test_transforms.py 53.3 KB
Newer Older
1
from __future__ import division
2
3
import torch
import torchvision.transforms as transforms
4
import torchvision.transforms.functional as F
5
from torch._utils_internal import get_file_path_2
6
import unittest
7
import math
8
import random
9
import numpy as np
10
11
12
13
14
15
from PIL import Image
try:
    import accimage
except ImportError:
    accimage = None

16
17
18
19
20
try:
    from scipy import stats
except ImportError:
    stats = None

21
GRACE_HOPPER = get_file_path_2('assets/grace_hopper_517x606.jpg')
22

23

24
class Tester(unittest.TestCase):
25

26
27
28
29
    def test_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
30
31
        owidth = random.randint(5, (width - 2) / 2) * 2

32
        img = torch.ones(3, height, width)
33
34
35
        oh1 = (height - oheight) // 2
        ow1 = (width - owidth) // 2
        imgnarrow = img[:, oh1:oh1 + oheight, ow1:ow1 + owidth]
36
37
38
39
40
41
42
        imgnarrow.fill_(0)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        assert result.sum() == 0, "height: " + str(height) + " width: " \
43
                                  + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
44
45
46
47
48
49
50
51
52
        oheight += 1
        owidth += 1
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum1 = result.sum()
        assert sum1 > 1, "height: " + str(height) + " width: " \
53
                         + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
54
        oheight += 1
55
        owidth += 1
56
57
58
59
60
61
62
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum2 = result.sum()
        assert sum2 > 0, "height: " + str(height) + " width: " \
63
                         + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
64
        assert sum2 > sum1, "height: " + str(height) + " width: " \
65
                            + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    def test_five_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for single_dim in [True, False]:
            crop_h = random.randint(1, h)
            crop_w = random.randint(1, w)
            if single_dim:
                crop_h = min(crop_h, crop_w)
                crop_w = crop_h
                transform = transforms.FiveCrop(crop_h)
            else:
                transform = transforms.FiveCrop((crop_h, crop_w))

            img = torch.FloatTensor(3, h, w).uniform_()
            results = transform(to_pil_image(img))

            assert len(results) == 5
            for crop in results:
                assert crop.size == (crop_w, crop_h)

            to_pil_image = transforms.ToPILImage()
            tl = to_pil_image(img[:, 0:crop_h, 0:crop_w])
            tr = to_pil_image(img[:, 0:crop_h, w - crop_w:])
            bl = to_pil_image(img[:, h - crop_h:, 0:crop_w])
            br = to_pil_image(img[:, h - crop_h:, w - crop_w:])
            center = transforms.CenterCrop((crop_h, crop_w))(to_pil_image(img))
            expected_output = (tl, tr, bl, br, center)
            assert results == expected_output

    def test_ten_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for should_vflip in [True, False]:
            for single_dim in [True, False]:
                crop_h = random.randint(1, h)
                crop_w = random.randint(1, w)
                if single_dim:
                    crop_h = min(crop_h, crop_w)
                    crop_w = crop_h
108
109
                    transform = transforms.TenCrop(crop_h,
                                                   vertical_flip=should_vflip)
110
111
                    five_crop = transforms.FiveCrop(crop_h)
                else:
112
113
                    transform = transforms.TenCrop((crop_h, crop_w),
                                                   vertical_flip=should_vflip)
114
115
116
117
118
                    five_crop = transforms.FiveCrop((crop_h, crop_w))

                img = to_pil_image(torch.FloatTensor(3, h, w).uniform_())
                results = transform(img)
                expected_output = five_crop(img)
119
120
121
122
123

                # Checking if FiveCrop and TenCrop can be printed as string
                transform.__repr__()
                five_crop.__repr__()

124
125
126
127
128
129
130
131
132
133
                if should_vflip:
                    vflipped_img = img.transpose(Image.FLIP_TOP_BOTTOM)
                    expected_output += five_crop(vflipped_img)
                else:
                    hflipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
                    expected_output += five_crop(hflipped_img)

                assert len(results) == 10
                assert expected_output == results

134
135
136
137
138
139
140
141
142
143
144
    def test_randomresized_params(self):
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)
        size = 100
        epsilon = 0.05
        for i in range(10):
            scale_min = round(random.random(), 2)
            scale_range = (scale_min, scale_min + round(random.random(), 2))
145
            aspect_min = max(round(random.random(), 2), epsilon)
146
147
148
149
150
151
152
            aspect_ratio_range = (aspect_min, aspect_min + round(random.random(), 2))
            randresizecrop = transforms.RandomResizedCrop(size, scale_range, aspect_ratio_range)
            _, _, h, w = randresizecrop.get_params(img, scale_range, aspect_ratio_range)
            aspect_ratio_obtained = w / h
            assert (min(aspect_ratio_range) - epsilon <= aspect_ratio_obtained <= max(aspect_ratio_range) + epsilon or
                    aspect_ratio_obtained == 1.0)

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    def test_randomperspective(self):
        for i in range(10):
            height = random.randint(24, 32) * 2
            width = random.randint(24, 32) * 2
            img = torch.ones(3, height, width)
            to_pil_image = transforms.ToPILImage()
            img = to_pil_image(img)
            perp = transforms.RandomPerspective()
            startpoints, endpoints = perp.get_params(width, height, 0.5)
            tr_img = F.perspective(img, startpoints, endpoints)
            tr_img2 = F.to_tensor(F.perspective(tr_img, endpoints, startpoints))
            tr_img = F.to_tensor(tr_img)
            assert img.size[0] == width and img.size[1] == height
            assert torch.nn.functional.mse_loss(tr_img, F.to_tensor(img)) + 0.3 > \
                torch.nn.functional.mse_loss(tr_img2, F.to_tensor(img))

169
    def test_resize(self):
170
171
172
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        osize = random.randint(5, 12) * 2
173

174
175
176
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
177
            transforms.Resize(osize),
178
179
180
181
            transforms.ToTensor(),
        ])(img)
        assert osize in result.size()
        if height < width:
182
            assert result.size(1) <= result.size(2)
183
184
185
        elif width < height:
            assert result.size(1) >= result.size(2)

186
187
        result = transforms.Compose([
            transforms.ToPILImage(),
188
            transforms.Resize([osize, osize]),
189
190
191
192
193
194
            transforms.ToTensor(),
        ])(img)
        assert osize in result.size()
        assert result.size(1) == osize
        assert result.size(2) == osize

195
196
197
198
        oheight = random.randint(5, 12) * 2
        owidth = random.randint(5, 12) * 2
        result = transforms.Compose([
            transforms.ToPILImage(),
199
            transforms.Resize((oheight, owidth)),
200
201
202
203
204
205
206
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

        result = transforms.Compose([
            transforms.ToPILImage(),
207
            transforms.Resize([oheight, owidth]),
208
209
210
211
212
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

213
214
215
216
    def test_random_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
217
        owidth = random.randint(5, (width - 2) / 2) * 2
218
219
220
221
222
223
224
225
226
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

227
228
229
230
231
232
233
234
235
        padding = random.randint(1, 20)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth), padding=padding),
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

236
237
238
239
240
241
242
243
244
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height, width)),
            transforms.ToTensor()
        ])(img)
        assert result.size(1) == height
        assert result.size(2) == width
        assert np.allclose(img.numpy(), result.numpy())

245
246
247
248
249
250
251
252
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height + 1, width + 1), pad_if_needed=True),
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == height + 1
        assert result.size(2) == width + 1

253
254
255
256
257
258
259
260
261
262
    def test_pad(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = torch.ones(3, height, width)
        padding = random.randint(1, 20)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Pad(padding),
            transforms.ToTensor(),
        ])(img)
263
264
        assert result.size(1) == height + 2 * padding
        assert result.size(2) == width + 2 * padding
Soumith Chintala's avatar
Soumith Chintala committed
265

266
267
268
269
270
271
272
273
274
275
276
277
278
279
    def test_pad_with_tuple_of_pad_values(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = transforms.ToPILImage()(torch.ones(3, height, width))

        padding = tuple([random.randint(1, 20) for _ in range(2)])
        output = transforms.Pad(padding)(img)
        assert output.size == (width + padding[0] * 2, height + padding[1] * 2)

        padding = tuple([random.randint(1, 20) for _ in range(4)])
        output = transforms.Pad(padding)(img)
        assert output.size[0] == width + padding[0] + padding[2]
        assert output.size[1] == height + padding[1] + padding[3]

280
281
282
        # Checking if Padding can be printed as string
        transforms.Pad(padding).__repr__()

283
284
    def test_pad_with_non_constant_padding_modes(self):
        """Unit tests for edge, reflect, symmetric padding"""
vfdev's avatar
vfdev committed
285
        img = torch.zeros(3, 27, 27).byte()
286
287
288
289
290
291
292
293
294
        img[:, :, 0] = 1  # Constant value added to leftmost edge
        img = transforms.ToPILImage()(img)
        img = F.pad(img, 1, (200, 200, 200))

        # pad 3 to all sidess
        edge_padded_img = F.pad(img, 3, padding_mode='edge')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # edge_pad, edge_pad, edge_pad, constant_pad, constant value added to leftmost edge, 0
        edge_middle_slice = np.asarray(edge_padded_img).transpose(2, 0, 1)[0][17][:6]
vfdev's avatar
vfdev committed
295
        assert np.all(edge_middle_slice == np.asarray([200, 200, 200, 200, 1, 0]))
296
297
298
299
300
301
302
        assert transforms.ToTensor()(edge_padded_img).size() == (3, 35, 35)

        # Pad 3 to left/right, 2 to top/bottom
        reflect_padded_img = F.pad(img, (3, 2), padding_mode='reflect')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # reflect_pad, reflect_pad, reflect_pad, constant_pad, constant value added to leftmost edge, 0
        reflect_middle_slice = np.asarray(reflect_padded_img).transpose(2, 0, 1)[0][17][:6]
vfdev's avatar
vfdev committed
303
        assert np.all(reflect_middle_slice == np.asarray([0, 0, 1, 200, 1, 0]))
304
305
306
307
308
309
310
        assert transforms.ToTensor()(reflect_padded_img).size() == (3, 33, 35)

        # Pad 3 to left, 2 to top, 2 to right, 1 to bottom
        symmetric_padded_img = F.pad(img, (3, 2, 2, 1), padding_mode='symmetric')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # sym_pad, sym_pad, sym_pad, constant_pad, constant value added to leftmost edge, 0
        symmetric_middle_slice = np.asarray(symmetric_padded_img).transpose(2, 0, 1)[0][17][:6]
vfdev's avatar
vfdev committed
311
        assert np.all(symmetric_middle_slice == np.asarray([0, 1, 200, 200, 1, 0]))
312
313
        assert transforms.ToTensor()(symmetric_padded_img).size() == (3, 32, 34)

314
    def test_pad_raises_with_invalid_pad_sequence_len(self):
315
316
317
318
319
320
321
322
323
        with self.assertRaises(ValueError):
            transforms.Pad(())

        with self.assertRaises(ValueError):
            transforms.Pad((1, 2, 3))

        with self.assertRaises(ValueError):
            transforms.Pad((1, 2, 3, 4, 5))

Soumith Chintala's avatar
Soumith Chintala committed
324
325
326
327
    def test_lambda(self):
        trans = transforms.Lambda(lambda x: x.add(10))
        x = torch.randn(10)
        y = trans(x)
328
        assert (y.equal(torch.add(x, 10)))
Soumith Chintala's avatar
Soumith Chintala committed
329
330
331
332

        trans = transforms.Lambda(lambda x: x.add_(10))
        x = torch.randn(10)
        y = trans(x)
333
334
        assert (y.equal(x))

335
336
337
        # Checking if Lambda can be printed as string
        trans.__repr__()

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    def test_random_apply(self):
        random_state = random.getstate()
        random.seed(42)
        random_apply_transform = transforms.RandomApply(
            [
                transforms.RandomRotation((-45, 45)),
                transforms.RandomHorizontalFlip(),
                transforms.RandomVerticalFlip(),
            ], p=0.75
        )
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        num_samples = 250
        num_applies = 0
        for _ in range(num_samples):
            out = random_apply_transform(img)
            if out != img:
                num_applies += 1

        p_value = stats.binom_test(num_applies, num_samples, p=0.75)
        random.setstate(random_state)
        assert p_value > 0.0001

        # Checking if RandomApply can be printed as string
        random_apply_transform.__repr__()

    def test_random_choice(self):
        random_state = random.getstate()
        random.seed(42)
        random_choice_transform = transforms.RandomChoice(
            [
                transforms.Resize(15),
                transforms.Resize(20),
                transforms.CenterCrop(10)
            ]
        )
        img = transforms.ToPILImage()(torch.rand(3, 25, 25))
        num_samples = 250
        num_resize_15 = 0
        num_resize_20 = 0
        num_crop_10 = 0
        for _ in range(num_samples):
            out = random_choice_transform(img)
            if out.size == (15, 15):
                num_resize_15 += 1
            elif out.size == (20, 20):
                num_resize_20 += 1
            elif out.size == (10, 10):
                num_crop_10 += 1

        p_value = stats.binom_test(num_resize_15, num_samples, p=0.33333)
        assert p_value > 0.0001
        p_value = stats.binom_test(num_resize_20, num_samples, p=0.33333)
        assert p_value > 0.0001
        p_value = stats.binom_test(num_crop_10, num_samples, p=0.33333)
        assert p_value > 0.0001

        random.setstate(random_state)
        # Checking if RandomChoice can be printed as string
        random_choice_transform.__repr__()

    def test_random_order(self):
        random_state = random.getstate()
        random.seed(42)
        random_order_transform = transforms.RandomOrder(
            [
                transforms.Resize(20),
                transforms.CenterCrop(10)
            ]
        )
        img = transforms.ToPILImage()(torch.rand(3, 25, 25))
        num_samples = 250
        num_normal_order = 0
        resize_crop_out = transforms.CenterCrop(10)(transforms.Resize(20)(img))
        for _ in range(num_samples):
            out = random_order_transform(img)
            if out == resize_crop_out:
                num_normal_order += 1

        p_value = stats.binom_test(num_normal_order, num_samples, p=0.5)
        random.setstate(random_state)
        assert p_value > 0.0001

        # Checking if RandomOrder can be printed as string
        random_order_transform.__repr__()

423
    def test_to_tensor(self):
424
        test_channels = [1, 3, 4]
425
426
        height, width = 4, 4
        trans = transforms.ToTensor()
427
428
429
430
431
432
433

        for channels in test_channels:
            input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
            assert np.allclose(input_data.numpy(), output.numpy())

434
            ndarray = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
435
436
437
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1)) / 255.0
            assert np.allclose(output.numpy(), expected_output)
438

439
440
441
442
443
            ndarray = np.random.rand(height, width, channels).astype(np.float32)
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1))
            assert np.allclose(output.numpy(), expected_output)

444
445
446
447
448
449
        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
        img = transforms.ToPILImage()(input_data.mul(255)).convert('1')
        output = trans(img)
        assert np.allclose(input_data.numpy(), output.numpy())

450
451
452
453
454
455
456
457
458
459
460
461
462
    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_to_tensor(self):
        trans = transforms.ToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        assert np.allclose(output.numpy(), expected_output.numpy())

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_resize(self):
        trans = transforms.Compose([
463
            transforms.Resize(256, interpolation=Image.LINEAR),
464
465
466
            transforms.ToTensor(),
        ])

467
468
469
        # Checking if Compose, Resize and ToTensor can be printed as string
        trans.__repr__()

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        self.assertLess(np.abs((expected_output - output).mean()), 1e-3)
        self.assertLess((expected_output - output).var(), 1e-5)
        # note the high absolute tolerance
        assert np.allclose(output.numpy(), expected_output.numpy(), atol=5e-2)

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_crop(self):
        trans = transforms.Compose([
            transforms.CenterCrop(256),
            transforms.ToTensor(),
        ])

486
487
488
        # Checking if Compose, CenterCrop and ToTensor can be printed as string
        trans.__repr__()

489
490
491
492
493
494
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        assert np.allclose(output.numpy(), expected_output.numpy())

495
    def test_1_channel_tensor_to_pil_image(self):
496
497
        to_tensor = transforms.ToTensor()

498
        img_data_float = torch.Tensor(1, 4, 4).uniform_()
499
500
501
502
        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        img_data_int = torch.IntTensor(1, 4, 4).random_()

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
                assert img.mode == mode
                assert np.allclose(expected_output, to_tensor(img).numpy())

    def test_1_channel_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4, 1).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4, 1).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4, 1).random_().numpy()
        img_data_int = torch.IntTensor(4, 4, 1).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
                assert img.mode == mode
                assert np.allclose(img_data[:, :, 0], img)

surgan12's avatar
surgan12 committed
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
    def test_2_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
                assert img.mode == 'LA'  # default should assume LA
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
                assert img.mode == mode
            split = img.split()
            for i in range(2):
                assert np.allclose(img_data[:, :, i], split[i])

        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
        for mode in [None, 'LA']:
            verify_img_data(img_data, mode)

        transforms.ToPILImage().__repr__()

        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 or 3 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
            transforms.ToPILImage(mode='RGB')(img_data)

    def test_2_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
                assert img.mode == 'LA'  # default should assume LA
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
                assert img.mode == mode
            split = img.split()
            for i in range(2):
                assert np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy())

        img_data = torch.Tensor(2, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'LA']:
            verify_img_data(img_data, expected_output, mode=mode)

        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 or 3 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
            transforms.ToPILImage(mode='RGB')(img_data)

577
578
579
580
581
582
583
584
585
586
    def test_3_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
                assert img.mode == 'RGB'  # default should assume RGB
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
                assert img.mode == mode
            split = img.split()
            for i in range(3):
587
                assert np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy())
588

589
590
591
592
        img_data = torch.Tensor(3, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, expected_output, mode=mode)
593

594
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
595
            # should raise if we try a mode for 4 or 1 or 2 channel images
596
597
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
598
            transforms.ToPILImage(mode='LA')(img_data)
599

Varun Agrawal's avatar
Varun Agrawal committed
600
601
602
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(torch.Tensor(1, 3, 4, 4).uniform_())

603
604
605
606
607
608
609
610
611
612
613
    def test_3_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
                assert img.mode == 'RGB'  # default should assume RGB
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
                assert img.mode == mode
            split = img.split()
            for i in range(3):
                assert np.allclose(img_data[:, :, i], split[i])
614

615
616
617
618
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, mode)

619
620
621
        # Checking if ToPILImage can be printed as string
        transforms.ToPILImage().__repr__()

622
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
623
            # should raise if we try a mode for 4 or 1 or 2 channel images
624
625
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
626
            transforms.ToPILImage(mode='LA')(img_data)
627
628
629
630
631
632
633
634
635
636
637
638

    def test_4_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
                assert img.mode == 'RGBA'  # default should assume RGBA
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
                assert img.mode == mode

            split = img.split()
            for i in range(4):
639
                assert np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy())
640

641
        img_data = torch.Tensor(4, 4, 4).uniform_()
642
        expected_output = img_data.mul(255).int().float().div(255)
surgan12's avatar
surgan12 committed
643
        for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
644
            verify_img_data(img_data, expected_output, mode)
645

646
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
647
            # should raise if we try a mode for 3 or 1 or 2 channel images
648
649
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
650
            transforms.ToPILImage(mode='LA')(img_data)
651
652
653
654
655
656
657
658
659
660
661
662

    def test_4_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
                assert img.mode == 'RGBA'  # default should assume RGBA
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
                assert img.mode == mode
            split = img.split()
            for i in range(4):
                assert np.allclose(img_data[:, :, i], split[i])
663

664
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()
surgan12's avatar
surgan12 committed
665
        for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
666
            verify_img_data(img_data, mode)
667

668
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
669
            # should raise if we try a mode for 3 or 1 or 2 channel images
670
671
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
672
            transforms.ToPILImage(mode='LA')(img_data)
673

Varun Agrawal's avatar
Varun Agrawal committed
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
    def test_2d_tensor_to_pil_image(self):
        to_tensor = transforms.ToTensor()

        img_data_float = torch.Tensor(4, 4).uniform_()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(4, 4).random_()
        img_data_int = torch.IntTensor(4, 4).random_()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
                assert img.mode == mode
                assert np.allclose(expected_output, to_tensor(img).numpy())

    def test_2d_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4).random_().numpy()
        img_data_int = torch.IntTensor(4, 4).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
                assert img.mode == mode
                assert np.allclose(img_data, img)

    def test_tensor_bad_types_to_pil_image(self):
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(torch.ones(1, 3, 4, 4))

713
    def test_ndarray_bad_types_to_pil_image(self):
714
        trans = transforms.ToPILImage()
715
        with self.assertRaises(TypeError):
716
717
718
719
720
            trans(np.ones([4, 4, 1], np.int64))
            trans(np.ones([4, 4, 1], np.uint16))
            trans(np.ones([4, 4, 1], np.uint32))
            trans(np.ones([4, 4, 1], np.float64))

Varun Agrawal's avatar
Varun Agrawal committed
721
722
723
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(np.ones([1, 4, 4, 3]))

724
725
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_vertical_flip(self):
726
727
        random_state = random.getstate()
        random.seed(42)
728
729
730
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        vimg = img.transpose(Image.FLIP_TOP_BOTTOM)

731
        num_samples = 250
732
        num_vertical = 0
733
        for _ in range(num_samples):
734
735
736
737
            out = transforms.RandomVerticalFlip()(img)
            if out == vimg:
                num_vertical += 1

738
739
740
        p_value = stats.binom_test(num_vertical, num_samples, p=0.5)
        random.setstate(random_state)
        assert p_value > 0.0001
741

742
743
744
745
746
747
748
749
750
751
752
        num_samples = 250
        num_vertical = 0
        for _ in range(num_samples):
            out = transforms.RandomVerticalFlip(p=0.7)(img)
            if out == vimg:
                num_vertical += 1

        p_value = stats.binom_test(num_vertical, num_samples, p=0.7)
        random.setstate(random_state)
        assert p_value > 0.0001

753
754
755
        # Checking if RandomVerticalFlip can be printed as string
        transforms.RandomVerticalFlip().__repr__()

756
757
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_horizontal_flip(self):
758
759
        random_state = random.getstate()
        random.seed(42)
760
761
762
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        himg = img.transpose(Image.FLIP_LEFT_RIGHT)

763
        num_samples = 250
764
        num_horizontal = 0
765
        for _ in range(num_samples):
766
767
768
769
            out = transforms.RandomHorizontalFlip()(img)
            if out == himg:
                num_horizontal += 1

770
771
772
        p_value = stats.binom_test(num_horizontal, num_samples, p=0.5)
        random.setstate(random_state)
        assert p_value > 0.0001
773

774
775
776
777
778
779
780
781
782
783
784
        num_samples = 250
        num_horizontal = 0
        for _ in range(num_samples):
            out = transforms.RandomHorizontalFlip(p=0.7)(img)
            if out == himg:
                num_horizontal += 1

        p_value = stats.binom_test(num_horizontal, num_samples, p=0.7)
        random.setstate(random_state)
        assert p_value > 0.0001

785
786
787
        # Checking if RandomHorizontalFlip can be printed as string
        transforms.RandomHorizontalFlip().__repr__()

788
    @unittest.skipIf(stats is None, 'scipy.stats is not available')
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
    def test_normalize(self):
        def samples_from_standard_normal(tensor):
            p_value = stats.kstest(list(tensor.view(-1)), 'norm', args=(0, 1)).pvalue
            return p_value > 0.0001

        random_state = random.getstate()
        random.seed(42)
        for channels in [1, 3]:
            img = torch.rand(channels, 10, 10)
            mean = [img[c].mean() for c in range(channels)]
            std = [img[c].std() for c in range(channels)]
            normalized = transforms.Normalize(mean, std)(img)
            assert samples_from_standard_normal(normalized)
        random.setstate(random_state)

804
805
806
        # Checking if Normalize can be printed as string
        transforms.Normalize(mean, std).__repr__()

807
808
809
810
811
812
813
    def test_adjust_brightness(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
814
        y_pil = F.adjust_brightness(x_pil, 1)
815
816
817
818
        y_np = np.array(y_pil)
        assert np.allclose(y_np, x_np)

        # test 1
819
        y_pil = F.adjust_brightness(x_pil, 0.5)
820
821
822
823
824
825
        y_np = np.array(y_pil)
        y_ans = [0, 2, 6, 27, 67, 113, 18, 4, 117, 45, 127, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
826
        y_pil = F.adjust_brightness(x_pil, 2)
827
828
829
830
831
832
833
834
835
836
837
838
        y_np = np.array(y_pil)
        y_ans = [0, 10, 26, 108, 255, 255, 74, 16, 255, 180, 255, 2]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjust_contrast(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
839
        y_pil = F.adjust_contrast(x_pil, 1)
840
841
842
843
        y_np = np.array(y_pil)
        assert np.allclose(y_np, x_np)

        # test 1
844
        y_pil = F.adjust_contrast(x_pil, 0.5)
845
846
847
848
849
850
        y_np = np.array(y_pil)
        y_ans = [43, 45, 49, 70, 110, 156, 61, 47, 160, 88, 170, 43]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
851
        y_pil = F.adjust_contrast(x_pil, 2)
852
853
854
855
856
857
858
859
860
861
862
863
        y_np = np.array(y_pil)
        y_ans = [0, 0, 0, 22, 184, 255, 0, 0, 255, 94, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjust_saturation(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
864
        y_pil = F.adjust_saturation(x_pil, 1)
865
866
867
868
        y_np = np.array(y_pil)
        assert np.allclose(y_np, x_np)

        # test 1
869
        y_pil = F.adjust_saturation(x_pil, 0.5)
870
871
872
873
874
875
        y_np = np.array(y_pil)
        y_ans = [2, 4, 8, 87, 128, 173, 39, 25, 138, 133, 215, 88]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
876
        y_pil = F.adjust_saturation(x_pil, 2)
877
878
879
880
881
882
883
884
885
886
887
888
        y_np = np.array(y_pil)
        y_ans = [0, 6, 22, 0, 149, 255, 32, 0, 255, 4, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjust_hue(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        with self.assertRaises(ValueError):
889
890
            F.adjust_hue(x_pil, -0.7)
            F.adjust_hue(x_pil, 1)
891
892
893

        # test 0: almost same as x_data but not exact.
        # probably because hsv <-> rgb floating point ops
894
        y_pil = F.adjust_hue(x_pil, 0)
895
896
897
898
899
900
        y_np = np.array(y_pil)
        y_ans = [0, 5, 13, 54, 139, 226, 35, 8, 234, 91, 255, 1]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 1
901
        y_pil = F.adjust_hue(x_pil, 0.25)
902
903
904
905
906
907
        y_np = np.array(y_pil)
        y_ans = [13, 0, 12, 224, 54, 226, 234, 8, 99, 1, 222, 255]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
908
        y_pil = F.adjust_hue(x_pil, -0.25)
909
910
911
912
913
914
915
916
917
918
919
920
        y_np = np.array(y_pil)
        y_ans = [0, 13, 2, 54, 226, 58, 8, 234, 152, 255, 43, 1]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjust_gamma(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
921
        y_pil = F.adjust_gamma(x_pil, 1)
922
923
924
925
        y_np = np.array(y_pil)
        assert np.allclose(y_np, x_np)

        # test 1
926
        y_pil = F.adjust_gamma(x_pil, 0.5)
927
928
929
930
931
932
        y_np = np.array(y_pil)
        y_ans = [0, 35, 57, 117, 185, 240, 97, 45, 244, 151, 255, 15]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
933
        y_pil = F.adjust_gamma(x_pil, 2)
934
935
936
937
938
939
940
941
942
943
944
945
        y_np = np.array(y_pil)
        y_ans = [0, 0, 0, 11, 71, 200, 5, 0, 214, 31, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjusts_L_mode(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_rgb = Image.fromarray(x_np, mode='RGB')

        x_l = x_rgb.convert('L')
946
947
948
949
950
        assert F.adjust_brightness(x_l, 2).mode == 'L'
        assert F.adjust_saturation(x_l, 2).mode == 'L'
        assert F.adjust_contrast(x_l, 2).mode == 'L'
        assert F.adjust_hue(x_l, 0.4).mode == 'L'
        assert F.adjust_gamma(x_l, 0.5).mode == 'L'
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967

    def test_color_jitter(self):
        color_jitter = transforms.ColorJitter(2, 2, 2, 0.1)

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')

        for i in range(10):
            y_pil = color_jitter(x_pil)
            assert y_pil.mode == x_pil.mode

            y_pil_2 = color_jitter(x_pil_2)
            assert y_pil_2.mode == x_pil_2.mode

968
969
970
        # Checking if ColorJitter can be printed as string
        color_jitter.__repr__()

971
    def test_linear_transformation(self):
ekka's avatar
ekka committed
972
973
974
975
976
977
978
979
980
981
982
983
        num_samples = 1000
        x = torch.randn(num_samples, 3, 10, 10)
        flat_x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
        # compute principal components
        sigma = torch.mm(flat_x.t(), flat_x) / flat_x.size(0)
        u, s, _ = np.linalg.svd(sigma.numpy())
        zca_epsilon = 1e-10  # avoid division by 0
        d = torch.Tensor(np.diag(1. / np.sqrt(s + zca_epsilon)))
        u = torch.Tensor(u)
        principal_components = torch.mm(torch.mm(u, d), u.t())
        mean_vector = (torch.sum(flat_x, dim=0) / flat_x.size(0))
        # initialize whitening matrix
984
        whitening = transforms.LinearTransformation(principal_components, mean_vector)
ekka's avatar
ekka committed
985
986
987
988
989
990
991
992
993
994
995
996
997
        # estimate covariance and mean using weak law of large number
        num_features = flat_x.size(1)
        cov = 0.0
        mean = 0.0
        for i in x:
            xwhite = whitening(i)
            xwhite = xwhite.view(1, -1).numpy()
            cov += np.dot(xwhite, xwhite.T) / num_features
            mean += np.sum(xwhite) / num_features
        # if rtol for std = 1e-3 then rtol for cov = 2e-3 as std**2 = cov
        assert np.allclose(cov / num_samples, np.identity(1), rtol=2e-3), "cov not close to 1"
        assert np.allclose(mean / num_samples, 0, rtol=1e-3), "mean not close to 0"

998
        # Checking if LinearTransformation can be printed as string
ekka's avatar
ekka committed
999
1000
        whitening.__repr__()

1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
    def test_rotate(self):
        x = np.zeros((100, 100, 3), dtype=np.uint8)
        x[40, 40] = [255, 255, 255]

        with self.assertRaises(TypeError):
            F.rotate(x, 10)

        img = F.to_pil_image(x)

        result = F.rotate(img, 45)
        assert result.size == (100, 100)
        r, c, ch = np.where(result)
        assert all(x in r for x in [49, 50])
        assert all(x in c for x in [36])
        assert all(x in ch for x in [0, 1, 2])

        result = F.rotate(img, 45, expand=True)
        assert result.size == (142, 142)
        r, c, ch = np.where(result)
        assert all(x in r for x in [70, 71])
        assert all(x in c for x in [57])
        assert all(x in ch for x in [0, 1, 2])

        result = F.rotate(img, 45, center=(40, 40))
        assert result.size == (100, 100)
        r, c, ch = np.where(result)
        assert all(x in r for x in [40])
        assert all(x in c for x in [40])
        assert all(x in ch for x in [0, 1, 2])

        result_a = F.rotate(img, 90)
        result_b = F.rotate(img, -270)

        assert np.all(np.array(result_a) == np.array(result_b))

1036
    def test_affine(self):
Francisco Massa's avatar
Francisco Massa committed
1037
        input_img = np.zeros((40, 40, 3), dtype=np.uint8)
1038
        pts = []
Francisco Massa's avatar
Francisco Massa committed
1039
1040
        cnt = [20, 20]
        for pt in [(16, 16), (20, 16), (20, 20)]:
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
            for i in range(-5, 5):
                for j in range(-5, 5):
                    input_img[pt[0] + i, pt[1] + j, :] = [255, 155, 55]
                    pts.append((pt[0] + i, pt[1] + j))
        pts = list(set(pts))

        with self.assertRaises(TypeError):
            F.affine(input_img, 10)

        pil_img = F.to_pil_image(input_img)

        def _to_3x3_inv(inv_result_matrix):
            result_matrix = np.zeros((3, 3))
            result_matrix[:2, :] = np.array(inv_result_matrix).reshape((2, 3))
            result_matrix[2, 2] = 1
            return np.linalg.inv(result_matrix)

        def _test_transformation(a, t, s, sh):
            a_rad = math.radians(a)
            s_rad = math.radians(sh)
            # 1) Check transformation matrix:
            c_matrix = np.array([[1.0, 0.0, cnt[0]], [0.0, 1.0, cnt[1]], [0.0, 0.0, 1.0]])
            c_inv_matrix = np.linalg.inv(c_matrix)
            t_matrix = np.array([[1.0, 0.0, t[0]],
                                 [0.0, 1.0, t[1]],
                                 [0.0, 0.0, 1.0]])
            r_matrix = np.array([[s * math.cos(a_rad), -s * math.sin(a_rad + s_rad), 0.0],
                                 [s * math.sin(a_rad), s * math.cos(a_rad + s_rad), 0.0],
                                 [0.0, 0.0, 1.0]])
            true_matrix = np.dot(t_matrix, np.dot(c_matrix, np.dot(r_matrix, c_inv_matrix)))
            result_matrix = _to_3x3_inv(F._get_inverse_affine_matrix(center=cnt, angle=a,
                                                                     translate=t, scale=s, shear=sh))
            assert np.sum(np.abs(true_matrix - result_matrix)) < 1e-10
            # 2) Perform inverse mapping:
Francisco Massa's avatar
Francisco Massa committed
1075
            true_result = np.zeros((40, 40, 3), dtype=np.uint8)
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
            inv_true_matrix = np.linalg.inv(true_matrix)
            for y in range(true_result.shape[0]):
                for x in range(true_result.shape[1]):
                    res = np.dot(inv_true_matrix, [x, y, 1])
                    _x = int(res[0] + 0.5)
                    _y = int(res[1] + 0.5)
                    if 0 <= _x < input_img.shape[1] and 0 <= _y < input_img.shape[0]:
                        true_result[y, x, :] = input_img[_y, _x, :]

            result = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh)
            assert result.size == pil_img.size
            # Compute number of different pixels:
            np_result = np.array(result)
            n_diff_pixels = np.sum(np_result != true_result) / 3
            # Accept 3 wrong pixels
            assert n_diff_pixels < 3, \
                "a={}, t={}, s={}, sh={}\n".format(a, t, s, sh) +\
                "n diff pixels={}\n".format(np.sum(np.array(result)[:, :, 0] != true_result[:, :, 0]))

        # Test rotation
        a = 45
        _test_transformation(a=a, t=(0, 0), s=1.0, sh=0.0)

        # Test translation
        t = [10, 15]
        _test_transformation(a=0.0, t=t, s=1.0, sh=0.0)

        # Test scale
        s = 1.2
        _test_transformation(a=0.0, t=(0.0, 0.0), s=s, sh=0.0)

        # Test shear
        sh = 45.0
        _test_transformation(a=0.0, t=(0.0, 0.0), s=1.0, sh=sh)

        # Test rotation, scale, translation, shear
        for a in range(-90, 90, 25):
            for t1 in range(-10, 10, 5):
                for s in [0.75, 0.98, 1.0, 1.1, 1.2]:
                    for sh in range(-15, 15, 5):
                        _test_transformation(a=a, t=(t1, t1), s=s, sh=sh)

1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
    def test_random_rotation(self):

        with self.assertRaises(ValueError):
            transforms.RandomRotation(-0.7)
            transforms.RandomRotation([-0.7])
            transforms.RandomRotation([-0.7, 0, 0.7])

        t = transforms.RandomRotation(10)
        angle = t.get_params(t.degrees)
        assert angle > -10 and angle < 10

        t = transforms.RandomRotation((-10, 10))
        angle = t.get_params(t.degrees)
        assert angle > -10 and angle < 10

1133
1134
1135
        # Checking if RandomRotation can be printed as string
        t.__repr__()

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
    def test_random_affine(self):

        with self.assertRaises(ValueError):
            transforms.RandomAffine(-0.7)
            transforms.RandomAffine([-0.7])
            transforms.RandomAffine([-0.7, 0, 0.7])

            transforms.RandomAffine([-90, 90], translate=2.0)
            transforms.RandomAffine([-90, 90], translate=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[-1.0, 0.0, 1.0])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, -0.5])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 3.0, -0.5])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=-7)
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10])

        x = np.zeros((100, 100, 3), dtype=np.uint8)
        img = F.to_pil_image(x)

        t = transforms.RandomAffine(10, translate=[0.5, 0.3], scale=[0.7, 1.3], shear=[-10, 10])
        for _ in range(100):
            angle, translations, scale, shear = t.get_params(t.degrees, t.translate, t.scale, t.shear,
                                                             img_size=img.size)
            assert -10 < angle < 10
            assert -img.size[0] * 0.5 <= translations[0] <= img.size[0] * 0.5, \
                "{} vs {}".format(translations[0], img.size[0] * 0.5)
            assert -img.size[1] * 0.5 <= translations[1] <= img.size[1] * 0.5, \
                "{} vs {}".format(translations[1], img.size[1] * 0.5)
            assert 0.7 < scale < 1.3
            assert -10 < shear < 10

        # Checking if RandomAffine can be printed as string
        t.__repr__()

        t = transforms.RandomAffine(10, resample=Image.BILINEAR)
        assert "Image.BILINEAR" in t.__repr__()

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
    def test_to_grayscale(self):
        """Unit tests for grayscale transform"""

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        # Test Set: Grayscale an image with desired number of output channels
        # Case 1: RGB -> 1 channel grayscale
        trans1 = transforms.Grayscale(num_output_channels=1)
        gray_pil_1 = trans1(x_pil)
        gray_np_1 = np.array(gray_pil_1)
        assert gray_pil_1.mode == 'L', 'mode should be L'
        assert gray_np_1.shape == tuple(x_shape[0:2]), 'should be 1 channel'
        np.testing.assert_equal(gray_np, gray_np_1)

        # Case 2: RGB -> 3 channel grayscale
        trans2 = transforms.Grayscale(num_output_channels=3)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
        assert gray_pil_2.mode == 'RGB', 'mode should be RGB'
        assert gray_np_2.shape == tuple(x_shape), 'should be 3 channel'
        np.testing.assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
        np.testing.assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_2[:, :, 0])

        # Case 3: 1 channel grayscale -> 1 channel grayscale
        trans3 = transforms.Grayscale(num_output_channels=1)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
        assert gray_pil_3.mode == 'L', 'mode should be L'
        assert gray_np_3.shape == tuple(x_shape[0:2]), 'should be 1 channel'
        np.testing.assert_equal(gray_np, gray_np_3)

        # Case 4: 1 channel grayscale -> 3 channel grayscale
        trans4 = transforms.Grayscale(num_output_channels=3)
        gray_pil_4 = trans4(x_pil_2)
        gray_np_4 = np.array(gray_pil_4)
        assert gray_pil_4.mode == 'RGB', 'mode should be RGB'
        assert gray_np_4.shape == tuple(x_shape), 'should be 3 channel'
        np.testing.assert_equal(gray_np_4[:, :, 0], gray_np_4[:, :, 1])
        np.testing.assert_equal(gray_np_4[:, :, 1], gray_np_4[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_4[:, :, 0])

1224
1225
1226
        # Checking if Grayscale can be printed as string
        trans4.__repr__()

1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_grayscale(self):
        """Unit tests for random grayscale transform"""

        # Test Set 1: RGB -> 3 channel grayscale
        random_state = random.getstate()
        random.seed(42)
        x_shape = [2, 2, 3]
        x_np = np.random.randint(0, 256, x_shape, np.uint8)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        num_samples = 250
        num_gray = 0
        for _ in range(num_samples):
            gray_pil_2 = transforms.RandomGrayscale(p=0.5)(x_pil)
            gray_np_2 = np.array(gray_pil_2)
            if np.array_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1]) and \
1246
1247
                    np.array_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2]) and \
                    np.array_equal(gray_np, gray_np_2[:, :, 0]):
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
                num_gray = num_gray + 1

        p_value = stats.binom_test(num_gray, num_samples, p=0.5)
        random.setstate(random_state)
        assert p_value > 0.0001

        # Test Set 2: grayscale -> 1 channel grayscale
        random_state = random.getstate()
        random.seed(42)
        x_shape = [2, 2, 3]
        x_np = np.random.randint(0, 256, x_shape, np.uint8)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        num_samples = 250
        num_gray = 0
        for _ in range(num_samples):
            gray_pil_3 = transforms.RandomGrayscale(p=0.5)(x_pil_2)
            gray_np_3 = np.array(gray_pil_3)
            if np.array_equal(gray_np, gray_np_3):
                num_gray = num_gray + 1

        p_value = stats.binom_test(num_gray, num_samples, p=1.0)  # Note: grayscale is always unchanged
        random.setstate(random_state)
        assert p_value > 0.0001

        # Test set 3: Explicit tests
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        # Case 3a: RGB -> 3 channel grayscale (grayscaled)
        trans2 = transforms.RandomGrayscale(p=1.0)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
        assert gray_pil_2.mode == 'RGB', 'mode should be RGB'
        assert gray_np_2.shape == tuple(x_shape), 'should be 3 channel'
        np.testing.assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
        np.testing.assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_2[:, :, 0])

        # Case 3b: RGB -> 3 channel grayscale (unchanged)
        trans2 = transforms.RandomGrayscale(p=0.0)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
        assert gray_pil_2.mode == 'RGB', 'mode should be RGB'
        assert gray_np_2.shape == tuple(x_shape), 'should be 3 channel'
        np.testing.assert_equal(x_np, gray_np_2)

        # Case 3c: 1 channel grayscale -> 1 channel grayscale (grayscaled)
        trans3 = transforms.RandomGrayscale(p=1.0)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
        assert gray_pil_3.mode == 'L', 'mode should be L'
        assert gray_np_3.shape == tuple(x_shape[0:2]), 'should be 1 channel'
        np.testing.assert_equal(gray_np, gray_np_3)

        # Case 3d: 1 channel grayscale -> 1 channel grayscale (unchanged)
        trans3 = transforms.RandomGrayscale(p=0.0)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
        assert gray_pil_3.mode == 'L', 'mode should be L'
        assert gray_np_3.shape == tuple(x_shape[0:2]), 'should be 1 channel'
        np.testing.assert_equal(gray_np, gray_np_3)

1317
1318
1319
        # Checking if RandomGrayscale can be printed as string
        trans3.__repr__()

1320

1321
1322
if __name__ == '__main__':
    unittest.main()