test_transforms.py 13.2 KB
Newer Older
1
2
3
4
import torch
import torchvision.transforms as transforms
import unittest
import random
5
import numpy as np
6
7
8
9
10
11
from PIL import Image
try:
    import accimage
except ImportError:
    accimage = None

12
13
14
15
16
try:
    from scipy import stats
except ImportError:
    stats = None

17
18

GRACE_HOPPER = 'assets/grace_hopper_517x606.jpg'
19

20

21
class Tester(unittest.TestCase):
22

23
24
25
26
    def test_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
27
28
        owidth = random.randint(5, (width - 2) / 2) * 2

29
        img = torch.ones(3, height, width)
30
31
32
        oh1 = (height - oheight) // 2
        ow1 = (width - owidth) // 2
        imgnarrow = img[:, oh1:oh1 + oheight, ow1:ow1 + owidth]
33
34
35
36
37
38
39
        imgnarrow.fill_(0)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        assert result.sum() == 0, "height: " + str(height) + " width: " \
40
                                  + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
41
42
43
44
45
46
47
48
49
        oheight += 1
        owidth += 1
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum1 = result.sum()
        assert sum1 > 1, "height: " + str(height) + " width: " \
50
                         + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
51
        oheight += 1
52
        owidth += 1
53
54
55
56
57
58
59
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum2 = result.sum()
        assert sum2 > 0, "height: " + str(height) + " width: " \
60
                         + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
61
        assert sum2 > sum1, "height: " + str(height) + " width: " \
62
                            + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
63
64
65
66
67

    def test_scale(self):
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        osize = random.randint(5, 12) * 2
68

69
70
71
72
73
74
75
76
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Scale(osize),
            transforms.ToTensor(),
        ])(img)
        assert osize in result.size()
        if height < width:
77
            assert result.size(1) <= result.size(2)
78
79
80
        elif width < height:
            assert result.size(1) >= result.size(2)

81
82
83
84
85
86
87
88
89
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Scale([osize, osize]),
            transforms.ToTensor(),
        ])(img)
        assert osize in result.size()
        assert result.size(1) == osize
        assert result.size(2) == osize

90
91
92
93
        oheight = random.randint(5, 12) * 2
        owidth = random.randint(5, 12) * 2
        result = transforms.Compose([
            transforms.ToPILImage(),
94
            transforms.Scale((oheight, owidth)),
95
96
97
98
99
100
101
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

        result = transforms.Compose([
            transforms.ToPILImage(),
102
            transforms.Scale([oheight, owidth]),
103
104
105
106
107
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

108
109
110
111
    def test_random_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
112
        owidth = random.randint(5, (width - 2) / 2) * 2
113
114
115
116
117
118
119
120
121
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        padding = random.randint(1, 20)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth), padding=padding),
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

    def test_pad(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = torch.ones(3, height, width)
        padding = random.randint(1, 20)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Pad(padding),
            transforms.ToTensor(),
        ])(img)
141
142
        assert result.size(1) == height + 2 * padding
        assert result.size(2) == width + 2 * padding
Soumith Chintala's avatar
Soumith Chintala committed
143

144
145
146
147
148
149
150
151
152
153
154
155
156
157
    def test_pad_with_tuple_of_pad_values(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = transforms.ToPILImage()(torch.ones(3, height, width))

        padding = tuple([random.randint(1, 20) for _ in range(2)])
        output = transforms.Pad(padding)(img)
        assert output.size == (width + padding[0] * 2, height + padding[1] * 2)

        padding = tuple([random.randint(1, 20) for _ in range(4)])
        output = transforms.Pad(padding)(img)
        assert output.size[0] == width + padding[0] + padding[2]
        assert output.size[1] == height + padding[1] + padding[3]

158
    def test_pad_raises_with_invalid_pad_sequence_len(self):
159
160
161
162
163
164
165
166
167
        with self.assertRaises(ValueError):
            transforms.Pad(())

        with self.assertRaises(ValueError):
            transforms.Pad((1, 2, 3))

        with self.assertRaises(ValueError):
            transforms.Pad((1, 2, 3, 4, 5))

Soumith Chintala's avatar
Soumith Chintala committed
168
169
170
171
    def test_lambda(self):
        trans = transforms.Lambda(lambda x: x.add(10))
        x = torch.randn(10)
        y = trans(x)
172
        assert (y.equal(torch.add(x, 10)))
Soumith Chintala's avatar
Soumith Chintala committed
173
174
175
176

        trans = transforms.Lambda(lambda x: x.add_(10))
        x = torch.randn(10)
        y = trans(x)
177
178
        assert (y.equal(x))

179
180
181
182
183
184
185
186
187
188
189
190
191
192
    def test_to_tensor(self):
        channels = 3
        height, width = 4, 4
        trans = transforms.ToTensor()
        input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
        assert np.allclose(input_data.numpy(), output.numpy())

        ndarray = np.random.randint(low=0, high=255, size=(height, width, channels))
        output = trans(ndarray)
        expected_output = ndarray.transpose((2, 0, 1)) / 255.0
        assert np.allclose(output.numpy(), expected_output)

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_to_tensor(self):
        trans = transforms.ToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        assert np.allclose(output.numpy(), expected_output.numpy())

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_resize(self):
        trans = transforms.Compose([
            transforms.Scale(256, interpolation=Image.LINEAR),
            transforms.ToTensor(),
        ])

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        self.assertLess(np.abs((expected_output - output).mean()), 1e-3)
        self.assertLess((expected_output - output).var(), 1e-5)
        # note the high absolute tolerance
        assert np.allclose(output.numpy(), expected_output.numpy(), atol=5e-2)

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_crop(self):
        trans = transforms.Compose([
            transforms.CenterCrop(256),
            transforms.ToTensor(),
        ])

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        assert np.allclose(output.numpy(), expected_output.numpy())

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    def test_tensor_to_pil_image(self):
        trans = transforms.ToPILImage()
        to_tensor = transforms.ToTensor()

        img_data = torch.Tensor(3, 4, 4).uniform_()
        img = trans(img_data)
        assert img.getbands() == ('R', 'G', 'B')
        r, g, b = img.split()

        expected_output = img_data.mul(255).int().float().div(255)
        assert np.allclose(expected_output[0].numpy(), to_tensor(r).numpy())
        assert np.allclose(expected_output[1].numpy(), to_tensor(g).numpy())
        assert np.allclose(expected_output[2].numpy(), to_tensor(b).numpy())

        # single channel image
        img_data = torch.Tensor(1, 4, 4).uniform_()
        img = trans(img_data)
        assert img.getbands() == ('L',)
        l, = img.split()
        expected_output = img_data.mul(255).int().float().div(255)
        assert np.allclose(expected_output[0].numpy(), to_tensor(l).numpy())

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
    def test_tensor_gray_to_pil_image(self):
        trans = transforms.ToPILImage()
        to_tensor = transforms.ToTensor()

        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        img_data_int = torch.IntTensor(1, 4, 4).random_()

        img_byte = trans(img_data_byte)
        img_short = trans(img_data_short)
        img_int = trans(img_data_int)
        assert img_byte.mode == 'L'
        assert img_short.mode == 'I;16'
        assert img_int.mode == 'I'

        assert np.allclose(img_data_short.numpy(), to_tensor(img_short).numpy())
        assert np.allclose(img_data_int.numpy(), to_tensor(img_int).numpy())

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
    def test_tensor_rgba_to_pil_image(self):
        trans = transforms.ToPILImage()
        to_tensor = transforms.ToTensor()

        img_data = torch.Tensor(4, 4, 4).uniform_()
        img = trans(img_data)
        assert img.mode == 'RGBA'
        assert img.getbands() == ('R', 'G', 'B', 'A')
        r, g, b, a = img.split()

        expected_output = img_data.mul(255).int().float().div(255)
        assert np.allclose(expected_output[0].numpy(), to_tensor(r).numpy())
        assert np.allclose(expected_output[1].numpy(), to_tensor(g).numpy())
        assert np.allclose(expected_output[2].numpy(), to_tensor(b).numpy())
        assert np.allclose(expected_output[3].numpy(), to_tensor(a).numpy())

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    def test_ndarray_to_pil_image(self):
        trans = transforms.ToPILImage()
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()
        img = trans(img_data)
        assert img.getbands() == ('R', 'G', 'B')
        r, g, b = img.split()

        assert np.allclose(r, img_data[:, :, 0])
        assert np.allclose(g, img_data[:, :, 1])
        assert np.allclose(b, img_data[:, :, 2])

        # single channel image
        img_data = torch.ByteTensor(4, 4, 1).random_(0, 255).numpy()
        img = trans(img_data)
        assert img.getbands() == ('L',)
        l, = img.split()
        assert np.allclose(l, img_data[:, :, 0])
305

306
    def test_ndarray_bad_types_to_pil_image(self):
307
        trans = transforms.ToPILImage()
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
        with self.assertRaises(AssertionError):
            trans(np.ones([4, 4, 1], np.int64))
            trans(np.ones([4, 4, 1], np.uint16))
            trans(np.ones([4, 4, 1], np.uint32))
            trans(np.ones([4, 4, 1], np.float64))

    def test_ndarray_gray_float32_to_pil_image(self):
        trans = transforms.ToPILImage()
        img_data = torch.FloatTensor(4, 4, 1).random_().numpy()
        img = trans(img_data)
        assert img.mode == 'F'
        assert np.allclose(img, img_data[:, :, 0])

    def test_ndarray_gray_int16_to_pil_image(self):
        trans = transforms.ToPILImage()
        img_data = torch.ShortTensor(4, 4, 1).random_().numpy()
324
325
326
        img = trans(img_data)
        assert img.mode == 'I;16'
        assert np.allclose(img, img_data[:, :, 0])
327

328
329
330
331
332
333
334
    def test_ndarray_gray_int32_to_pil_image(self):
        trans = transforms.ToPILImage()
        img_data = torch.IntTensor(4, 4, 1).random_().numpy()
        img = trans(img_data)
        assert img.mode == 'I'
        assert np.allclose(img, img_data[:, :, 0])

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_vertical_flip(self):
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        vimg = img.transpose(Image.FLIP_TOP_BOTTOM)

        num_vertical = 0
        for _ in range(100):
            out = transforms.RandomVerticalFlip()(img)
            if out == vimg:
                num_vertical += 1

        p_value = stats.binom_test(num_vertical, 100, p=0.5)
        assert p_value > 0.05

    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_horizontal_flip(self):
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        himg = img.transpose(Image.FLIP_LEFT_RIGHT)

        num_horizontal = 0
        for _ in range(100):
            out = transforms.RandomHorizontalFlip()(img)
            if out == himg:
                num_horizontal += 1

        p_value = stats.binom_test(num_horizontal, 100, p=0.5)
        assert p_value > 0.05

363

364
365
if __name__ == '__main__':
    unittest.main()