test_transforms.py 80 KB
Newer Older
1
import os
2
3
import torch
import torchvision.transforms as transforms
4
import torchvision.transforms.functional as F
5
import torchvision.transforms.functional_tensor as F_t
6
from torch._utils_internal import get_file_path_2
7
from numpy.testing import assert_array_almost_equal
8
import unittest
9
import math
10
import random
11
import numpy as np
12
13
14
15
16
17
from PIL import Image
try:
    import accimage
except ImportError:
    accimage = None

18
19
20
21
22
try:
    from scipy import stats
except ImportError:
    stats = None

23
from common_utils import cycle_over, int_dtypes, float_dtypes
24
25


26
GRACE_HOPPER = get_file_path_2(
27
    os.path.dirname(os.path.abspath(__file__)), 'assets', 'encode_jpeg', 'grace_hopper_517x606.jpg')
28
29


30
class Tester(unittest.TestCase):
31

32
33
34
35
    def test_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
36
37
        owidth = random.randint(5, (width - 2) / 2) * 2

38
        img = torch.ones(3, height, width)
39
40
41
        oh1 = (height - oheight) // 2
        ow1 = (width - owidth) // 2
        imgnarrow = img[:, oh1:oh1 + oheight, ow1:ow1 + owidth]
42
43
44
45
46
47
        imgnarrow.fill_(0)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
48
49
        self.assertEqual(result.sum(), 0,
                         "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
50
51
52
53
54
55
56
57
        oheight += 1
        owidth += 1
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum1 = result.sum()
58
59
        self.assertGreater(sum1, 1,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
60
        oheight += 1
61
        owidth += 1
62
63
64
65
66
67
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum2 = result.sum()
68
69
70
71
        self.assertGreater(sum2, 0,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
        self.assertGreater(sum2, sum1,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
72

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    def test_five_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for single_dim in [True, False]:
            crop_h = random.randint(1, h)
            crop_w = random.randint(1, w)
            if single_dim:
                crop_h = min(crop_h, crop_w)
                crop_w = crop_h
                transform = transforms.FiveCrop(crop_h)
            else:
                transform = transforms.FiveCrop((crop_h, crop_w))

            img = torch.FloatTensor(3, h, w).uniform_()
            results = transform(to_pil_image(img))

90
            self.assertEqual(len(results), 5)
91
            for crop in results:
92
                self.assertEqual(crop.size, (crop_w, crop_h))
93
94
95
96
97
98
99
100

            to_pil_image = transforms.ToPILImage()
            tl = to_pil_image(img[:, 0:crop_h, 0:crop_w])
            tr = to_pil_image(img[:, 0:crop_h, w - crop_w:])
            bl = to_pil_image(img[:, h - crop_h:, 0:crop_w])
            br = to_pil_image(img[:, h - crop_h:, w - crop_w:])
            center = transforms.CenterCrop((crop_h, crop_w))(to_pil_image(img))
            expected_output = (tl, tr, bl, br, center)
101
            self.assertEqual(results, expected_output)
102
103
104
105
106
107
108
109
110
111
112
113

    def test_ten_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for should_vflip in [True, False]:
            for single_dim in [True, False]:
                crop_h = random.randint(1, h)
                crop_w = random.randint(1, w)
                if single_dim:
                    crop_h = min(crop_h, crop_w)
                    crop_w = crop_h
114
115
                    transform = transforms.TenCrop(crop_h,
                                                   vertical_flip=should_vflip)
116
117
                    five_crop = transforms.FiveCrop(crop_h)
                else:
118
119
                    transform = transforms.TenCrop((crop_h, crop_w),
                                                   vertical_flip=should_vflip)
120
121
122
123
124
                    five_crop = transforms.FiveCrop((crop_h, crop_w))

                img = to_pil_image(torch.FloatTensor(3, h, w).uniform_())
                results = transform(img)
                expected_output = five_crop(img)
125
126
127
128
129

                # Checking if FiveCrop and TenCrop can be printed as string
                transform.__repr__()
                five_crop.__repr__()

130
131
132
133
134
135
136
                if should_vflip:
                    vflipped_img = img.transpose(Image.FLIP_TOP_BOTTOM)
                    expected_output += five_crop(vflipped_img)
                else:
                    hflipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
                    expected_output += five_crop(hflipped_img)

137
138
                self.assertEqual(len(results), 10)
                self.assertEqual(results, expected_output)
139

140
141
142
143
144
145
146
147
    def test_randomresized_params(self):
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)
        size = 100
        epsilon = 0.05
148
        min_scale = 0.25
Francisco Massa's avatar
Francisco Massa committed
149
        for _ in range(10):
150
            scale_min = max(round(random.random(), 2), min_scale)
151
            scale_range = (scale_min, scale_min + round(random.random(), 2))
152
            aspect_min = max(round(random.random(), 2), epsilon)
153
154
            aspect_ratio_range = (aspect_min, aspect_min + round(random.random(), 2))
            randresizecrop = transforms.RandomResizedCrop(size, scale_range, aspect_ratio_range)
155
            i, j, h, w = randresizecrop.get_params(img, scale_range, aspect_ratio_range)
156
            aspect_ratio_obtained = w / h
157
158
159
160
161
162
163
            self.assertTrue((min(aspect_ratio_range) - epsilon <= aspect_ratio_obtained and
                             aspect_ratio_obtained <= max(aspect_ratio_range) + epsilon) or
                            aspect_ratio_obtained == 1.0)
            self.assertIsInstance(i, int)
            self.assertIsInstance(j, int)
            self.assertIsInstance(h, int)
            self.assertIsInstance(w, int)
164

165
    def test_randomperspective(self):
Francisco Massa's avatar
Francisco Massa committed
166
        for _ in range(10):
167
168
169
170
171
172
173
174
175
176
            height = random.randint(24, 32) * 2
            width = random.randint(24, 32) * 2
            img = torch.ones(3, height, width)
            to_pil_image = transforms.ToPILImage()
            img = to_pil_image(img)
            perp = transforms.RandomPerspective()
            startpoints, endpoints = perp.get_params(width, height, 0.5)
            tr_img = F.perspective(img, startpoints, endpoints)
            tr_img2 = F.to_tensor(F.perspective(tr_img, endpoints, startpoints))
            tr_img = F.to_tensor(tr_img)
177
178
179
180
            self.assertEqual(img.size[0], width)
            self.assertEqual(img.size[1], height)
            self.assertGreater(torch.nn.functional.mse_loss(tr_img, F.to_tensor(img)) + 0.3,
                               torch.nn.functional.mse_loss(tr_img2, F.to_tensor(img)))
181

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    def test_randomperspective_fill(self):
        height = 100
        width = 100
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)

        modes = ("L", "RGB", "F")
        nums_bands = [len(mode) for mode in modes]
        fill = 127

        for mode, num_bands in zip(modes, nums_bands):
            img_conv = img.convert(mode)
            perspective = transforms.RandomPerspective(p=1, fill=fill)
            tr_img = perspective(img_conv)
            pixel = tr_img.getpixel((0, 0))

            if not isinstance(pixel, tuple):
                pixel = (pixel,)
            self.assertTupleEqual(pixel, tuple([fill] * num_bands))

        for mode, num_bands in zip(modes, nums_bands):
            img_conv = img.convert(mode)
            startpoints, endpoints = transforms.RandomPerspective.get_params(width, height, 0.5)
            tr_img = F.perspective(img_conv, startpoints, endpoints, fill=fill)
            pixel = tr_img.getpixel((0, 0))
208

209
210
211
212
213
214
215
216
            if not isinstance(pixel, tuple):
                pixel = (pixel,)
            self.assertTupleEqual(pixel, tuple([fill] * num_bands))

            for wrong_num_bands in set(nums_bands) - {num_bands}:
                with self.assertRaises(ValueError):
                    F.perspective(img_conv, startpoints, endpoints, fill=tuple([fill] * wrong_num_bands))

217
    def test_resize(self):
218

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
        input_sizes = [
            # height, width
            # square image
            (28, 28),
            (27, 27),
            # rectangular image: h < w
            (28, 34),
            (29, 35),
            # rectangular image: h > w
            (34, 28),
            (35, 29),
        ]
        test_output_sizes_1 = [
            # single integer
            22, 27, 28, 36,
            # single integer in tuple/list
            [22, ], (27, ),
        ]
        test_output_sizes_2 = [
            # two integers
            [22, 22], [22, 28], [22, 36],
            [27, 22], [36, 22], [28, 28],
            [28, 37], [37, 27], [37, 37]
        ]

        for height, width in input_sizes:
            img = Image.new("RGB", size=(width, height), color=127)

            for osize in test_output_sizes_1:

                t = transforms.Resize(osize)
                result = t(img)

                msg = "{}, {} - {}".format(height, width, osize)
                osize = osize[0] if isinstance(osize, (list, tuple)) else osize
                # If size is an int, smaller edge of the image will be matched to this number.
                # i.e, if height > width, then image will be rescaled to (size * height / width, size).
                if height < width:
                    expected_size = (int(osize * width / height), osize)  # (w, h)
                    self.assertEqual(result.size, expected_size, msg=msg)
                elif width < height:
                    expected_size = (osize, int(osize * height / width))  # (w, h)
                    self.assertEqual(result.size, expected_size, msg=msg)
                else:
                    expected_size = (osize, osize)  # (w, h)
                    self.assertEqual(result.size, expected_size, msg=msg)
265

266
267
        for height, width in input_sizes:
            img = Image.new("RGB", size=(width, height), color=127)
268

269
270
            for osize in test_output_sizes_2:
                oheight, owidth = osize
271

272
273
                t = transforms.Resize(osize)
                result = t(img)
274

275
                self.assertEqual((owidth, oheight), result.size)
276

277
278
279
280
    def test_random_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
281
        owidth = random.randint(5, (width - 2) / 2) * 2
282
283
284
285
286
287
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
288
289
        self.assertEqual(result.size(1), oheight)
        self.assertEqual(result.size(2), owidth)
290

291
292
293
294
295
296
        padding = random.randint(1, 20)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth), padding=padding),
            transforms.ToTensor(),
        ])(img)
297
298
        self.assertEqual(result.size(1), oheight)
        self.assertEqual(result.size(2), owidth)
299

300
301
302
303
304
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height, width)),
            transforms.ToTensor()
        ])(img)
305
306
307
        self.assertEqual(result.size(1), height)
        self.assertEqual(result.size(2), width)
        self.assertTrue(np.allclose(img.numpy(), result.numpy()))
308

309
310
311
312
313
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height + 1, width + 1), pad_if_needed=True),
            transforms.ToTensor(),
        ])(img)
314
315
        self.assertEqual(result.size(1), height + 1)
        self.assertEqual(result.size(2), width + 1)
316

vfdev's avatar
vfdev committed
317
318
319
320
321
        t = transforms.RandomCrop(48)
        img = torch.ones(3, 32, 32)
        with self.assertRaisesRegex(ValueError, r"Required crop size .+ is larger then input image size .+"):
            t(img)

322
323
324
325
326
    def test_pad(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = torch.ones(3, height, width)
        padding = random.randint(1, 20)
327
        fill = random.randint(1, 50)
328
329
        result = transforms.Compose([
            transforms.ToPILImage(),
330
            transforms.Pad(padding, fill=fill),
331
332
            transforms.ToTensor(),
        ])(img)
333
334
        self.assertEqual(result.size(1), height + 2 * padding)
        self.assertEqual(result.size(2), width + 2 * padding)
335
336
337
338
339
340
341
342
        # check that all elements in the padded region correspond
        # to the pad value
        fill_v = fill / 255
        eps = 1e-5
        self.assertTrue((result[:, :padding, :] - fill_v).abs().max() < eps)
        self.assertTrue((result[:, :, :padding] - fill_v).abs().max() < eps)
        self.assertRaises(ValueError, transforms.Pad(padding, fill=(1, 2)),
                          transforms.ToPILImage()(img))
Soumith Chintala's avatar
Soumith Chintala committed
343

344
345
346
347
348
349
350
    def test_pad_with_tuple_of_pad_values(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = transforms.ToPILImage()(torch.ones(3, height, width))

        padding = tuple([random.randint(1, 20) for _ in range(2)])
        output = transforms.Pad(padding)(img)
351
        self.assertEqual(output.size, (width + padding[0] * 2, height + padding[1] * 2))
352
353
354

        padding = tuple([random.randint(1, 20) for _ in range(4)])
        output = transforms.Pad(padding)(img)
355
356
        self.assertEqual(output.size[0], width + padding[0] + padding[2])
        self.assertEqual(output.size[1], height + padding[1] + padding[3])
357

358
359
360
        # Checking if Padding can be printed as string
        transforms.Pad(padding).__repr__()

361
362
    def test_pad_with_non_constant_padding_modes(self):
        """Unit tests for edge, reflect, symmetric padding"""
vfdev's avatar
vfdev committed
363
        img = torch.zeros(3, 27, 27).byte()
364
365
366
367
368
369
370
371
372
        img[:, :, 0] = 1  # Constant value added to leftmost edge
        img = transforms.ToPILImage()(img)
        img = F.pad(img, 1, (200, 200, 200))

        # pad 3 to all sidess
        edge_padded_img = F.pad(img, 3, padding_mode='edge')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # edge_pad, edge_pad, edge_pad, constant_pad, constant value added to leftmost edge, 0
        edge_middle_slice = np.asarray(edge_padded_img).transpose(2, 0, 1)[0][17][:6]
373
374
        self.assertTrue(np.all(edge_middle_slice == np.asarray([200, 200, 200, 200, 1, 0])))
        self.assertEqual(transforms.ToTensor()(edge_padded_img).size(), (3, 35, 35))
375
376
377
378
379
380

        # Pad 3 to left/right, 2 to top/bottom
        reflect_padded_img = F.pad(img, (3, 2), padding_mode='reflect')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # reflect_pad, reflect_pad, reflect_pad, constant_pad, constant value added to leftmost edge, 0
        reflect_middle_slice = np.asarray(reflect_padded_img).transpose(2, 0, 1)[0][17][:6]
381
382
        self.assertTrue(np.all(reflect_middle_slice == np.asarray([0, 0, 1, 200, 1, 0])))
        self.assertEqual(transforms.ToTensor()(reflect_padded_img).size(), (3, 33, 35))
383
384
385
386
387
388

        # Pad 3 to left, 2 to top, 2 to right, 1 to bottom
        symmetric_padded_img = F.pad(img, (3, 2, 2, 1), padding_mode='symmetric')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # sym_pad, sym_pad, sym_pad, constant_pad, constant value added to leftmost edge, 0
        symmetric_middle_slice = np.asarray(symmetric_padded_img).transpose(2, 0, 1)[0][17][:6]
389
390
        self.assertTrue(np.all(symmetric_middle_slice == np.asarray([0, 1, 200, 200, 1, 0])))
        self.assertEqual(transforms.ToTensor()(symmetric_padded_img).size(), (3, 32, 34))
391

392
393
394
395
396
397
398
399
400
401
        # Check negative padding explicitly for symmetric case, since it is not
        # implemented for tensor case to compare to
        # Crop 1 to left, pad 2 to top, pad 3 to right, crop 3 to bottom
        symmetric_padded_img_neg = F.pad(img, (-1, 2, 3, -3), padding_mode='symmetric')
        symmetric_neg_middle_left = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][:3]
        symmetric_neg_middle_right = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][-4:]
        self.assertTrue(np.all(symmetric_neg_middle_left == np.asarray([1, 0, 0])))
        self.assertTrue(np.all(symmetric_neg_middle_right == np.asarray([200, 200, 0, 0])))
        self.assertEqual(transforms.ToTensor()(symmetric_padded_img_neg).size(), (3, 28, 31))

402
    def test_pad_raises_with_invalid_pad_sequence_len(self):
403
404
405
406
407
408
409
410
411
        with self.assertRaises(ValueError):
            transforms.Pad(())

        with self.assertRaises(ValueError):
            transforms.Pad((1, 2, 3))

        with self.assertRaises(ValueError):
            transforms.Pad((1, 2, 3, 4, 5))

412
413
414
415
416
417
418
419
    def test_pad_with_mode_F_images(self):
        pad = 2
        transform = transforms.Pad(pad)

        img = Image.new("F", (10, 10))
        padded_img = transform(img)
        self.assertSequenceEqual(padded_img.size, [edge_size + 2 * pad for edge_size in img.size])

Soumith Chintala's avatar
Soumith Chintala committed
420
421
422
423
    def test_lambda(self):
        trans = transforms.Lambda(lambda x: x.add(10))
        x = torch.randn(10)
        y = trans(x)
424
        self.assertTrue(y.equal(torch.add(x, 10)))
Soumith Chintala's avatar
Soumith Chintala committed
425
426
427
428

        trans = transforms.Lambda(lambda x: x.add_(10))
        x = torch.randn(10)
        y = trans(x)
429
        self.assertTrue(y.equal(x))
430

431
432
433
        # Checking if Lambda can be printed as string
        trans.__repr__()

434
    @unittest.skipIf(stats is None, 'scipy.stats not available')
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
    def test_random_apply(self):
        random_state = random.getstate()
        random.seed(42)
        random_apply_transform = transforms.RandomApply(
            [
                transforms.RandomRotation((-45, 45)),
                transforms.RandomHorizontalFlip(),
                transforms.RandomVerticalFlip(),
            ], p=0.75
        )
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        num_samples = 250
        num_applies = 0
        for _ in range(num_samples):
            out = random_apply_transform(img)
            if out != img:
                num_applies += 1

        p_value = stats.binom_test(num_applies, num_samples, p=0.75)
        random.setstate(random_state)
455
        self.assertGreater(p_value, 0.0001)
456
457
458
459

        # Checking if RandomApply can be printed as string
        random_apply_transform.__repr__()

460
    @unittest.skipIf(stats is None, 'scipy.stats not available')
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
    def test_random_choice(self):
        random_state = random.getstate()
        random.seed(42)
        random_choice_transform = transforms.RandomChoice(
            [
                transforms.Resize(15),
                transforms.Resize(20),
                transforms.CenterCrop(10)
            ]
        )
        img = transforms.ToPILImage()(torch.rand(3, 25, 25))
        num_samples = 250
        num_resize_15 = 0
        num_resize_20 = 0
        num_crop_10 = 0
        for _ in range(num_samples):
            out = random_choice_transform(img)
            if out.size == (15, 15):
                num_resize_15 += 1
            elif out.size == (20, 20):
                num_resize_20 += 1
            elif out.size == (10, 10):
                num_crop_10 += 1

        p_value = stats.binom_test(num_resize_15, num_samples, p=0.33333)
486
        self.assertGreater(p_value, 0.0001)
487
        p_value = stats.binom_test(num_resize_20, num_samples, p=0.33333)
488
        self.assertGreater(p_value, 0.0001)
489
        p_value = stats.binom_test(num_crop_10, num_samples, p=0.33333)
490
        self.assertGreater(p_value, 0.0001)
491
492
493
494
495

        random.setstate(random_state)
        # Checking if RandomChoice can be printed as string
        random_choice_transform.__repr__()

496
    @unittest.skipIf(stats is None, 'scipy.stats not available')
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
    def test_random_order(self):
        random_state = random.getstate()
        random.seed(42)
        random_order_transform = transforms.RandomOrder(
            [
                transforms.Resize(20),
                transforms.CenterCrop(10)
            ]
        )
        img = transforms.ToPILImage()(torch.rand(3, 25, 25))
        num_samples = 250
        num_normal_order = 0
        resize_crop_out = transforms.CenterCrop(10)(transforms.Resize(20)(img))
        for _ in range(num_samples):
            out = random_order_transform(img)
            if out == resize_crop_out:
                num_normal_order += 1

        p_value = stats.binom_test(num_normal_order, num_samples, p=0.5)
        random.setstate(random_state)
517
        self.assertGreater(p_value, 0.0001)
518
519
520
521

        # Checking if RandomOrder can be printed as string
        random_order_transform.__repr__()

522
    def test_to_tensor(self):
523
        test_channels = [1, 3, 4]
524
525
        height, width = 4, 4
        trans = transforms.ToTensor()
526

527
528
529
530
531
532
533
        with self.assertRaises(TypeError):
            trans(np.random.rand(1, height, width).tolist())

        with self.assertRaises(ValueError):
            trans(np.random.rand(height))
            trans(np.random.rand(1, 1, height, width))

534
535
536
537
        for channels in test_channels:
            input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
538
            self.assertTrue(np.allclose(input_data.numpy(), output.numpy()))
539

540
            ndarray = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
541
542
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1)) / 255.0
543
            self.assertTrue(np.allclose(output.numpy(), expected_output))
544

545
546
547
            ndarray = np.random.rand(height, width, channels).astype(np.float32)
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1))
548
            self.assertTrue(np.allclose(output.numpy(), expected_output))
549

550
551
552
553
        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
        img = transforms.ToPILImage()(input_data.mul(255)).convert('1')
        output = trans(img)
554
        self.assertTrue(np.allclose(input_data.numpy(), output.numpy()))
555

556
557
558
559
    def test_max_value(self):
        for dtype in int_dtypes():
            self.assertEqual(F_t._max_value(dtype), torch.iinfo(dtype).max)

560
561
562
563
        # remove float testing as it can lead to errors such as
        # runtime error: 5.7896e+76 is outside the range of representable values of type 'float'
        # for dtype in float_dtypes():
        #     self.assertGreater(F_t._max_value(dtype), torch.finfo(dtype).max)
564

565
566
567
568
569
570
    def test_convert_image_dtype_float_to_float(self):
        for input_dtype, output_dtypes in cycle_over(float_dtypes()):
            input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
            for output_dtype in output_dtypes:
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
571
572
                    transform_script = torch.jit.script(F.convert_image_dtype)

573
                    output_image = transform(input_image)
574
575
576
577
                    output_image_script = transform_script(input_image, output_dtype)

                    script_diff = output_image_script - output_image
                    self.assertLess(script_diff.abs().max(), 1e-6)
578
579
580
581
582
583
584
585
586
587
588
589
590

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0.0, 1.0

                    self.assertAlmostEqual(actual_min, desired_min)
                    self.assertAlmostEqual(actual_max, desired_max)

    def test_convert_image_dtype_float_to_int(self):
        for input_dtype in float_dtypes():
            input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
            for output_dtype in int_dtypes():
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
591
                    transform_script = torch.jit.script(F.convert_image_dtype)
592
593
594
595
596
597
598
599

                    if (input_dtype == torch.float32 and output_dtype in (torch.int32, torch.int64)) or (
                            input_dtype == torch.float64 and output_dtype == torch.int64
                    ):
                        with self.assertRaises(RuntimeError):
                            transform(input_image)
                    else:
                        output_image = transform(input_image)
600
601
602
603
                        output_image_script = transform_script(input_image, output_dtype)

                        script_diff = output_image_script - output_image
                        self.assertLess(script_diff.abs().max(), 1e-6)
604
605
606
607
608
609
610
611
612
613
614
615
616

                        actual_min, actual_max = output_image.tolist()
                        desired_min, desired_max = 0, torch.iinfo(output_dtype).max

                        self.assertEqual(actual_min, desired_min)
                        self.assertEqual(actual_max, desired_max)

    def test_convert_image_dtype_int_to_float(self):
        for input_dtype in int_dtypes():
            input_image = torch.tensor((0, torch.iinfo(input_dtype).max), dtype=input_dtype)
            for output_dtype in float_dtypes():
                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
617
618
                    transform_script = torch.jit.script(F.convert_image_dtype)

619
                    output_image = transform(input_image)
620
621
622
623
                    output_image_script = transform_script(input_image, output_dtype)

                    script_diff = output_image_script - output_image
                    self.assertLess(script_diff.abs().max(), 1e-6)
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0.0, 1.0

                    self.assertAlmostEqual(actual_min, desired_min)
                    self.assertGreaterEqual(actual_min, desired_min)
                    self.assertAlmostEqual(actual_max, desired_max)
                    self.assertLessEqual(actual_max, desired_max)

    def test_convert_image_dtype_int_to_int(self):
        for input_dtype, output_dtypes in cycle_over(int_dtypes()):
            input_max = torch.iinfo(input_dtype).max
            input_image = torch.tensor((0, input_max), dtype=input_dtype)
            for output_dtype in output_dtypes:
                output_max = torch.iinfo(output_dtype).max

                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
642
643
                    transform_script = torch.jit.script(F.convert_image_dtype)

644
                    output_image = transform(input_image)
645
646
647
648
649
650
                    output_image_script = transform_script(input_image, output_dtype)

                    script_diff = output_image_script.float() - output_image.float()
                    self.assertLess(
                        script_diff.abs().max(), 1e-6, msg="{} vs {}".format(output_image_script, output_image)
                    )
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0, output_max

                    # see https://github.com/pytorch/vision/pull/2078#issuecomment-641036236 for details
                    if input_max >= output_max:
                        error_term = 0
                    else:
                        error_term = 1 - (torch.iinfo(output_dtype).max + 1) // (torch.iinfo(input_dtype).max + 1)

                    self.assertEqual(actual_min, desired_min)
                    self.assertEqual(actual_max, desired_max + error_term)

    def test_convert_image_dtype_int_to_int_consistency(self):
        for input_dtype, output_dtypes in cycle_over(int_dtypes()):
            input_max = torch.iinfo(input_dtype).max
            input_image = torch.tensor((0, input_max), dtype=input_dtype)
            for output_dtype in output_dtypes:
                output_max = torch.iinfo(output_dtype).max
                if output_max <= input_max:
                    continue

                with self.subTest(input_dtype=input_dtype, output_dtype=output_dtype):
                    transform = transforms.ConvertImageDtype(output_dtype)
                    inverse_transfrom = transforms.ConvertImageDtype(input_dtype)
                    output_image = inverse_transfrom(transform(input_image))

                    actual_min, actual_max = output_image.tolist()
                    desired_min, desired_max = 0, input_max

                    self.assertEqual(actual_min, desired_min)
                    self.assertEqual(actual_max, desired_max)

684
685
686
687
688
689
690
691
    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_to_tensor(self):
        trans = transforms.ToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
        self.assertTrue(np.allclose(output.numpy(), expected_output.numpy()))

    def test_pil_to_tensor(self):
        test_channels = [1, 3, 4]
        height, width = 4, 4
        trans = transforms.PILToTensor()

        with self.assertRaises(TypeError):
            trans(np.random.rand(1, height, width).tolist())
            trans(np.random.rand(1, height, width))

        for channels in test_channels:
            input_data = torch.ByteTensor(channels, height, width).random_(0, 255)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
            self.assertTrue(np.allclose(input_data.numpy(), output.numpy()))

            input_data = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
            expected_output = input_data.transpose((2, 0, 1))
            self.assertTrue(np.allclose(output.numpy(), expected_output))

            input_data = torch.as_tensor(np.random.rand(channels, height, width).astype(np.float32))
            img = transforms.ToPILImage()(input_data)  # CHW -> HWC and (* 255).byte()
            output = trans(img)  # HWC -> CHW
            expected_output = (input_data * 255).byte()
            self.assertTrue(np.allclose(output.numpy(), expected_output.numpy()))

        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
        img = transforms.ToPILImage()(input_data.mul(255)).convert('1')
        output = trans(img)
        self.assertTrue(np.allclose(input_data.numpy(), output.numpy()))

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_pil_to_tensor(self):
        trans = transforms.PILToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
735
        self.assertTrue(np.allclose(output.numpy(), expected_output.numpy()))
736
737
738
739

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_resize(self):
        trans = transforms.Compose([
740
            transforms.Resize(256, interpolation=Image.LINEAR),
741
742
743
            transforms.ToTensor(),
        ])

744
745
746
        # Checking if Compose, Resize and ToTensor can be printed as string
        trans.__repr__()

747
748
749
750
751
752
753
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        self.assertLess(np.abs((expected_output - output).mean()), 1e-3)
        self.assertLess((expected_output - output).var(), 1e-5)
        # note the high absolute tolerance
754
        self.assertTrue(np.allclose(output.numpy(), expected_output.numpy(), atol=5e-2))
755
756
757
758
759
760
761
762

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_crop(self):
        trans = transforms.Compose([
            transforms.CenterCrop(256),
            transforms.ToTensor(),
        ])

763
764
765
        # Checking if Compose, CenterCrop and ToTensor can be printed as string
        trans.__repr__()

766
767
768
769
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
770
        self.assertTrue(np.allclose(output.numpy(), expected_output.numpy()))
771

772
    def test_1_channel_tensor_to_pil_image(self):
773
774
        to_tensor = transforms.ToTensor()

775
        img_data_float = torch.Tensor(1, 4, 4).uniform_()
776
777
778
779
        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        img_data_int = torch.IntTensor(1, 4, 4).random_()

780
781
782
783
784
785
786
787
788
789
        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
790
791
                self.assertEqual(img.mode, mode)
                self.assertTrue(np.allclose(expected_output, to_tensor(img).numpy()))
792
793
        # 'F' mode for torch.FloatTensor
        img_F_mode = transforms.ToPILImage(mode='F')(img_data_float)
794
795
796
        self.assertEqual(img_F_mode.mode, 'F')
        self.assertTrue(np.allclose(np.array(Image.fromarray(img_data_float.squeeze(0).numpy(), mode='F')),
                                    np.array(img_F_mode)))
797
798
799
800
801
802
803
804
805
806
807
808

    def test_1_channel_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4, 1).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4, 1).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4, 1).random_().numpy()
        img_data_int = torch.IntTensor(4, 4, 1).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
809
810
                self.assertEqual(img.mode, mode)
                self.assertTrue(np.allclose(img_data[:, :, 0], img))
811

surgan12's avatar
surgan12 committed
812
813
814
815
    def test_2_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
816
                self.assertEqual(img.mode, 'LA')  # default should assume LA
surgan12's avatar
surgan12 committed
817
818
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
819
                self.assertEqual(img.mode, mode)
surgan12's avatar
surgan12 committed
820
821
            split = img.split()
            for i in range(2):
822
                self.assertTrue(np.allclose(img_data[:, :, i], split[i]))
surgan12's avatar
surgan12 committed
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839

        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
        for mode in [None, 'LA']:
            verify_img_data(img_data, mode)

        transforms.ToPILImage().__repr__()

        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 or 3 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
            transforms.ToPILImage(mode='RGB')(img_data)

    def test_2_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
840
                self.assertEqual(img.mode, 'LA')  # default should assume LA
surgan12's avatar
surgan12 committed
841
842
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
843
                self.assertEqual(img.mode, mode)
surgan12's avatar
surgan12 committed
844
845
            split = img.split()
            for i in range(2):
846
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
surgan12's avatar
surgan12 committed
847
848
849
850
851
852
853
854
855
856
857
858

        img_data = torch.Tensor(2, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'LA']:
            verify_img_data(img_data, expected_output, mode=mode)

        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 or 3 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
            transforms.ToPILImage(mode='RGB')(img_data)

859
860
861
862
    def test_3_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
863
                self.assertEqual(img.mode, 'RGB')  # default should assume RGB
864
865
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
866
                self.assertEqual(img.mode, mode)
867
868
            split = img.split()
            for i in range(3):
869
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
870

871
872
873
874
        img_data = torch.Tensor(3, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, expected_output, mode=mode)
875

876
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
877
            # should raise if we try a mode for 4 or 1 or 2 channel images
878
879
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
880
            transforms.ToPILImage(mode='LA')(img_data)
881

Varun Agrawal's avatar
Varun Agrawal committed
882
883
884
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(torch.Tensor(1, 3, 4, 4).uniform_())

885
886
887
888
    def test_3_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
889
                self.assertEqual(img.mode, 'RGB')  # default should assume RGB
890
891
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
892
                self.assertEqual(img.mode, mode)
893
894
            split = img.split()
            for i in range(3):
895
                self.assertTrue(np.allclose(img_data[:, :, i], split[i]))
896

897
898
899
900
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, mode)

901
902
903
        # Checking if ToPILImage can be printed as string
        transforms.ToPILImage().__repr__()

904
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
905
            # should raise if we try a mode for 4 or 1 or 2 channel images
906
907
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
908
            transforms.ToPILImage(mode='LA')(img_data)
909
910
911
912
913

    def test_4_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
914
                self.assertEqual(img.mode, 'RGBA')  # default should assume RGBA
915
916
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
917
                self.assertEqual(img.mode, mode)
918
919
920

            split = img.split()
            for i in range(4):
921
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
922

923
        img_data = torch.Tensor(4, 4, 4).uniform_()
924
        expected_output = img_data.mul(255).int().float().div(255)
surgan12's avatar
surgan12 committed
925
        for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
926
            verify_img_data(img_data, expected_output, mode)
927

928
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
929
            # should raise if we try a mode for 3 or 1 or 2 channel images
930
931
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
932
            transforms.ToPILImage(mode='LA')(img_data)
933
934
935
936
937

    def test_4_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
938
                self.assertEqual(img.mode, 'RGBA')  # default should assume RGBA
939
940
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
941
                self.assertEqual(img.mode, mode)
942
943
            split = img.split()
            for i in range(4):
944
                self.assertTrue(np.allclose(img_data[:, :, i], split[i]))
945

946
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()
surgan12's avatar
surgan12 committed
947
        for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
948
            verify_img_data(img_data, mode)
949

950
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
951
            # should raise if we try a mode for 3 or 1 or 2 channel images
952
953
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
954
            transforms.ToPILImage(mode='LA')(img_data)
955

Varun Agrawal's avatar
Varun Agrawal committed
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
    def test_2d_tensor_to_pil_image(self):
        to_tensor = transforms.ToTensor()

        img_data_float = torch.Tensor(4, 4).uniform_()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(4, 4).random_()
        img_data_int = torch.IntTensor(4, 4).random_()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
974
975
                self.assertEqual(img.mode, mode)
                self.assertTrue(np.allclose(expected_output, to_tensor(img).numpy()))
Varun Agrawal's avatar
Varun Agrawal committed
976
977
978
979
980
981
982
983
984
985
986
987

    def test_2d_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4).random_().numpy()
        img_data_int = torch.IntTensor(4, 4).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
988
989
                self.assertEqual(img.mode, mode)
                self.assertTrue(np.allclose(img_data, img))
Varun Agrawal's avatar
Varun Agrawal committed
990
991

    def test_tensor_bad_types_to_pil_image(self):
992
        with self.assertRaisesRegex(ValueError, r'pic should be 2/3 dimensional. Got \d+ dimensions.'):
Varun Agrawal's avatar
Varun Agrawal committed
993
            transforms.ToPILImage()(torch.ones(1, 3, 4, 4))
994
995
        with self.assertRaisesRegex(ValueError, r'pic should not have > 4 channels. Got \d+ channels.'):
            transforms.ToPILImage()(torch.ones(6, 4, 4))
Varun Agrawal's avatar
Varun Agrawal committed
996

997
    def test_ndarray_bad_types_to_pil_image(self):
998
        trans = transforms.ToPILImage()
999
1000
        reg_msg = r'Input type \w+ is not supported'
        with self.assertRaisesRegex(TypeError, reg_msg):
1001
            trans(np.ones([4, 4, 1], np.int64))
1002
        with self.assertRaisesRegex(TypeError, reg_msg):
1003
            trans(np.ones([4, 4, 1], np.uint16))
1004
        with self.assertRaisesRegex(TypeError, reg_msg):
1005
            trans(np.ones([4, 4, 1], np.uint32))
1006
        with self.assertRaisesRegex(TypeError, reg_msg):
1007
1008
            trans(np.ones([4, 4, 1], np.float64))

1009
        with self.assertRaisesRegex(ValueError, r'pic should be 2/3 dimensional. Got \d+ dimensions.'):
Varun Agrawal's avatar
Varun Agrawal committed
1010
            transforms.ToPILImage()(np.ones([1, 4, 4, 3]))
1011
1012
        with self.assertRaisesRegex(ValueError, r'pic should not have > 4 channels. Got \d+ channels.'):
            transforms.ToPILImage()(np.ones([4, 4, 6]))
Varun Agrawal's avatar
Varun Agrawal committed
1013

1014
1015
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_vertical_flip(self):
1016
1017
        random_state = random.getstate()
        random.seed(42)
1018
1019
1020
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        vimg = img.transpose(Image.FLIP_TOP_BOTTOM)

1021
        num_samples = 250
1022
        num_vertical = 0
1023
        for _ in range(num_samples):
1024
1025
1026
1027
            out = transforms.RandomVerticalFlip()(img)
            if out == vimg:
                num_vertical += 1

1028
1029
        p_value = stats.binom_test(num_vertical, num_samples, p=0.5)
        random.setstate(random_state)
1030
        self.assertGreater(p_value, 0.0001)
1031

1032
1033
1034
1035
1036
1037
1038
1039
1040
        num_samples = 250
        num_vertical = 0
        for _ in range(num_samples):
            out = transforms.RandomVerticalFlip(p=0.7)(img)
            if out == vimg:
                num_vertical += 1

        p_value = stats.binom_test(num_vertical, num_samples, p=0.7)
        random.setstate(random_state)
1041
        self.assertGreater(p_value, 0.0001)
1042

1043
1044
1045
        # Checking if RandomVerticalFlip can be printed as string
        transforms.RandomVerticalFlip().__repr__()

1046
1047
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_horizontal_flip(self):
1048
1049
        random_state = random.getstate()
        random.seed(42)
1050
1051
1052
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        himg = img.transpose(Image.FLIP_LEFT_RIGHT)

1053
        num_samples = 250
1054
        num_horizontal = 0
1055
        for _ in range(num_samples):
1056
1057
1058
1059
            out = transforms.RandomHorizontalFlip()(img)
            if out == himg:
                num_horizontal += 1

1060
1061
        p_value = stats.binom_test(num_horizontal, num_samples, p=0.5)
        random.setstate(random_state)
1062
        self.assertGreater(p_value, 0.0001)
1063

1064
1065
1066
1067
1068
1069
1070
1071
1072
        num_samples = 250
        num_horizontal = 0
        for _ in range(num_samples):
            out = transforms.RandomHorizontalFlip(p=0.7)(img)
            if out == himg:
                num_horizontal += 1

        p_value = stats.binom_test(num_horizontal, num_samples, p=0.7)
        random.setstate(random_state)
1073
        self.assertGreater(p_value, 0.0001)
1074

1075
1076
1077
        # Checking if RandomHorizontalFlip can be printed as string
        transforms.RandomHorizontalFlip().__repr__()

1078
    @unittest.skipIf(stats is None, 'scipy.stats is not available')
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
    def test_normalize(self):
        def samples_from_standard_normal(tensor):
            p_value = stats.kstest(list(tensor.view(-1)), 'norm', args=(0, 1)).pvalue
            return p_value > 0.0001

        random_state = random.getstate()
        random.seed(42)
        for channels in [1, 3]:
            img = torch.rand(channels, 10, 10)
            mean = [img[c].mean() for c in range(channels)]
            std = [img[c].std() for c in range(channels)]
            normalized = transforms.Normalize(mean, std)(img)
1091
            self.assertTrue(samples_from_standard_normal(normalized))
1092
1093
        random.setstate(random_state)

1094
1095
1096
        # Checking if Normalize can be printed as string
        transforms.Normalize(mean, std).__repr__()

1097
1098
1099
        # Checking the optional in-place behaviour
        tensor = torch.rand((1, 16, 16))
        tensor_inplace = transforms.Normalize((0.5,), (0.5,), inplace=True)(tensor)
1100
        self.assertTrue(torch.equal(tensor, tensor_inplace))
1101

1102
1103
1104
1105
1106
1107
1108
1109
1110
    def test_normalize_different_dtype(self):
        for dtype1 in [torch.float32, torch.float64]:
            img = torch.rand(3, 10, 10, dtype=dtype1)
            for dtype2 in [torch.int64, torch.float32, torch.float64]:
                mean = torch.tensor([1, 2, 3], dtype=dtype2)
                std = torch.tensor([1, 2, 1], dtype=dtype2)
                # checks that it doesn't crash
                transforms.functional.normalize(img, mean, std)

1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
    def test_normalize_3d_tensor(self):
        torch.manual_seed(28)
        n_channels = 3
        img_size = 10
        mean = torch.rand(n_channels)
        std = torch.rand(n_channels)
        img = torch.rand(n_channels, img_size, img_size)
        target = F.normalize(img, mean, std).numpy()

        mean_unsqueezed = mean.view(-1, 1, 1)
        std_unsqueezed = std.view(-1, 1, 1)
        result1 = F.normalize(img, mean_unsqueezed, std_unsqueezed)
        result2 = F.normalize(img,
                              mean_unsqueezed.repeat(1, img_size, img_size),
                              std_unsqueezed.repeat(1, img_size, img_size))
        assert_array_almost_equal(target, result1.numpy())
        assert_array_almost_equal(target, result2.numpy())

1129
1130
1131
1132
1133
1134
1135
    def test_adjust_brightness(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
1136
        y_pil = F.adjust_brightness(x_pil, 1)
1137
        y_np = np.array(y_pil)
1138
        self.assertTrue(np.allclose(y_np, x_np))
1139
1140

        # test 1
1141
        y_pil = F.adjust_brightness(x_pil, 0.5)
1142
1143
1144
        y_np = np.array(y_pil)
        y_ans = [0, 2, 6, 27, 67, 113, 18, 4, 117, 45, 127, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1145
        self.assertTrue(np.allclose(y_np, y_ans))
1146
1147

        # test 2
1148
        y_pil = F.adjust_brightness(x_pil, 2)
1149
1150
1151
        y_np = np.array(y_pil)
        y_ans = [0, 10, 26, 108, 255, 255, 74, 16, 255, 180, 255, 2]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1152
        self.assertTrue(np.allclose(y_np, y_ans))
1153
1154
1155
1156
1157
1158
1159
1160

    def test_adjust_contrast(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
1161
        y_pil = F.adjust_contrast(x_pil, 1)
1162
        y_np = np.array(y_pil)
1163
        self.assertTrue(np.allclose(y_np, x_np))
1164
1165

        # test 1
1166
        y_pil = F.adjust_contrast(x_pil, 0.5)
1167
1168
1169
        y_np = np.array(y_pil)
        y_ans = [43, 45, 49, 70, 110, 156, 61, 47, 160, 88, 170, 43]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1170
        self.assertTrue(np.allclose(y_np, y_ans))
1171
1172

        # test 2
1173
        y_pil = F.adjust_contrast(x_pil, 2)
1174
1175
1176
        y_np = np.array(y_pil)
        y_ans = [0, 0, 0, 22, 184, 255, 0, 0, 255, 94, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1177
        self.assertTrue(np.allclose(y_np, y_ans))
1178

Francisco Massa's avatar
Francisco Massa committed
1179
    @unittest.skipIf(Image.__version__ >= '7', "Temporarily disabled")
1180
1181
1182
1183
1184
1185
1186
    def test_adjust_saturation(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
1187
        y_pil = F.adjust_saturation(x_pil, 1)
1188
        y_np = np.array(y_pil)
1189
        self.assertTrue(np.allclose(y_np, x_np))
1190
1191

        # test 1
1192
        y_pil = F.adjust_saturation(x_pil, 0.5)
1193
1194
1195
        y_np = np.array(y_pil)
        y_ans = [2, 4, 8, 87, 128, 173, 39, 25, 138, 133, 215, 88]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1196
        self.assertTrue(np.allclose(y_np, y_ans))
1197
1198

        # test 2
1199
        y_pil = F.adjust_saturation(x_pil, 2)
1200
1201
1202
        y_np = np.array(y_pil)
        y_ans = [0, 6, 22, 0, 149, 255, 32, 0, 255, 4, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1203
        self.assertTrue(np.allclose(y_np, y_ans))
1204
1205
1206
1207
1208
1209
1210
1211

    def test_adjust_hue(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        with self.assertRaises(ValueError):
1212
1213
            F.adjust_hue(x_pil, -0.7)
            F.adjust_hue(x_pil, 1)
1214
1215
1216

        # test 0: almost same as x_data but not exact.
        # probably because hsv <-> rgb floating point ops
1217
        y_pil = F.adjust_hue(x_pil, 0)
1218
1219
1220
        y_np = np.array(y_pil)
        y_ans = [0, 5, 13, 54, 139, 226, 35, 8, 234, 91, 255, 1]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1221
        self.assertTrue(np.allclose(y_np, y_ans))
1222
1223

        # test 1
1224
        y_pil = F.adjust_hue(x_pil, 0.25)
1225
1226
1227
        y_np = np.array(y_pil)
        y_ans = [13, 0, 12, 224, 54, 226, 234, 8, 99, 1, 222, 255]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1228
        self.assertTrue(np.allclose(y_np, y_ans))
1229
1230

        # test 2
1231
        y_pil = F.adjust_hue(x_pil, -0.25)
1232
1233
1234
        y_np = np.array(y_pil)
        y_ans = [0, 13, 2, 54, 226, 58, 8, 234, 152, 255, 43, 1]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1235
        self.assertTrue(np.allclose(y_np, y_ans))
1236

1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
    def test_adjust_sharpness(self):
        x_shape = [4, 4, 3]
        x_data = [75, 121, 114, 105, 97, 107, 105, 32, 66, 111, 117, 114, 99, 104, 97, 0,
                  0, 65, 108, 101, 120, 97, 110, 100, 101, 114, 32, 86, 114, 121, 110, 105,
                  111, 116, 105, 115, 0, 0, 73, 32, 108, 111, 118, 101, 32, 121, 111, 117]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
        y_pil = F.adjust_sharpness(x_pil, 1)
        y_np = np.array(y_pil)
        self.assertTrue(np.allclose(y_np, x_np))

        # test 1
        y_pil = F.adjust_sharpness(x_pil, 0.5)
        y_np = np.array(y_pil)
        y_ans = [75, 121, 114, 105, 97, 107, 105, 32, 66, 111, 117, 114, 99, 104, 97, 30,
                 30, 74, 103, 96, 114, 97, 110, 100, 101, 114, 32, 81, 103, 108, 102, 101,
                 107, 116, 105, 115, 0, 0, 73, 32, 108, 111, 118, 101, 32, 121, 111, 117]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        self.assertTrue(np.allclose(y_np, y_ans))

        # test 2
        y_pil = F.adjust_sharpness(x_pil, 2)
        y_np = np.array(y_pil)
        y_ans = [75, 121, 114, 105, 97, 107, 105, 32, 66, 111, 117, 114, 99, 104, 97, 0,
                 0, 46, 118, 111, 132, 97, 110, 100, 101, 114, 32, 95, 135, 146, 126, 112,
                 119, 116, 105, 115, 0, 0, 73, 32, 108, 111, 118, 101, 32, 121, 111, 117]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        self.assertTrue(np.allclose(y_np, y_ans))

        # test 3
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_th = torch.tensor(x_np.transpose(2, 0, 1))
        y_pil = F.adjust_sharpness(x_pil, 2)
        y_np = np.array(y_pil).transpose(2, 0, 1)
        y_th = F.adjust_sharpness(x_th, 2)
        self.assertTrue(np.allclose(y_np, y_th.numpy()))

1279
1280
1281
1282
1283
1284
1285
    def test_adjust_gamma(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
1286
        y_pil = F.adjust_gamma(x_pil, 1)
1287
        y_np = np.array(y_pil)
1288
        self.assertTrue(np.allclose(y_np, x_np))
1289
1290

        # test 1
1291
        y_pil = F.adjust_gamma(x_pil, 0.5)
1292
        y_np = np.array(y_pil)
1293
        y_ans = [0, 35, 57, 117, 186, 241, 97, 45, 245, 152, 255, 16]
1294
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1295
        self.assertTrue(np.allclose(y_np, y_ans))
1296
1297

        # test 2
1298
        y_pil = F.adjust_gamma(x_pil, 2)
1299
        y_np = np.array(y_pil)
1300
        y_ans = [0, 0, 0, 11, 71, 201, 5, 0, 215, 31, 255, 0]
1301
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1302
        self.assertTrue(np.allclose(y_np, y_ans))
1303
1304
1305
1306
1307
1308
1309
1310

    def test_adjusts_L_mode(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_rgb = Image.fromarray(x_np, mode='RGB')

        x_l = x_rgb.convert('L')
1311
1312
1313
1314
        self.assertEqual(F.adjust_brightness(x_l, 2).mode, 'L')
        self.assertEqual(F.adjust_saturation(x_l, 2).mode, 'L')
        self.assertEqual(F.adjust_contrast(x_l, 2).mode, 'L')
        self.assertEqual(F.adjust_hue(x_l, 0.4).mode, 'L')
1315
        self.assertEqual(F.adjust_sharpness(x_l, 2).mode, 'L')
1316
        self.assertEqual(F.adjust_gamma(x_l, 0.5).mode, 'L')
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328

    def test_color_jitter(self):
        color_jitter = transforms.ColorJitter(2, 2, 2, 0.1)

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')

        for i in range(10):
            y_pil = color_jitter(x_pil)
1329
            self.assertEqual(y_pil.mode, x_pil.mode)
1330
1331

            y_pil_2 = color_jitter(x_pil_2)
1332
            self.assertEqual(y_pil_2.mode, x_pil_2.mode)
1333

1334
1335
1336
        # Checking if ColorJitter can be printed as string
        color_jitter.__repr__()

1337
    def test_linear_transformation(self):
ekka's avatar
ekka committed
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
        num_samples = 1000
        x = torch.randn(num_samples, 3, 10, 10)
        flat_x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
        # compute principal components
        sigma = torch.mm(flat_x.t(), flat_x) / flat_x.size(0)
        u, s, _ = np.linalg.svd(sigma.numpy())
        zca_epsilon = 1e-10  # avoid division by 0
        d = torch.Tensor(np.diag(1. / np.sqrt(s + zca_epsilon)))
        u = torch.Tensor(u)
        principal_components = torch.mm(torch.mm(u, d), u.t())
        mean_vector = (torch.sum(flat_x, dim=0) / flat_x.size(0))
        # initialize whitening matrix
1350
        whitening = transforms.LinearTransformation(principal_components, mean_vector)
ekka's avatar
ekka committed
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
        # estimate covariance and mean using weak law of large number
        num_features = flat_x.size(1)
        cov = 0.0
        mean = 0.0
        for i in x:
            xwhite = whitening(i)
            xwhite = xwhite.view(1, -1).numpy()
            cov += np.dot(xwhite, xwhite.T) / num_features
            mean += np.sum(xwhite) / num_features
        # if rtol for std = 1e-3 then rtol for cov = 2e-3 as std**2 = cov
1361
1362
1363
1364
        self.assertTrue(np.allclose(cov / num_samples, np.identity(1), rtol=2e-3),
                        "cov not close to 1")
        self.assertTrue(np.allclose(mean / num_samples, 0, rtol=1e-3),
                        "mean not close to 0")
ekka's avatar
ekka committed
1365

1366
        # Checking if LinearTransformation can be printed as string
ekka's avatar
ekka committed
1367
1368
        whitening.__repr__()

1369
1370
1371
1372
    def test_rotate(self):
        x = np.zeros((100, 100, 3), dtype=np.uint8)
        x[40, 40] = [255, 255, 255]

vfdev's avatar
vfdev committed
1373
        with self.assertRaisesRegex(TypeError, r"img should be PIL Image"):
1374
1375
1376
1377
1378
            F.rotate(x, 10)

        img = F.to_pil_image(x)

        result = F.rotate(img, 45)
1379
        self.assertEqual(result.size, (100, 100))
1380
        r, c, ch = np.where(result)
1381
1382
1383
        self.assertTrue(all(x in r for x in [49, 50]))
        self.assertTrue(all(x in c for x in [36]))
        self.assertTrue(all(x in ch for x in [0, 1, 2]))
1384
1385

        result = F.rotate(img, 45, expand=True)
1386
        self.assertEqual(result.size, (142, 142))
1387
        r, c, ch = np.where(result)
1388
1389
1390
        self.assertTrue(all(x in r for x in [70, 71]))
        self.assertTrue(all(x in c for x in [57]))
        self.assertTrue(all(x in ch for x in [0, 1, 2]))
1391
1392

        result = F.rotate(img, 45, center=(40, 40))
1393
        self.assertEqual(result.size, (100, 100))
1394
        r, c, ch = np.where(result)
1395
1396
1397
        self.assertTrue(all(x in r for x in [40]))
        self.assertTrue(all(x in c for x in [40]))
        self.assertTrue(all(x in ch for x in [0, 1, 2]))
1398
1399
1400
1401

        result_a = F.rotate(img, 90)
        result_b = F.rotate(img, -270)

1402
        self.assertTrue(np.all(np.array(result_a) == np.array(result_b)))
1403

Philip Meier's avatar
Philip Meier committed
1404
1405
1406
    def test_rotate_fill(self):
        img = F.to_pil_image(np.ones((100, 100, 3), dtype=np.uint8) * 255, "RGB")

1407
        modes = ("L", "RGB", "F")
Philip Meier's avatar
Philip Meier committed
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
        nums_bands = [len(mode) for mode in modes]
        fill = 127

        for mode, num_bands in zip(modes, nums_bands):
            img_conv = img.convert(mode)
            img_rot = F.rotate(img_conv, 45.0, fill=fill)
            pixel = img_rot.getpixel((0, 0))

            if not isinstance(pixel, tuple):
                pixel = (pixel,)
            self.assertTupleEqual(pixel, tuple([fill] * num_bands))

            for wrong_num_bands in set(nums_bands) - {num_bands}:
                with self.assertRaises(ValueError):
                    F.rotate(img_conv, 45.0, fill=tuple([fill] * wrong_num_bands))

1424
    def test_affine(self):
Francisco Massa's avatar
Francisco Massa committed
1425
1426
1427
        input_img = np.zeros((40, 40, 3), dtype=np.uint8)
        cnt = [20, 20]
        for pt in [(16, 16), (20, 16), (20, 20)]:
1428
1429
1430
1431
            for i in range(-5, 5):
                for j in range(-5, 5):
                    input_img[pt[0] + i, pt[1] + j, :] = [255, 155, 55]

vfdev's avatar
vfdev committed
1432
1433
        with self.assertRaises(TypeError, msg="Argument translate should be a sequence"):
            F.affine(input_img, 10, translate=0, scale=1, shear=1)
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444

        pil_img = F.to_pil_image(input_img)

        def _to_3x3_inv(inv_result_matrix):
            result_matrix = np.zeros((3, 3))
            result_matrix[:2, :] = np.array(inv_result_matrix).reshape((2, 3))
            result_matrix[2, 2] = 1
            return np.linalg.inv(result_matrix)

        def _test_transformation(a, t, s, sh):
            a_rad = math.radians(a)
ptrblck's avatar
ptrblck committed
1445
            s_rad = [math.radians(sh_) for sh_ in sh]
1446
1447
1448
1449
1450
            cx, cy = cnt
            tx, ty = t
            sx, sy = s_rad
            rot = a_rad

1451
            # 1) Check transformation matrix:
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
            C = np.array([[1, 0, cx],
                          [0, 1, cy],
                          [0, 0, 1]])
            T = np.array([[1, 0, tx],
                          [0, 1, ty],
                          [0, 0, 1]])
            Cinv = np.linalg.inv(C)

            RS = np.array(
                [[s * math.cos(rot), -s * math.sin(rot), 0],
                 [s * math.sin(rot), s * math.cos(rot), 0],
                 [0, 0, 1]])

            SHx = np.array([[1, -math.tan(sx), 0],
                            [0, 1, 0],
                            [0, 0, 1]])

            SHy = np.array([[1, 0, 0],
                            [-math.tan(sy), 1, 0],
                            [0, 0, 1]])

            RSS = np.matmul(RS, np.matmul(SHy, SHx))

            true_matrix = np.matmul(T, np.matmul(C, np.matmul(RSS, Cinv)))

1477
1478
            result_matrix = _to_3x3_inv(F._get_inverse_affine_matrix(center=cnt, angle=a,
                                                                     translate=t, scale=s, shear=sh))
1479
            self.assertLess(np.sum(np.abs(true_matrix - result_matrix)), 1e-10)
1480
            # 2) Perform inverse mapping:
Francisco Massa's avatar
Francisco Massa committed
1481
            true_result = np.zeros((40, 40, 3), dtype=np.uint8)
1482
1483
1484
            inv_true_matrix = np.linalg.inv(true_matrix)
            for y in range(true_result.shape[0]):
                for x in range(true_result.shape[1]):
1485
1486
1487
1488
1489
1490
                    # Same as for PIL:
                    # https://github.com/python-pillow/Pillow/blob/71f8ec6a0cfc1008076a023c0756542539d057ab/
                    # src/libImaging/Geometry.c#L1060
                    input_pt = np.array([x + 0.5, y + 0.5, 1.0])
                    res = np.floor(np.dot(inv_true_matrix, input_pt)).astype(np.int)
                    _x, _y = res[:2]
1491
1492
1493
1494
                    if 0 <= _x < input_img.shape[1] and 0 <= _y < input_img.shape[0]:
                        true_result[y, x, :] = input_img[_y, _x, :]

            result = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh)
1495
            self.assertEqual(result.size, pil_img.size)
1496
1497
1498
1499
            # Compute number of different pixels:
            np_result = np.array(result)
            n_diff_pixels = np.sum(np_result != true_result) / 3
            # Accept 3 wrong pixels
1500
1501
1502
            self.assertLess(n_diff_pixels, 3,
                            "a={}, t={}, s={}, sh={}\n".format(a, t, s, sh) +
                            "n diff pixels={}\n".format(np.sum(np.array(result)[:, :, 0] != true_result[:, :, 0])))
1503
1504
1505

        # Test rotation
        a = 45
ptrblck's avatar
ptrblck committed
1506
        _test_transformation(a=a, t=(0, 0), s=1.0, sh=(0.0, 0.0))
1507
1508
1509

        # Test translation
        t = [10, 15]
ptrblck's avatar
ptrblck committed
1510
        _test_transformation(a=0.0, t=t, s=1.0, sh=(0.0, 0.0))
1511
1512
1513

        # Test scale
        s = 1.2
ptrblck's avatar
ptrblck committed
1514
        _test_transformation(a=0.0, t=(0.0, 0.0), s=s, sh=(0.0, 0.0))
1515
1516

        # Test shear
ptrblck's avatar
ptrblck committed
1517
        sh = [45.0, 25.0]
1518
1519
1520
1521
1522
        _test_transformation(a=0.0, t=(0.0, 0.0), s=1.0, sh=sh)

        # Test rotation, scale, translation, shear
        for a in range(-90, 90, 25):
            for t1 in range(-10, 10, 5):
1523
                for s in [0.75, 0.98, 1.0, 1.2, 1.4]:
1524
                    for sh in range(-15, 15, 5):
ptrblck's avatar
ptrblck committed
1525
                        _test_transformation(a=a, t=(t1, t1), s=s, sh=(sh, sh))
1526

1527
1528
1529
1530
1531
1532
1533
1534
1535
    def test_random_rotation(self):

        with self.assertRaises(ValueError):
            transforms.RandomRotation(-0.7)
            transforms.RandomRotation([-0.7])
            transforms.RandomRotation([-0.7, 0, 0.7])

        t = transforms.RandomRotation(10)
        angle = t.get_params(t.degrees)
1536
        self.assertTrue(angle > -10 and angle < 10)
1537
1538
1539

        t = transforms.RandomRotation((-10, 10))
        angle = t.get_params(t.degrees)
1540
        self.assertTrue(-10 < angle < 10)
1541

1542
1543
1544
        # Checking if RandomRotation can be printed as string
        t.__repr__()

1545
1546
1547
        # assert deprecation warning and non-BC
        with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"):
            t = transforms.RandomRotation((-10, 10), resample=2)
1548
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
1549
1550

        # assert changed type warning
1551
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
1552
            t = transforms.RandomRotation((-10, 10), interpolation=2)
1553
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
1554

1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
    def test_random_affine(self):

        with self.assertRaises(ValueError):
            transforms.RandomAffine(-0.7)
            transforms.RandomAffine([-0.7])
            transforms.RandomAffine([-0.7, 0, 0.7])

            transforms.RandomAffine([-90, 90], translate=2.0)
            transforms.RandomAffine([-90, 90], translate=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[-1.0, 0.0, 1.0])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, -0.5])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 3.0, -0.5])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=-7)
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10])
ptrblck's avatar
ptrblck committed
1574
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10, 0, 10])
1575
1576
1577
1578

        x = np.zeros((100, 100, 3), dtype=np.uint8)
        img = F.to_pil_image(x)

ptrblck's avatar
ptrblck committed
1579
        t = transforms.RandomAffine(10, translate=[0.5, 0.3], scale=[0.7, 1.3], shear=[-10, 10, 20, 40])
1580
1581
1582
        for _ in range(100):
            angle, translations, scale, shear = t.get_params(t.degrees, t.translate, t.scale, t.shear,
                                                             img_size=img.size)
1583
1584
1585
1586
1587
1588
1589
1590
            self.assertTrue(-10 < angle < 10)
            self.assertTrue(-img.size[0] * 0.5 <= translations[0] <= img.size[0] * 0.5,
                            "{} vs {}".format(translations[0], img.size[0] * 0.5))
            self.assertTrue(-img.size[1] * 0.5 <= translations[1] <= img.size[1] * 0.5,
                            "{} vs {}".format(translations[1], img.size[1] * 0.5))
            self.assertTrue(0.7 < scale < 1.3)
            self.assertTrue(-10 < shear[0] < 10)
            self.assertTrue(-20 < shear[1] < 40)
1591
1592
1593
1594

        # Checking if RandomAffine can be printed as string
        t.__repr__()

1595
        t = transforms.RandomAffine(10, interpolation=transforms.InterpolationMode.BILINEAR)
1596
1597
1598
1599
1600
        self.assertIn("bilinear", t.__repr__())

        # assert deprecation warning and non-BC
        with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"):
            t = transforms.RandomAffine(10, resample=2)
1601
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
1602
1603
1604
1605
1606
1607

        with self.assertWarnsRegex(UserWarning, r"Argument fillcolor is deprecated and will be removed"):
            t = transforms.RandomAffine(10, fillcolor=10)
            self.assertEqual(t.fill, 10)

        # assert changed type warning
1608
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
1609
            t = transforms.RandomAffine(10, interpolation=2)
1610
            self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR)
1611

1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
    def test_to_grayscale(self):
        """Unit tests for grayscale transform"""

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        # Test Set: Grayscale an image with desired number of output channels
        # Case 1: RGB -> 1 channel grayscale
        trans1 = transforms.Grayscale(num_output_channels=1)
        gray_pil_1 = trans1(x_pil)
        gray_np_1 = np.array(gray_pil_1)
1627
1628
        self.assertEqual(gray_pil_1.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_1.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1629
1630
1631
1632
1633
1634
        np.testing.assert_equal(gray_np, gray_np_1)

        # Case 2: RGB -> 3 channel grayscale
        trans2 = transforms.Grayscale(num_output_channels=3)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
1635
1636
        self.assertEqual(gray_pil_2.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_2.shape, tuple(x_shape), 'should be 3 channel')
1637
1638
1639
1640
1641
1642
1643
1644
        np.testing.assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
        np.testing.assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_2[:, :, 0])

        # Case 3: 1 channel grayscale -> 1 channel grayscale
        trans3 = transforms.Grayscale(num_output_channels=1)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
1645
1646
        self.assertEqual(gray_pil_3.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_3.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1647
1648
1649
1650
1651
1652
        np.testing.assert_equal(gray_np, gray_np_3)

        # Case 4: 1 channel grayscale -> 3 channel grayscale
        trans4 = transforms.Grayscale(num_output_channels=3)
        gray_pil_4 = trans4(x_pil_2)
        gray_np_4 = np.array(gray_pil_4)
1653
1654
        self.assertEqual(gray_pil_4.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_4.shape, tuple(x_shape), 'should be 3 channel')
1655
1656
1657
1658
        np.testing.assert_equal(gray_np_4[:, :, 0], gray_np_4[:, :, 1])
        np.testing.assert_equal(gray_np_4[:, :, 1], gray_np_4[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_4[:, :, 0])

1659
1660
1661
        # Checking if Grayscale can be printed as string
        trans4.__repr__()

1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_grayscale(self):
        """Unit tests for random grayscale transform"""

        # Test Set 1: RGB -> 3 channel grayscale
        random_state = random.getstate()
        random.seed(42)
        x_shape = [2, 2, 3]
        x_np = np.random.randint(0, 256, x_shape, np.uint8)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        num_samples = 250
        num_gray = 0
        for _ in range(num_samples):
            gray_pil_2 = transforms.RandomGrayscale(p=0.5)(x_pil)
            gray_np_2 = np.array(gray_pil_2)
            if np.array_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1]) and \
1681
1682
                    np.array_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2]) and \
                    np.array_equal(gray_np, gray_np_2[:, :, 0]):
1683
1684
1685
1686
                num_gray = num_gray + 1

        p_value = stats.binom_test(num_gray, num_samples, p=0.5)
        random.setstate(random_state)
1687
        self.assertGreater(p_value, 0.0001)
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707

        # Test Set 2: grayscale -> 1 channel grayscale
        random_state = random.getstate()
        random.seed(42)
        x_shape = [2, 2, 3]
        x_np = np.random.randint(0, 256, x_shape, np.uint8)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        num_samples = 250
        num_gray = 0
        for _ in range(num_samples):
            gray_pil_3 = transforms.RandomGrayscale(p=0.5)(x_pil_2)
            gray_np_3 = np.array(gray_pil_3)
            if np.array_equal(gray_np, gray_np_3):
                num_gray = num_gray + 1

        p_value = stats.binom_test(num_gray, num_samples, p=1.0)  # Note: grayscale is always unchanged
        random.setstate(random_state)
1708
        self.assertGreater(p_value, 0.0001)
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721

        # Test set 3: Explicit tests
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        # Case 3a: RGB -> 3 channel grayscale (grayscaled)
        trans2 = transforms.RandomGrayscale(p=1.0)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
1722
1723
        self.assertEqual(gray_pil_2.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_2.shape, tuple(x_shape), 'should be 3 channel')
1724
1725
1726
1727
1728
1729
1730
1731
        np.testing.assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
        np.testing.assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_2[:, :, 0])

        # Case 3b: RGB -> 3 channel grayscale (unchanged)
        trans2 = transforms.RandomGrayscale(p=0.0)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
1732
1733
        self.assertEqual(gray_pil_2.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_2.shape, tuple(x_shape), 'should be 3 channel')
1734
1735
1736
1737
1738
1739
        np.testing.assert_equal(x_np, gray_np_2)

        # Case 3c: 1 channel grayscale -> 1 channel grayscale (grayscaled)
        trans3 = transforms.RandomGrayscale(p=1.0)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
1740
1741
        self.assertEqual(gray_pil_3.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_3.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1742
1743
1744
1745
1746
1747
        np.testing.assert_equal(gray_np, gray_np_3)

        # Case 3d: 1 channel grayscale -> 1 channel grayscale (unchanged)
        trans3 = transforms.RandomGrayscale(p=0.0)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
1748
1749
        self.assertEqual(gray_pil_3.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_3.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1750
1751
        np.testing.assert_equal(gray_np, gray_np_3)

1752
1753
1754
        # Checking if RandomGrayscale can be printed as string
        trans3.__repr__()

1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
    def test_gaussian_blur_asserts(self):
        np_img = np.ones((100, 100, 3), dtype=np.uint8) * 255
        img = F.to_pil_image(np_img, "RGB")

        with self.assertRaisesRegex(ValueError, r"If kernel_size is a sequence its length should be 2"):
            F.gaussian_blur(img, [3])

        with self.assertRaisesRegex(ValueError, r"If kernel_size is a sequence its length should be 2"):
            F.gaussian_blur(img, [3, 3, 3])
        with self.assertRaisesRegex(ValueError, r"Kernel size should be a tuple/list of two integers"):
            transforms.GaussianBlur([3, 3, 3])

        with self.assertRaisesRegex(ValueError, r"kernel_size should have odd and positive integers"):
            F.gaussian_blur(img, [4, 4])
        with self.assertRaisesRegex(ValueError, r"Kernel size value should be an odd and positive number"):
            transforms.GaussianBlur([4, 4])

        with self.assertRaisesRegex(ValueError, r"kernel_size should have odd and positive integers"):
            F.gaussian_blur(img, [-3, -3])
        with self.assertRaisesRegex(ValueError, r"Kernel size value should be an odd and positive number"):
            transforms.GaussianBlur([-3, -3])

        with self.assertRaisesRegex(ValueError, r"If sigma is a sequence, its length should be 2"):
            F.gaussian_blur(img, 3, [1, 1, 1])
        with self.assertRaisesRegex(ValueError, r"sigma should be a single number or a list/tuple with length 2"):
            transforms.GaussianBlur(3, [1, 1, 1])

        with self.assertRaisesRegex(ValueError, r"sigma should have positive values"):
            F.gaussian_blur(img, 3, -1.0)
        with self.assertRaisesRegex(ValueError, r"If sigma is a single number, it must be positive"):
            transforms.GaussianBlur(3, -1.0)

        with self.assertRaisesRegex(TypeError, r"kernel_size should be int or a sequence of integers"):
            F.gaussian_blur(img, "kernel_size_string")
        with self.assertRaisesRegex(ValueError, r"Kernel size should be a tuple/list of two integers"):
            transforms.GaussianBlur("kernel_size_string")

        with self.assertRaisesRegex(TypeError, r"sigma should be either float or sequence of floats"):
            F.gaussian_blur(img, 3, "sigma_string")
        with self.assertRaisesRegex(ValueError, r"sigma should be a single number or a list/tuple with length 2"):
            transforms.GaussianBlur(3, "sigma_string")

1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
    def _test_randomness(self, fn, trans, configs):
        random_state = random.getstate()
        random.seed(42)
        img = transforms.ToPILImage()(torch.rand(3, 16, 18))

        for p in [0.5, 0.7]:
            for config in configs:
                inv_img = fn(img, **config)

                num_samples = 250
                counts = 0
                for _ in range(num_samples):
                    tranformation = trans(p=p, **config)
                    tranformation.__repr__()
                    out = tranformation(img)
                    if out == inv_img:
                        counts += 1

                p_value = stats.binom_test(counts, num_samples, p=p)
                random.setstate(random_state)
                self.assertGreater(p_value, 0.0001)

    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_invert(self):
        self._test_randomness(
            F.invert,
            transforms.RandomInvert,
            [{}]
        )

    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_posterize(self):
        self._test_randomness(
            F.posterize,
            transforms.RandomPosterize,
            [{"bits": 4}]
        )

    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_solarize(self):
        self._test_randomness(
            F.solarize,
            transforms.RandomSolarize,
            [{"threshold": 192}]
        )

    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_adjust_sharpness(self):
        self._test_randomness(
            F.adjust_sharpness,
            transforms.RandomAdjustSharpness,
            [{"sharpness_factor": 2.0}]
        )

    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_autocontrast(self):
        self._test_randomness(
            F.autocontrast,
            transforms.RandomAutocontrast,
            [{}]
        )

    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_equalize(self):
        self._test_randomness(
            F.equalize,
            transforms.RandomEqualize,
            [{}]
        )

    def test_autoaugment(self):
        for policy in transforms.AutoAugmentPolicy:
            for fill in [None, 85, (128, 128, 128)]:
                random.seed(42)
                img = Image.open(GRACE_HOPPER)
                transform = transforms.AutoAugment(policy=policy, fill=fill)
                for _ in range(100):
                    img = transform(img)
                transform.__repr__()

1877

1878
1879
if __name__ == '__main__':
    unittest.main()