np.matmul(RSS, Cinv)))

1544
1545
            result_matrix = _to_3x3_inv(F._get_inverse_affine_matrix(center=cnt, angle=a,
                                                                     translate=t, scale=s, shear=sh))
1546
            self.assertLess(np.sum(np.abs(true_matrix - result_matrix)), 1e-10)
1547
            # 2) Perform inverse mapping:
Francisco Massa's avatar
Francisco Massa committed
1548
            true_result = np.zeros((40, 40, 3), dtype=np.uint8)
1549
1550
1551
            inv_true_matrix = np.linalg.inv(true_matrix)
            for y in range(true_result.shape[0]):
                for x in range(true_result.shape[1]):
1552
1553
1554
1555
1556
1557
                    # Same as for PIL:
                    # https://github.com/python-pillow/Pillow/blob/71f8ec6a0cfc1008076a023c0756542539d057ab/
                    # src/libImaging/Geometry.c#L1060
                    input_pt = np.array([x + 0.5, y + 0.5, 1.0])
                    res = np.floor(np.dot(inv_true_matrix, input_pt)).astype(np.int)
                    _x, _y = res[:2]
1558
1559
1560
1561
                    if 0 <= _x < input_img.shape[1] and 0 <= _y < input_img.shape[0]:
                        true_result[y, x, :] = input_img[_y, _x, :]

            result = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh)
1562
            self.assertEqual(result.size, pil_img.size)
1563
1564
1565
1566
            # Compute number of different pixels:
            np_result = np.array(result)
            n_diff_pixels = np.sum(np_result != true_result) / 3
            # Accept 3 wrong pixels
1567
1568
1569
            self.assertLess(n_diff_pixels, 3,
                            "a={}, t={}, s={}, sh={}\n".format(a, t, s, sh) +
                            "n diff pixels={}\n".format(np.sum(np.array(result)[:, :, 0] != true_result[:, :, 0])))
1570
1571
1572

        # Test rotation
        a = 45
ptrblck's avatar
ptrblck committed
1573
        _test_transformation(a=a, t=(0, 0), s=1.0, sh=(0.0, 0.0))
1574
1575
1576

        # Test translation
        t = [10, 15]
ptrblck's avatar
ptrblck committed
1577
        _test_transformation(a=0.0, t=t, s=1.0, sh=(0.0, 0.0))
1578
1579
1580

        # Test scale
        s = 1.2
ptrblck's avatar
ptrblck committed
1581
        _test_transformation(a=0.0, t=(0.0, 0.0), s=s, sh=(0.0, 0.0))
1582
1583

        # Test shear
ptrblck's avatar
ptrblck committed
1584
        sh = [45.0, 25.0]
1585
1586
1587
1588
1589
        _test_transformation(a=0.0, t=(0.0, 0.0), s=1.0, sh=sh)

        # Test rotation, scale, translation, shear
        for a in range(-90, 90, 25):
            for t1 in range(-10, 10, 5):
1590
                for s in [0.75, 0.98, 1.0, 1.2, 1.4]:
1591
                    for sh in range(-15, 15, 5):
ptrblck's avatar
ptrblck committed
1592
                        _test_transformation(a=a, t=(t1, t1), s=s, sh=(sh, sh))
1593

1594
1595
1596
1597
1598
1599
1600
    def test_random_rotation(self):

        with self.assertRaises(ValueError):
            transforms.RandomRotation(-0.7)
            transforms.RandomRotation([-0.7])
            transforms.RandomRotation([-0.7, 0, 0.7])

1601
1602
1603
1604
1605
1606
1607
        # assert fill being either a Sequence or a Number
        with self.assertRaises(TypeError):
            transforms.RandomRotation(0, fill={})

        t = transforms.RandomRotation(0, fill=None)
        self.assertTrue(t.fill == 0)

1608
1609
        t = transforms.RandomRotation(10)
        angle = t.get_params(t.degrees)
1610
        self.assertTrue(angle > -10 and angle < 10)
1611
1612
1613

        t = transforms.RandomRotation((-10, 10))
        angle = t.get_params(t.degrees)
1614
        self.assertTrue(-10 < angle < 10)
1615

1616
1617
1618
        # Checking if RandomRotation can be printed as string
        t.__repr__()

1619
1620
1621
        # assert deprecation warning and non-BC
        with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"):
            t = transforms.RandomRotation((-10, 10), resample=2)
1622
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
1623
1624

        # assert changed type warning
1625
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
1626
            t = transforms.RandomRotation((-10, 10), interpolation=2)
1627
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
1628

1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
    def test_random_affine(self):

        with self.assertRaises(ValueError):
            transforms.RandomAffine(-0.7)
            transforms.RandomAffine([-0.7])
            transforms.RandomAffine([-0.7, 0, 0.7])

            transforms.RandomAffine([-90, 90], translate=2.0)
            transforms.RandomAffine([-90, 90], translate=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[-1.0, 0.0, 1.0])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, -0.5])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 3.0, -0.5])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=-7)
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10])
ptrblck's avatar
ptrblck committed
1648
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10, 0, 10])
1649

1650
1651
1652
1653
1654
1655
1656
        # assert fill being either a Sequence or a Number
        with self.assertRaises(TypeError):
            transforms.RandomAffine(0, fill={})

        t = transforms.RandomAffine(0, fill=None)
        self.assertTrue(t.fill == 0)

1657
1658
1659
        x = np.zeros((100, 100, 3), dtype=np.uint8)
        img = F.to_pil_image(x)

ptrblck's avatar
ptrblck committed
1660
        t = transforms.RandomAffine(10, translate=[0.5, 0.3], scale=[0.7, 1.3], shear=[-10, 10, 20, 40])
1661
1662
1663
        for _ in range(100):
            angle, translations, scale, shear = t.get_params(t.degrees, t.translate, t.scale, t.shear,
                                                             img_size=img.size)
1664
1665
1666
1667
1668
1669
1670
1671
            self.assertTrue(-10 < angle < 10)
            self.assertTrue(-img.size[0] * 0.5 <= translations[0] <= img.size[0] * 0.5,
                            "{} vs {}".format(translations[0], img.size[0] * 0.5))
            self.assertTrue(-img.size[1] * 0.5 <= translations[1] <= img.size[1] * 0.5,
                            "{} vs {}".format(translations[1], img.size[1] * 0.5))
            self.assertTrue(0.7 < scale < 1.3)
            self.assertTrue(-10 < shear[0] < 10)
            self.assertTrue(-20 < shear[1] < 40)
1672
1673
1674
1675

        # Checking if RandomAffine can be printed as string
        t.__repr__()

1676
        t = transforms.RandomAffine(10, interpolation=transforms.InterpolationMode.BILINEAR)
1677
1678
1679
1680
1681
        self.assertIn("bilinear", t.__repr__())

        # assert deprecation warning and non-BC
        with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"):
            t = transforms.RandomAffine(10, resample=2)
1682
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
1683
1684
1685
1686
1687
1688

        with self.assertWarnsRegex(UserWarning, r"Argument fillcolor is deprecated and will be removed"):
            t = transforms.RandomAffine(10, fillcolor=10)
            self.assertEqual(t.fill, 10)

        # assert changed type warning
1689
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
1690
            t = transforms.RandomAffine(10, interpolation=2)
1691
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
1692

1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
    def test_to_grayscale(self):
        """Unit tests for grayscale transform"""

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        # Test Set: Grayscale an image with desired number of output channels
        # Case 1: RGB -> 1 channel grayscale
        trans1 = transforms.Grayscale(num_output_channels=1)
        gray_pil_1 = trans1(x_pil)
        gray_np_1 = np.array(gray_pil_1)
1708
1709
        self.assertEqual(gray_pil_1.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_1.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1710
1711
1712
1713
1714
1715
        np.testing.assert_equal(gray_np, gray_np_1)

        # Case 2: RGB -> 3 channel grayscale
        trans2 = transforms.Grayscale(num_output_channels=3)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
1716
1717
        self.assertEqual(gray_pil_2.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_2.shape, tuple(x_shape), 'should be 3 channel')
1718
1719
1720
1721
1722
1723
1724
1725
        np.testing.assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
        np.testing.assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_2[:, :, 0])

        # Case 3: 1 channel grayscale -> 1 channel grayscale
        trans3 = transforms.Grayscale(num_output_channels=1)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
1726
1727
        self.assertEqual(gray_pil_3.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_3.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1728
1729
1730
1731
1732
1733
        np.testing.assert_equal(gray_np, gray_np_3)

        # Case 4: 1 channel grayscale -> 3 channel grayscale
        trans4 = transforms.Grayscale(num_output_channels=3)
        gray_pil_4 = trans4(x_pil_2)
        gray_np_4 = np.array(gray_pil_4)
1734
1735
        self.assertEqual(gray_pil_4.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_4.shape, tuple(x_shape), 'should be 3 channel')
1736
1737
1738
1739
        np.testing.assert_equal(gray_np_4[:, :, 0], gray_np_4[:, :, 1])
        np.testing.assert_equal(gray_np_4[:, :, 1], gray_np_4[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_4[:, :, 0])

1740
1741
1742
        # Checking if Grayscale can be printed as string
        trans4.__repr__()

1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_grayscale(self):
        """Unit tests for random grayscale transform"""

        # Test Set 1: RGB -> 3 channel grayscale
        random_state = random.getstate()
        random.seed(42)
        x_shape = [2, 2, 3]
        x_np = np.random.randint(0, 256, x_shape, np.uint8)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        num_samples = 250
        num_gray = 0
        for _ in range(num_samples):
            gray_pil_2 = transforms.RandomGrayscale(p=0.5)(x_pil)
            gray_np_2 = np.array(gray_pil_2)
            if np.array_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1]) and \
1762
1763
                    np.array_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2]) and \
                    np.array_equal(gray_np, gray_np_2[:, :, 0]):
1764
1765
1766
1767
                num_gray = num_gray + 1

        p_value = stats.binom_test(num_gray, num_samples, p=0.5)
        random.setstate(random_state)
1768
        self.assertGreater(p_value, 0.0001)
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788

        # Test Set 2: grayscale -> 1 channel grayscale
        random_state = random.getstate()
        random.seed(42)
        x_shape = [2, 2, 3]
        x_np = np.random.randint(0, 256, x_shape, np.uint8)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        num_samples = 250
        num_gray = 0
        for _ in range(num_samples):
            gray_pil_3 = transforms.RandomGrayscale(p=0.5)(x_pil_2)
            gray_np_3 = np.array(gray_pil_3)
            if np.array_equal(gray_np, gray_np_3):
                num_gray = num_gray + 1

        p_value = stats.binom_test(num_gray, num_samples, p=1.0)  # Note: grayscale is always unchanged
        random.setstate(random_state)
1789
        self.assertGreater(p_value, 0.0001)
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802

        # Test set 3: Explicit tests
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        # Case 3a: RGB -> 3 channel grayscale (grayscaled)
        trans2 = transforms.RandomGrayscale(p=1.0)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
1803
1804
        self.assertEqual(gray_pil_2.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_2.shape, tuple(x_shape), 'should be 3 channel')
1805
1806
1807
1808
1809
1810
1811
1812
        np.testing.assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
        np.testing.assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_2[:, :, 0])

        # Case 3b: RGB -> 3 channel grayscale (unchanged)
        trans2 = transforms.RandomGrayscale(p=0.0)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
1813
1814
        self.assertEqual(gray_pil_2.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_2.shape, tuple(x_shape), 'should be 3 channel')
1815
1816
1817
1818
1819
1820
        np.testing.assert_equal(x_np, gray_np_2)

        # Case 3c: 1 channel grayscale -> 1 channel grayscale (grayscaled)
        trans3 = transforms.RandomGrayscale(p=1.0)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
1821
1822
        self.assertEqual(gray_pil_3.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_3.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1823
1824
1825
1826
1827
1828
        np.testing.assert_equal(gray_np, gray_np_3)

        # Case 3d: 1 channel grayscale -> 1 channel grayscale (unchanged)
        trans3 = transforms.RandomGrayscale(p=0.0)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
1829
1830
        self.assertEqual(gray_pil_3.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_3.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1831
1832
        np.testing.assert_equal(gray_np, gray_np_3)

1833
1834
1835
        # Checking if RandomGrayscale can be printed as string
        trans3.__repr__()

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
    def test_gaussian_blur_asserts(self):
        np_img = np.ones((100, 100, 3), dtype=np.uint8) * 255
        img = F.to_pil_image(np_img, "RGB")

        with self.assertRaisesRegex(ValueError, r"If kernel_size is a sequence its length should be 2"):
            F.gaussian_blur(img, [3])

        with self.assertRaisesRegex(ValueError, r"If kernel_size is a sequence its length should be 2"):
            F.gaussian_blur(img, [3, 3, 3])
        with self.assertRaisesRegex(ValueError, r"Kernel size should be a tuple/list of two integers"):
            transforms.GaussianBlur([3, 3, 3])

        with self.assertRaisesRegex(ValueError, r"kernel_size should have odd and positive integers"):
            F.gaussian_blur(img, [4, 4])
        with self.assertRaisesRegex(ValueError, r"Kernel size value should be an odd and positive number"):
            transforms.GaussianBlur([4, 4])

        with self.assertRaisesRegex(ValueError, r"kernel_size should have odd and positive integers"):
            F.gaussian_blur(img, [-3, -3])
        with self.assertRaisesRegex(ValueError, r"Kernel size value should be an odd and positive number"):
            transforms.GaussianBlur([-3, -3])

        with self.assertRaisesRegex(ValueError, r"If sigma is a sequence, its length should be 2"):
            F.gaussian_blur(img, 3, [1, 1, 1])
        with self.assertRaisesRegex(ValueError, r"sigma should be a single number or a list/tuple with length 2"):
            transforms.GaussianBlur(3, [1, 1, 1])

        with self.assertRaisesRegex(ValueError, r"sigma should have positive values"):
            F.gaussian_blur(img, 3, -1.0)
        with self.assertRaisesRegex(ValueError, r"If sigma is a single number, it must be positive"):
            transforms.GaussianBlur(3, -1.0)

        with self.assertRaisesRegex(TypeError, r"kernel_size should be int or a sequence of integers"):
            F.gaussian_blur(img, "kernel_size_string")
        with self.assertRaisesRegex(ValueError, r"Kernel size should be a tuple/list of two integers"):
            transforms.GaussianBlur("kernel_size_string")

        with self.assertRaisesRegex(TypeError, r"sigma should be either float or sequence of floats"):
            F.gaussian_blur(img, 3, "sigma_string")
        with self.assertRaisesRegex(ValueError, r"sigma should be a single number or a list/tuple with length 2"):
            transforms.GaussianBlur(3, "sigma_string")

1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
    def _test_randomness(self, fn, trans, configs):
        random_state = random.getstate()
        random.seed(42)
        img = transforms.ToPILImage()(torch.rand(3, 16, 18))

        for p in [0.5, 0.7]:
            for config in configs:
                inv_img = fn(img, **config)

                num_samples = 250
                counts = 0
                for _ in range(num_samples):
                    tranformation = trans(p=p, **config)
                    tranformation.__repr__()
                    out = tranformation(img)
                    if out == inv_img:
                        counts += 1

                p_value = stats.binom_test(counts, num_samples, p=p)
                random.setstate(random_state)
                self.assertGreater(p_value, 0.0001)

    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_invert(self):
        self._test_randomness(
            F.invert,
            transforms.RandomInvert,
            [{}]
        )

    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_posterize(self):
        self._test_randomness(
            F.posterize,
            transforms.RandomPosterize,
            [{"bits": 4}]
        )

    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_solarize(self):
        self._test_randomness(
            F.solarize,
            transforms.RandomSolarize,
            [{"threshold": 192}]
        )

    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_adjust_sharpness(self):
        self._test_randomness(
            F.adjust_sharpness,
            transforms.RandomAdjustSharpness,
            [{"sharpness_factor": 2.0}]
        )

    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_autocontrast(self):
        self._test_randomness(
            F.autocontrast,
            transforms.RandomAutocontrast,
            [{}]
        )

    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_equalize(self):
        self._test_randomness(
            F.equalize,
            transforms.RandomEqualize,
            [{}]
        )

    def test_autoaugment(self):
        for policy in transforms.AutoAugmentPolicy:
            for fill in [None, 85, (128, 128, 128)]:
                random.seed(42)
                img = Image.open(GRACE_HOPPER)
                transform = transforms.AutoAugment(policy=policy, fill=fill)
                for _ in range(100):
                    img = transform(img)
                transform.__repr__()

1958
    @unittest.skipIf(stats is None, 'scipy.stats not available')
1959
1960
1961
    def test_random_erasing(self):
        img = torch.ones(3, 128, 128)

1962
        t = transforms.RandomErasing(scale=(0.1, 0.1), ratio=(1 / 3, 3.))
1963
1964
        y, x, h, w, v = t.get_params(img, t.scale, t.ratio, [t.value, ])
        aspect_ratio = h / w
1965
1966
1967
        # Add some tolerance due to the rounding and int conversion used in the transform
        tol = 0.05
        self.assertTrue(1 / 3 - tol <= aspect_ratio <= 3 + tol)
1968
1969
1970
1971
1972
1973
1974
1975
1976

        aspect_ratios = []
        random.seed(42)
        trial = 1000
        for _ in range(trial):
            y, x, h, w, v = t.get_params(img, t.scale, t.ratio, [t.value, ])
            aspect_ratios.append(h / w)

        count_bigger_then_ones = len([1 for aspect_ratio in aspect_ratios if aspect_ratio > 1])
1977
1978
        p_value = stats.binom_test(count_bigger_then_ones, trial, p=0.5)
        self.assertGreater(p_value, 0.0001)
1979

1980

1981
1982
if __name__ == '__main__':
    unittest.main()